
sustainability

Article

Hybrid Algorithm Based on an Estimation of
Distribution Algorithm and Cuckoo Search for the No
Idle Permutation Flow Shop Scheduling Problem
with the Total Tardiness Criterion Minimization

Zewen Sun and Xingsheng Gu *

Key Laboratory of Advanced Control and Optimization for Chemical Process, East China University of Science
and Technology, Ministry of Education, Shanghai 200237, China; sunzewen@yeah.net
* Correspondence: xsgu@ecust.edu.cn; Tel.: +86-21-6425-3463

Academic Editors: Xiang Li, Jian Zhou, Hua Ke and Xiangfeng Yang
Received: 30 April 2017; Accepted: 1 June 2017; Published: 5 June 2017

Abstract: The no idle permutation flow shop scheduling problem (NIPFSP) is a popular NP-hard
combinatorial optimization problem, which exists in several real world production processes.
This study proposes a novel hybrid estimation of the distribution algorithm and cuckoo search
(CS) algorithm (HEDA_CS) to solve the NIPFSP with the total tardiness criterion minimization.
The problem model is built on the basis of the starting and ending time point of each job. A discrete
solution representation method is applied in HEDA_CS to increase the operation efficiency. A novel
probability matrix build method is also designed within the knowledge of the processing time
matrix. The partially-mapped crossover operation works effectively during the CS phase. A suitable
knowledge-based local search is also designed in the HEDA_CS to balance the exploitation and
exploration. Finally, many simulations based on the new hard Ruiz benchmarks are conducted.
Computational results demonstrate the effectiveness of the proposed HEDA_CS.

Keywords: estimation of distribution algorithm (EDA); cuckoo search (CS); HEDA_CS; no idle
permutation flow shop scheduling problem (NIPFSP); total tardiness

1. Introduction

The permutation flow shop scheduling problem (PFSP) has been the focus of many studies for
decades. The no-idle constraint in scheduling occurs when two consecutive jobs must be processed
on the same machine without any interruptions. Given that this constraint appears in real-world
production environments, the no idle permutation flow shop scheduling problem (NIPFSP) has
considerable academic and practical significance. Similar to the traditional scheduling problem,
the NIPFSP is proven to be NP-hard [1,2]. Exact optimization methods have limitations in solving
large-scale problems because of the calculation time limitation. Therefore, developing effective and
efficient algorithms to solve the NIPFSP is significant.

The NIPFSP was first studied by Adiri and Pohoryles [3], and it has received extensive attention
ever since. Woollam [4] investigated a solution procedure for a flow shop problem, in which a machine
continuously processes all the jobs that must be processed once it is started. That study described
a “no idle time allowed” constraint. Saadani et al. [5] determined that the idle characteristic seriously
affected the value of the makespan (Cmax) criterion in a three-stage, no idle flow-shop configuration.
Given that the traditional exact optimization algorithm has limitations with the age of data exploration,
heuristics has received increasing attention by solving the NIPFSP [6–10]. Dong et al. [11] proposed
an improved NEH-based heuristic with an initial sequence generated by combining the average job
processing time. Their proposed strategy was based on the idea of balancing the utilization among

Sustainability 2017, 9, 953; doi:10.3390/su9060953 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://dx.doi.org/10.3390/su9060953
http://www.mdpi.com/journal/sustainability

Sustainability 2017, 9, 953 2 of 16

all machines and exhibited suitable performance. Baraz and Mosheiov [12] introduced an efficient
(O(n2)) greedy algorithm, which was shown numerically to perform better than other published
heuristics. Kalczynski and Kamburowski [13] addressed the problem of determining a job sequence
that minimized the makespan in m-machine flow shops under the no-idle condition. Pan and Wang [14]
proposed a novel discrete differential evolution algorithm to solve NIPFSP. That study presented two
simple approaches to calculate the makespan and a speed-up method to insert the neighborhood
and thus improve the efficiency of the entire algorithm. Pan et al. [15] then proposed a new and
novel referenced local search procedure hybridized with both algorithms to further improve the
solution quality. The referenced local search exploited the space based on reference positions taken
from a reference solution to determine better job positions when performing the insertion operation.
Researchers [16] also solved the single machine total weighted tardiness problem with sequence
dependent setup times by a discrete differential evolution algorithm. He and Wang [17] proposed
a hybrid algorithm that combines evolutionary computation and constraint-handling techniques.
Li and Wang [18] proposed a hybrid quantum-inspired genetic algorithm for the multi-objective PFSP.
A new random-key representation was used to convert the Q-bit representation to job permutation in
evaluating the objective values of the schedule solution. Deng and Gu [19] proposed a hybrid discrete
differential evolution (HDDE) algorithm for the no-idle permutation flow shop scheduling problem
with makespan criterion. Tasgetiren et al. [20] investigated the utilization of a continuous algorithm for
the NIPFSP with tardiness criterion. A differential evolution algorithm with variable parameter search
was developed to solve the NIPFSP. Researchers [21] also designed a variable iterated greedy algorithm
with differential evolution to solve the NIPFSP in recent years. Pan and Ruiz [22] first proposed an
effective iterated greedy algorithm for a mixed no idle flow shop, where several machines had the
no-idle constraint, whereas others were regular machines. The researchers also proposed a formula set
to accelerate the insertion calculation that was utilized in heuristics and in local search procedures.
A novel nature-inspired cuckoo search (CS) algorithm was developed by Yang and Deb [23] in 2009.
CS has a series of successful engineering examples [24–26]. The improved CS algorithm was proposed
for hybrid flow shop scheduling problems by Marichelvam et al. [27], and the algorithm was validated
with the data from a leading furniture manufacturing company. A discrete version of the inter-species
CS algorithm was proposed and applied to solve two significant types of the PFSP [28].

The current study is related to the complex production process with no idle tight constraints
in the real world. Given that the starting and ending time points are a suitable method to describe
the job process, a new problem formulation is built on the basis of this condition. Considering the
last CS algorithm, this study proposes a novel hybrid estimation of distribution algorithm (HEDA)
and CS algorithm (HEDA_CS) to solve the NIPFFSP with the total tardiness criterion minimization.
A knowledge-based local search is applied to the proposed HEDA_CS to balance the exploitation
and exploration of the HEDA_CS. Several latest Ruiz benchmark instances are adopted to test and
improve the HEDA_CS performance. A suitable adjustment to the algorithm shows that the HEDA_CS
is effective and highly efficient in solving the NIPFFSP with the total tardiness criterion minimization.

The remainder of the paper is organized as follows. Section 2 describes the problem formulation
with a time point method to build the mathematical model. Section 3 presents the novel HEDA_CS
to solve the NIPFSP with the total tardiness criterion minimization. Several of the latest Ruiz
benchmark instances are employed to test the performance of the proposed HEDA_CS in Section 4.
The computational results and analysis are also presented in this section. Finally, the conclusions are
discussed in Section 5.

2. Problem Formulation

The permutation flow shop scheduling problem (PFSP) is illustrated in Figure 1. A total of n jobs
J = {J1, J2, . . . , Ji, . . . , Jn−1, Jn} must be processed on m machines M = {M1, M2, . . . , Mj, . . . , Mm−1,
Mm} with the same sequence. Consequently, n products {P1, P2, . . . , Pi, . . . , Pn−1, Pn} are attained.
Therefore, determining the processing sequence of n jobs over m machines in PFSP to satisfy several

Sustainability 2017, 9, 953 3 of 16

objectives is widely applied in actual production, especially in one-piece mass production. The NIPFSP
is a highly important branch of PFSP and an NP-hard problem. Additional mathematical descriptions
are presented in the following subsections.

Sustainability 2017, 9, 953 3 of 16

determining the processing sequence of n jobs over m machines in PFSP to satisfy several objectives
is widely applied in actual production, especially in one-piece mass production. The NIPFSP is a
highly important branch of PFSP and an NP-hard problem. Additional mathematical descriptions
are presented in the following subsections.

Figure 1. Permutation flow shop scheduling problem (PFSP) illustration.

2.1. Notation

i, j normally utilized as loop variables (i.e., i represents the job number, and j represents the
machine number)

m machine number
n job number
Job {J1, J2, …, Jn}; represents the job set to be processed
π scheduling solution that is the processing sequence of the job set {J1, J2, …, Jn}
Ti,j represents the processing time of the i-th job processed on the j-th machine
Tsi,j represents the starting time of the i-th processed job on the j-th machine;
 Given that all of the jobs are prepared to be processed at time zero, then (1),1 0Ts

Tei,j represents the ending time of the i-th processed job on the j-th machine

DifTi,j represents the minimum difference time between the π(i)-th processed job completion
time of the j-th machine and (j + 1)-th machine

di represents the due date of the i-th job
()TTd represents the total tardiness of the schedule π

2.2. Mathematical Model

The NIPFSP has the same requirements (i.e., processing sequence) as the PFSP [2,5,14]. In
particular, n jobs must be processed on m machines with the same sequence. Each machine can only
process one job at a time. No interruption occurs between the start and end of each job, and all of the
jobs are prepared to be processed at time zero. However, a significant difference exists between the
two problems. The NIPFSP has tight time constraints for each machine. In particular, each machine
must process all of the jobs without any interruption from the start of processing the first job to the
end of the last job. The total tardiness (TTd) of the NIPFSP for this feature can be calculated as
follows:

min ()TTd (1)

Figure 1. Permutation flow shop scheduling problem (PFSP) illustration.

2.1. Notation

i, j
normally utilized as loop variables (i.e., i represents the job number, and j represents the
machine number)

m machine number
n job number
Job {J1, J2,, Jn}; represents the job set to be processed
π scheduling solution that is the processing sequence of the job set {J1, J2,, Jn}
Ti,j represents the processing time of the i-th job processed on the j-th machine
Tsi,j represents the starting time of the i-th processed job on the j-th machine;

Given that all of the jobs are prepared to be processed at time zero, then Tsπ(1),1 = 0
Tei,j represents the ending time of the i-th processed job on the j-th machine

DifTi,j
represents the minimum difference time between the π(i)-th processed job completion time of
the j-th machine and (j + 1)-th machine

di represents the due date of the i-th job
TTd(π) represents the total tardiness of the schedule π

2.2. Mathematical Model

The NIPFSP has the same requirements (i.e., processing sequence) as the PFSP [2,5,14].
In particular, n jobs must be processed on m machines with the same sequence. Each machine
can only process one job at a time. No interruption occurs between the start and end of each job, and all
of the jobs are prepared to be processed at time zero. However, a significant difference exists between
the two problems. The NIPFSP has tight time constraints for each machine. In particular, each machine
must process all of the jobs without any interruption from the start of processing the first job to the
end of the last job. The total tardiness (TTd) of the NIPFSP for this feature can be calculated as follows:

min TTd(π) (1)

Sustainability 2017, 9, 953 4 of 16

f irst machine :
Tsπ(1),1 = 0Teπ(1),1 = Tsπ(1),1 + Tπ(1),1 = Tπ(1),1
Teπ(i),j = Tsπ(i),j + Tπ(i),j
Tsπ(i),j+1 ≥ Teπ(i),j
Tsπ(i),1 = Teπ(i−1),1(2 ≤ i ≤ n; i ∈ N+)

Teπ(i),1 = Teπ(i−1),1 + Tπ(i),1
f ollowing machines :
Di f T1,j = Tπ(1),j+1, j = 1, 2, · · · , m− 1

Di f Ti,j = max
{

0, Di f Ti−1,j − Tπ(i),j

}
+ Tπ(i),j+1(1 < i ≤ n; 1 ≤ j < m; i, j ∈ N+)

Teπ(n),j =
j−1
∑

jj=1
Di f Tn,jj +

n
∑

i=1
Tπ(i),1(2 ≤ j ≤ m, j ∈ N+)

Tsπ(i),j = Teπ(i),j − Tπ(i),j = Teπ(i−1),j(2 ≤ i ≤ n; 1 ≤ j ≤ m; i, j ∈ N+)

TTd(π) =
n
∑

i=1
TTdπ(i) =

n
∑

i=1
max

{
Teπ(i),m − dπ(i), 0

}

(2)

The aforementioned equations describe the processing sequence through the variables TS and
TE. The relationship between TS and TE shows no idle tight time constraints. Therefore, several jobs
must be processed with time delay when they are free from several machines. The variable DifTi,j is
employed to ensure the exact delay time. The ending time of the last processed job at each machine
can be calculated through the sum DifTi,j with Ti,j. The ending time of each job at the last machine
can then be attained by forward pass calculation. Finally, the total tardiness of the schedule π can be
obtained. The objective of solving NIPFSP is to determine a suitable solution (i.e., π) with the total
tardiness TTd(π) minimization. An example of the NIPFSP problem with five jobs and three machines
is shown in Figure 2 in describing the manufacturing process. The five jobs are processed on the three
machines with the same job process vector [4 1 5 3 2]. The no idle constraint exists, whether the jobs
are processed on the first machine or the following machines. The starting time and end time of each
job are also posted in Figure 2.

Sustainability 2017, 9, 953 4 of 16

(1),1 (1),1 (1),1 (1),1 (1),1

(), (), (),

(), 1 (),

(),1 (1),1

(),1 (1),1 (),1

1, (1), 1

:

0

(2 ;)

:

, 1

i j i j i j

i j i j

i i

i i i

j j

first machine

Ts Te Ts T T

Te Ts T

Ts Te

Ts Te i n i N

Te Te T

following machines

DifT T j

 , 1, (), (), 1

1

(), , (),1
1 1

(), (), (), (1),

()
1

, 2, , 1

max 0, (1 ; 1 ; ,)

(2 ,)

(2 ;1 ; ,)

() max

i j i j i j i j

j n

n j n jj i
jj i

i j i j i j i j

n

i
i

m

DifT DifT T T i n j m i j N

Te DifT T j m j N

Ts Te T Te i n j m i j N

TTd TTd Te

 (), ()
1

,0
n

i m i
i

d

 (2)

The aforementioned equations describe the processing sequence through the variables TS and
TE. The relationship between TS and TE shows no idle tight time constraints. Therefore, several jobs
must be processed with time delay when they are free from several machines. The variable DifTi,j is
employed to ensure the exact delay time. The ending time of the last processed job at each machine
can be calculated through the sum DifTi,j with Ti,j. The ending time of each job at the last machine
can then be attained by forward pass calculation. Finally, the total tardiness of the schedule π can be
obtained. The objective of solving NIPFSP is to determine a suitable solution (i.e., π) with the total
tardiness ()TTd minimization. An example of the NIPFSP problem with five jobs and three
machines is shown in Figure 2 in describing the manufacturing process. The five jobs are processed
on the three machines with the same job process vector [4 1 5 3 2]. The no idle constraint exists,
whether the jobs are processed on the first machine or the following machines. The starting time
and end time of each job are also posted in Figure 2.

0 5 10 15 20 25 30 35

1

2

3

Processing Time

Pr
oc

es
si

ng
 M

ac
hi

ne

The Scheduling Result

8 1 17 21 2 2519 3 210 4 8 17 5 19

181 19 26 2 3123 3 2612 4 19 5 23

21 1 25 31 2 33303 3119 4 21 25 5 30

first machine

following machines

Figure 2. Example of a no idle PFSP (NIPFSP) problem with five jobs and three machines.
Figure 2. Example of a no idle PFSP (NIPFSP) problem with five jobs and three machines.

3. HEDA_CS for NIPFSP

Significant applications of hybrid algorithms to solve scheduling problems with suitable
performance have been explored in the past few decades [29–32]. This section presents the novel

Sustainability 2017, 9, 953 5 of 16

HEDA_CS for solving the NIPFSP with the total tardiness minimization. First, a discrete vector solution
representation and initialization with the building probability model is introduced. Second, a hybrid
strategy with CS, updating mechanism, and knowledge-based local search are described in detail.
Finally, the flowchart of the HEDA_CS is shown to better understand the circulation mechanism.

3.1. Solution Representation

All of the solutions in the traditional estimation of distribution algorithms (EDAs) are designed
for continuous optimization problems. As a typical discrete optimization problem, the NIPFSP has
distinctive features in its solutions. Thus, a discrete vector decoding method is employed as the
solution representation. In particular, each discrete vector demonstrates a solution for the NIPFSP.
For example, the discrete vector π = {6, 4, 5, 1, 3, 2} is a scheduling solution of jobs processed in the
order of 6, 4, 5, 1, 3, and 2 for the NIPFSP. Each decoded solution in this decoding method shows the
unique scheduling result for the NIPFSP. A hybrid discrete algorithm can also be designed to solve
the NIPFSP with more efficiency than continuous algorithms. Given that job i is represented by the
element π(i), a solution can be decoded as a processing vector π as illustrated in Figure 3.

Sustainability 2017, 9, 953 5 of 16

3. HEDA_CS for NIPFSP

Significant applications of hybrid algorithms to solve scheduling problems with suitable
performance have been explored in the past few decades [29–32]. This section presents the novel
HEDA_CS for solving the NIPFSP with the total tardiness minimization. First, a discrete vector solution
representation and initialization with the building probability model is introduced. Second, a hybrid
strategy with CS, updating mechanism, and knowledge-based local search are described in detail.
Finally, the flowchart of the HEDA_CS is shown to better understand the circulation mechanism.

3.1. Solution Representation

All of the solutions in the traditional estimation of distribution algorithms (EDAs) are designed
for continuous optimization problems. As a typical discrete optimization problem, the NIPFSP has
distinctive features in its solutions. Thus, a discrete vector decoding method is employed as the
solution representation. In particular, each discrete vector demonstrates a solution for the NIPFSP.
For example, the discrete vector π = {6, 4, 5, 1, 3, 2} is a scheduling solution of jobs processed in the
order of 6, 4, 5, 1, 3, and 2 for the NIPFSP. Each decoded solution in this decoding method shows
the unique scheduling result for the NIPFSP. A hybrid discrete algorithm can also be designed to
solve the NIPFSP with more efficiency than continuous algorithms. Given that job i is represented
by the element π(i), a solution can be decoded as a processing vector π as illustrated in Figure 3.

Job processing vector

{ (1), (2), , (3)} π

Figure 3. Solution representation in HEDA_CS.

3.2. Initialization and Probability Model

Given that each individual is a solution representation as previously described, individuals are
generated randomly in the initial population. The individuals in this method are randomly
distributed in the entire solution space and have suitable diversity by uniform design. An
individual is constructed by the NEH heuristic during the initialization to guarantee the initial
population with a certain quality [11].

The probability model is the core brain of the EDA, which is commonly adopted to describe
the distribution of the searching solution space. The probability matrix for describing the
probability model is built based on several superior solution individuals during the iteration. New
solution individuals are then obtained by sampling the probability matrix in the EDA. Therefore,
improving the EDA performance is highly advantageous when the probability matrix contains the
knowledge from the problems. This study focuses on the NIPFSP. The optimization objective is to
determine the best scheduling solution with total tardiness minimization. Therefore, a modified
probability matrix building method is proposed by taking advantage of the knowledge from the
processing matrix T and designed solution representation. The designed probability matrix P is
related to the job processing vector.

11 12 1

21 22 2

1 2

() () ()

() () ()

() () ()

n

n

n n nn

p l p l p l

p l p l p l
P

p l p l p l

 (3)

Element pij(l) in the probability matrix P represents the probability that job j appears before or in
the i-th position at the l-th iteration. The value of pij(l) refers to the importance of a job when
decoding a solution into a schedule. As the processing matrix T can be calculated to obtain the total
processing time of each job, the original probability matrix P is designed considering the

Figure 3. Solution representation in HEDA_CS.

3.2. Initialization and Probability Model

Given that each individual is a solution representation as previously described, individuals
are generated randomly in the initial population. The individuals in this method are randomly
distributed in the entire solution space and have suitable diversity by uniform design. An individual
is constructed by the NEH heuristic during the initialization to guarantee the initial population with
a certain quality [11].

The probability model is the core brain of the EDA, which is commonly adopted to describe the
distribution of the searching solution space. The probability matrix for describing the probability
model is built based on several superior solution individuals during the iteration. New solution
individuals are then obtained by sampling the probability matrix in the EDA. Therefore, improving
the EDA performance is highly advantageous when the probability matrix contains the knowledge
from the problems. This study focuses on the NIPFSP. The optimization objective is to determine
the best scheduling solution with total tardiness minimization. Therefore, a modified probability
matrix building method is proposed by taking advantage of the knowledge from the processing
matrix T and designed solution representation. The designed probability matrix P is related to the job
processing vector.

P =

p11(l) p12(l) · · · p1n(l)
p21(l) p22(l) . . . p2n(l)

...
...

. . .
...

pn1(l) pn2(l) . . . pnn(l)

 (3)

Element pij(l) in the probability matrix P represents the probability that job j appears before or in
the i-th position at the l-th iteration. The value of pij(l) refers to the importance of a job when decoding
a solution into a schedule. As the processing matrix T can be calculated to obtain the total processing
time of each job, the original probability matrix P is designed considering the knowledge of the longest

Sustainability 2017, 9, 953 6 of 16

total processing time job priority principle and roulette wheel selection. The original probability matrix
P’s concrete implementation process is illustrated as follows:

T =

T11 T12 · · · T1m
T21 T22 . . . T2m

...
...

. . .
...

Tn1 Tn2 . . . Tnm

→
m
∑

j=1
T1,j

m
∑

j=1
T2,j

...
m
∑

j=1
Tn,j

→ P =

p11(1) p12(1) · · · p1n(1)
p21(1) p22(1) . . . p2n(1)

...
...

. . .
...

pn1(1) pn2(1) . . . pnn(1)

pi,1(1) =

m
∑

j=1
Ti,j

n
∑

i=1

m
∑

j=1
Ti,j

→ pi,j(1) =
1−pi,1
n−1 (1 ≤ i ≤ n; 2 ≤ j ≤ n; i, j ∈ N+)

(4)

The sum of each row and column in the original probability matrix P is evidently one, which fits the
requirement of the job processing vector for the sum of each row. The column element still represents
the probability that job j appears before or in the i-th position at the first iteration. The amount of
the row elements only contains the knowledge from the processing matrix T. An example for better
illustrating the process of generating the original probability matrix P is shown in Figure 4.

Sustainability 2017, 9, 953 6 of 16

knowledge of the longest total processing time job priority principle and roulette wheel selection.
The original probability matrix P’s concrete implementation process is illustrated as follows:

1,
1

11 12 1 11 12 1

2,21 22 2 21 22 2
1

1 2 1 2

,
1

,
1

,1

,
1 1

(1) (1) (1)

(1) (1) (1)

(1) (1) (1)

(1)

m

j
j

m nm

jm n
j

n n nm n n nnm

n j
j

m

i j
j

i in m

i j
i j

T

T T T p p p

TT T T p p p
T P

T T T p p p

T

T

p p
T

 ,1
,

1
(1) (1 ;2 ; ,)

1
i

j

p
i n j n i j N

n

 (4)

The sum of each row and column in the original probability matrix P is evidently one, which
fits the requirement of the job processing vector for the sum of each row. The column element still
represents the probability that job j appears before or in the i-th position at the first iteration. The
amount of the row elements only contains the knowledge from the processing matrix T. An example
for better illustrating the process of generating the original probability matrix P is shown in Figure
4.

0.20930 0.26356 0.26356 0.263565 1 3 9

2 2 6 10 0.23256 0.25581 0.25581 0.25581

1 4 3 8 0.18605 0.27131 0.27131 0.27131

9 2 5 16 0.37209 0.20930 0.20930 0.20930

T P

Figure 4. Example of generating the original probability matrix P.

3.3. Lévy Flight Strategy in CS

The CS algorithm was developed by Yang and Deb [23] and is a new population-based
metaheuristic algorithm inspired by nature. The CS algorithm simulates the cuckoo process to
determine a suitable nest location to build an optimization process. The cuckoos have a special
ability to lay their eggs in another host’s nest, which was recently laid in by the host. The cuckoos
lay their eggs among the eggs that were recently laid by the host, or even throw away the host’s
eggs to increase the successful probability of their own eggs hatching. However, the host can find
extraneous eggs and throw them away, or even rebuild a nest in other places. This scenario is a key
process to encourage growth and prepare the body for reproduction. Several eggs are hatched
successfully, and new individuals arrive at a new suitable nest location through Lévy flights [33].
Lévy flights are a global random walk; thus, this strategy provides the algorithm with the capability
to search globally and locally. It then converges to the global optimality by exploring the search
space efficiently even by the end of the iteration.

A discrete partially-mapped crossover (PMX) operation is introduced in the CS as a novel
approach to conceal the cuckoo’s eggs and constitute a well-behaved hybrid algorithm. PMX can be
viewed as an extension of a two-point crossover. It is an efficient mechanism to mix the partially
optimal information of an individual to obtain a better job processing vector. The hybrid algorithm
then becomes suitable for the discrete NIPFSP. Nevertheless, another procedure can legalize the
new individuals, which are caused by the simple two-point crossover. The node repetition in the
PMX crossover can be avoided by utilizing a mapping function. Therefore, the PMX searches for
many new better individuals without increasing the computational complexity. The entire
procedure is shown in Figure 5.

Figure 4. Example of generating the original probability matrix P.

3.3. Lévy Flight Strategy in CS

The CS algorithm was developed by Yang and Deb [23] and is a new population-based
metaheuristic algorithm inspired by nature. The CS algorithm simulates the cuckoo process to
determine a suitable nest location to build an optimization process. The cuckoos have a special ability
to lay their eggs in another host’s nest, which was recently laid in by the host. The cuckoos lay
their eggs among the eggs that were recently laid by the host, or even throw away the host’s eggs to
increase the successful probability of their own eggs hatching. However, the host can find extraneous
eggs and throw them away, or even rebuild a nest in other places. This scenario is a key process
to encourage growth and prepare the body for reproduction. Several eggs are hatched successfully,
and new individuals arrive at a new suitable nest location through Lévy flights [33]. Lévy flights are
a global random walk; thus, this strategy provides the algorithm with the capability to search globally
and locally. It then converges to the global optimality by exploring the search space efficiently even by
the end of the iteration.

A discrete partially-mapped crossover (PMX) operation is introduced in the CS as a novel
approach to conceal the cuckoo’s eggs and constitute a well-behaved hybrid algorithm. PMX can
be viewed as an extension of a two-point crossover. It is an efficient mechanism to mix the partially
optimal information of an individual to obtain a better job processing vector. The hybrid algorithm
then becomes suitable for the discrete NIPFSP. Nevertheless, another procedure can legalize the new
individuals, which are caused by the simple two-point crossover. The node repetition in the PMX
crossover can be avoided by utilizing a mapping function. Therefore, the PMX searches for many new
better individuals without increasing the computational complexity. The entire procedure is shown
in Figure 5.

Sustainability 2017, 9, 953 7 of 16
Sustainability 2017, 9, 953 7 of 16

[1 6 3 5 4 2]

[6 3 5 2 1 4]

Xi

Xj

[6 6 3 2 1 4]

newXi [1 3 5 5 4 2]

newXj
swap

[5 6 3 2 1 4]

newXi [1 3 5 6 4 2]

newXj

legalize

Figure 5. Demonstration process example of a PMX crossover in HEDA_CS.

3.4. Updating Mechanism

Each optimization algorithm implements the population optimization through the iterative
approach for solving the problem. Individuals with high fitness can provide search directions to
attain the optimum solution in the NIPFSP. Thus, we obtain several better individuals in the
population after a series of operations. We can then utilize the information in these individuals to
update the probability model P. The details to update the probability model P are described in
Equations (5) and (6). The probability model is directed toward the space that contains better
solutions based on the top 10% of the best individuals. The search procedure must also track the
potential searching region.

1

(1) (1) ()
SP

a
ij ij ij

a

p l p l I
SP i

 ; (5)

1, if job appears before or in position

0, else ij

j i
I

, (6)

where (0,1) is the learning rate from the new better individuals, and Ii,j describes whether job j
is located before position i. Considering the operation of the SP better individuals in Section 3.5, the
value of can be set to be slightly large. A sufficient strategy can maintain the exploration in the
HEDA_CS in the aforementioned operation. As an operation to obtain better knowledge
information in relatively better solutions, the value must be set as extremely small. This scenario
is also an updating mechanism to obtain new individuals during the iteration.

3.5. Knowledge-Based Local Search

A knowledge-based local search is designed as an operator during the iteration to improve the
exploitation capability of HEDA_CS. A critical path for the PFSPs refers to a continuous job-path
from the beginning to the end of the solution with no idle condition between any two jobs [34].
Thus, this continuous job-path contains full processing knowledge of the NIPFSP with the total
tardiness criterion minimization. Considering the variable neighborhood search [35], a suitable
knowledge-based local search is designed in the HEDA_CS to solve the NIPFSP with the total
tardiness criterion minimization. The insertion operator presents superior performance in the local
search strategy. The knowledge-based local search mainly relies on such a partial subsequence
insertion operator. In particular, the local search algorithm initially fetches a sequence from the job
processing vector (i.e., an individual from SP better individuals). The length of the subsequence is
at a maximum of n rounded down to the nearest whole unit. Several job numbers can then be
obtained, which are the elements of the fetched sequence. Each fetched job is inserted to all of the
possible positions of the remaining sequences. Only the best subsequence that has better fitness

Figure 5. Demonstration process example of a PMX crossover in HEDA_CS.

3.4. Updating Mechanism

Each optimization algorithm implements the population optimization through the iterative
approach for solving the problem. Individuals with high fitness can provide search directions
to attain the optimum solution in the NIPFSP. Thus, we obtain several better individuals in the
population after a series of operations. We can then utilize the information in these individuals
to update the probability model P. The details to update the probability model P are described in
Equations (5) and (6). The probability model is directed toward the space that contains better solutions
based on the top 10% of the best individuals. The search procedure must also track the potential
searching region.

pij(l + 1) = (1− α)pij(l) +
α

SP× i

SP

∑
a=1

Ia
ij; (5)

Iij =

{
1, if job j appears before or in position i

0, else
, (6)

where α ∈ (0, 1) is the learning rate from the new better individuals, and Ii,j describes whether job
j is located before position i. Considering the operation of the SP better individuals in Section 3.5,
the value of α can be set to be slightly large. A sufficient strategy can maintain the exploration in the
HEDA_CS in the aforementioned operation. As an operation to obtain better knowledge information in
relatively better solutions, the α value must be set as extremely small. This scenario is also an updating
mechanism to obtain new individuals during the iteration.

3.5. Knowledge-Based Local Search

A knowledge-based local search is designed as an operator during the iteration to improve the
exploitation capability of HEDA_CS. A critical path for the PFSPs refers to a continuous job-path from
the beginning to the end of the solution with no idle condition between any two jobs [34]. Thus, this
continuous job-path contains full processing knowledge of the NIPFSP with the total tardiness criterion
minimization. Considering the variable neighborhood search [35], a suitable knowledge-based local
search is designed in the HEDA_CS to solve the NIPFSP with the total tardiness criterion minimization.
The insertion operator presents superior performance in the local search strategy. The knowledge-based
local search mainly relies on such a partial subsequence insertion operator. In particular, the local
search algorithm initially fetches a sequence from the job processing vector (i.e., an individual from SP
better individuals). The length of the subsequence is at a maximum of

√
n rounded down to the nearest

whole unit. Several job numbers can then be obtained, which are the elements of the fetched sequence.
Each fetched job is inserted to all of the possible positions of the remaining sequences. Only the best
subsequence that has better fitness than the others is retained. Finally, a complete job sequence is
obtained (i.e., an individual that has a minimal total tardiness criterion in such a job processing vector).

Sustainability 2017, 9, 953 8 of 16

If the final individual is different from the original individual, then the aforementioned iteration steps
are repeated until the individual is consistent. The better solutions are updated with high exploration
quality in this knowledge-based local search.

3.6. Overall Implementation

The flowchart of the HEDA_CS for solving the NIPFSP with the total tardiness criterion
minimization is illustrated in Figure 6 with the aforementioned designed procedure. At the beginning
of the hybrid algorithm, a population is generated with a better solution provided by the NEH heuristic.
The probability matrix P is initialized by obtaining the knowledge of the processing time matrix T, and
then a CS operator is implemented. Given that several individuals are optimized in the population,
all of the individuals are ranked with high fitness (i.e., low total tardiness). The SP better ranked
individuals enhance the exploitation by the knowledge-based local search. The probability matrix P
is then updated on the basis of the job processing sequence information represented by these better
individuals. A new population can be generated by sampling the probability matrix P based on the
updating mechanism of the EDA. Given that the stopping condition is not met in the HEDA_CS,
the algorithm is iterated to the max generation (Maxgeneration).

The computational complexity at the HEDA_CS iteration can be roughly analyzed as follows.
The CS strategy in the updating process requires computational complexity of O(PopSize/2) by the
PMX operator on the population. Computational complexity of O(SP × n2) is also observed. Each new
generated individual in the sampling process is generated by the roulette strategy with computational
complexity of O(n2). The aforementioned analysis shows that the computation complexity of the
proposed HEDA_CS is not excessively large. It can solve the NIPFFSP with the total tardiness criterion
minimization within an acceptable range of calculations.

Sustainability 2017, 9, 953 8 of 16

than the others is retained. Finally, a complete job sequence is obtained (i.e., an individual that has a
minimal total tardiness criterion in such a job processing vector). If the final individual is different
from the original individual, then the aforementioned iteration steps are repeated until the
individual is consistent. The better solutions are updated with high exploration quality in this
knowledge-based local search.

3.6. Overall Implementation

The flowchart of the HEDA_CS for solving the NIPFSP with the total tardiness criterion
minimization is illustrated in Figure 6 with the aforementioned designed procedure. At the
beginning of the hybrid algorithm, a population is generated with a better solution provided by the
NEH heuristic. The probability matrix P is initialized by obtaining the knowledge of the processing
time matrix T, and then a CS operator is implemented. Given that several individuals are optimized
in the population, all of the individuals are ranked with high fitness (i.e., low total tardiness). The
SP better ranked individuals enhance the exploitation by the knowledge-based local search. The
probability matrix P is then updated on the basis of the job processing sequence information
represented by these better individuals. A new population can be generated by sampling the
probability matrix P based on the updating mechanism of the EDA. Given that the stopping
condition is not met in the HEDA_CS, the algorithm is iterated to the max generation
(Maxgeneration).

The computational complexity at the HEDA_CS iteration can be roughly analyzed as follows.
The CS strategy in the updating process requires computational complexity of O(PopSize/2) by the
PMX operator on the population. Computational complexity of O(SP × n2) is also observed. Each
new generated individual in the sampling process is generated by the roulette strategy with
computational complexity of O(n2). The aforementioned analysis shows that the computation
complexity of the proposed HEDA_CS is not excessively large. It can solve the NIPFFSP with the
total tardiness criterion minimization within an acceptable range of calculations.

Figure 6. Flowchart of the HEDA_CS for NIPFSP with the total tardiness criterion minimization. Figure 6. Flowchart of the HEDA_CS for NIPFSP with the total tardiness criterion minimization.

Sustainability 2017, 9, 953 9 of 16

4. Results and Analysis

Many tests are performed by utilizing the novel Ruiz benchmark instances in 2015 to investigate
the performance of the proposed HEDA_CS [30]. All of the data can be obtained at http://soa.iti.es
(accessed on 16 April 2017). These novel benchmark instances are near the real production process
and have practical significance. Each Ruiz instance has the same structure with Taillards’ instances.
Several case studies can be easily conducted utilizing the said algorithm. The due date of the i-th job is

calculated as di = λ·
m
∑

j=1
Ti,j [36], where λ represents the tightness factor, Ti,j is the processing time of

i-th job processed on the j-th machine, and m is the total machine number. The tightness factor λ is set
as 1, 2, and 3 to demonstrate the due date loose, medium, and tight, respectively. For the optimization
objective of due date, the tightness factor can be seen as a different relaxation condition. Three values
of the tightness factor λ represent three different requirements in the processing environment.

All of the experiment results are evaluated by average relative percentage deviation (ARPD) [37]
to better evaluate the HEDA_CS performance. Thus,

ARPD =
avg− Gbest

Gbest
× 100, (7)

where Gbest is the total tardiness of the best solution obtained by all of the compared algorithms, and
avg corresponds to the average value of the total tardiness of the solution obtained by a selected
algorithm. So the lower value of the ARPD means that better solutions are achieved.

The proposed HEDA_CS is coded in C++ (Visual Studio 2012) and run on a PC with an Intel(R)
Core(TM) i7-2600 CPU 3.40 GHz and 2.85 GB of available main RAM. The computation results
demonstrate the quality of the proposed HEDA_CS. The hybrid strategy shows its suitable performance
in solving NIPFSP. The following subsections describe the exhaustive concept of the parameter setting,
computational results, and discussion.

4.1. Parameter Setting

The three main parameters in the proposed HEDA_CS are as follows: Maxgeneration (iteration
number), PopSize (population size), and SP (number of the superior ranked individuals in the
population). All of the instances containing 60 jobs and 10 machines from the Ruiz benchmark
instances are employed to adjust the said parameters. Another benchmark set is utilized to test the
performance of the algorithm in the next section. An orthogonal experimental design method [38] is
implemented to investigate the influence of these parameters on the HEDA_CS performance.

Given that the tightness factor λ has three different values to demonstrate the due date loose,
medium, and tight, the three main parameters can be set differently under different tightness factors.
The three levels of each main parameter are listed in Table 1. The HEDA_CS for each experiment
environment run each instance 50 times independently (i.e., 50 × 10 × 9 = 4500 times). The entire
orthogonal experiment is listed in Table 2. We can then obtain the trends of the tightness factor λ

shown in Figure 7, which shows that the trends of the tightness factor λ is equal to its definition
in different conditions. When the value of the tightness factor λ is large, the NIPFSP with the total
tardiness criterion can be easily solved. Calculating the results in the orthogonal experiments yields
the range and rank of the main parameters in the HEDA_CS as listed in Table 3. The trends of the main
parameters in the HEDA_CS are shown in Figure 8. Maxgeneration has the most significant impact in
the HEDA_CS, which is followed by PopSize. Given the experiment results, the recommended settings
for the main parameters in the HEDA_CS are as follows: Maxgeneration = 1000, PopSize = 50, SP = 10.
Such parameter settings can improve the efficiency of the HEDA_CS.

http://soa.iti.es

Sustainability 2017, 9, 953 10 of 16

Table 1. Factor levels of the three main parameters.

Tightness Factor λ Main Parameters Factor Levels

1, 2, 3 Maxgeneration 100(1), 500(2), 1000(3)
1, 2, 3 PopSize 10(1), 50(2), 100(3)
1, 2, 3 SP 5(1), 8(2), 10(3)

Table 2. Orthogonal experiments array.

Experiment
Number

Tightness
Factor λ

Main Parameters
ARV

Maxgeneration PopSize SP

1 1 100(1) 10(1) 5(1) 0.3664
2 1 500(2) 50(2) 8(2) 0.1719
3 1 100(1) 100(3) 10(3) 0.2064
4 2 100(1) 50(2) 10(3) 0.2021
5 2 500(2) 100(3) 5(1) 0.2449
6 2 1000(3) 10(1) 8(2) 0.1749
7 3 100(1) 100(3) 8(2) 0.2686
8 3 500(2) 10(1) 10(3) 0.1571
9 3 1000(3) 50(2) 5(1) 0.0728

Table 3. Average value of the ARPD in different main parameter factor levels.

Factor Level
Main Parameters

Maxgeneration PopSize SP

1 0.2790 0.2330 0.2280
2 0.1915 0.1489 0.2051
3 0.1514 0.2400 0.1887

Range 0.1277 0.0910 0.0393
Rank 1 2 3

Sustainability 2017, 9, 953 10 of 16

Table 1. Factor levels of the three main parameters.

Tightness Factor Main Parameters Factor Levels
1, 2, 3 Maxgeneration 100(1), 500(2), 1000(3)
1, 2, 3 PopSize 10(1), 50(2), 100(3)
1, 2, 3 SP 5(1), 8(2), 10(3)

Table 2. Orthogonal experiments array.

Experiment Number Tightness Factor
Main Parameters

ARV
Maxgeneration PopSize SP

1 1 100(1) 10(1) 5(1) 0.3664
2 1 500(2) 50(2) 8(2) 0.1719
3 1 100(1) 100(3) 10(3) 0.2064
4 2 100(1) 50(2) 10(3) 0.2021
5 2 500(2) 100(3) 5(1) 0.2449
6 2 1000(3) 10(1) 8(2) 0.1749
7 3 100(1) 100(3) 8(2) 0.2686
8 3 500(2) 10(1) 10(3) 0.1571
9 3 1000(3) 50(2) 5(1) 0.0728

Table 3. Average value of the ARPD in different main parameter factor levels.

Factor Level
Main Parameters

Maxgeneration PopSize SP
1 0.2790 0.2330 0.2280
2 0.1915 0.1489 0.2051
3 0.1514 0.2400 0.1887

Range 0.1277 0.0910 0.0393
Rank 1 2 3

Figure 7. Factor trends of the tightness factor λ in NIPFSP with the total tardiness criterion minimization. Figure 7. Factor trends of the tightness factor λ in NIPFSP with the total tardiness criterion

minimization.

Sustainability 2017, 9, 953 11 of 16
Sustainability 2017, 9, 953 11 of 16

Figure 8. Factor trends of main parameters in the HEDA_CS.

4.2. Results and Comparison of the Instances

Six sets of benchmark instances are selected from the Ruiz benchmark instances and are used
to test the performance of the proposed HEDA_CS. Each set contains 10 different benchmarks with
the same job and machine numbers. The factors and levels of these benchmarks are listed in Table 4.
The benchmarks can generally describe the NIPFSP characteristics with the total tardiness criterion
minimization. The range of the processing time distribution is U(1, 100). The selected benchmark
job is in the range of [40, 50, 60, 100]. The number of process machines is in the range of [20, 40, 60].

Table 4. Factors and their levels for the selected Ruiz benchmarks.

Factors Levels
Number of jobs 40, 50, 60, 100

Number of machines 20, 40, 60
Processing time on each machine U(1, 100)

The proposed HEDA_CS is compared with several existing algorithms, such as GA, IEDA, and
CS, by utilizing these instances. For each instance, all of the algorithms are run 20 times each. The
computational results are summarized in Tables 5–7 with different values of the tightness factor λ.
The HEDA_CS obtained nearly all of the total tardiness minimization of the instances. The
convergence curves of the four algorithms that solved the instance VFR100_20_3_Gap are shown in
Figure 9. The best Gantt charts obtained by the HEDA_CS for better illustrating the scheduling
production process and providing the actual production reference for engineers are shown in
Figures 10 and 11. Figure 10 illustrates the best scheduling solution of the instance
VFR40_20_1_Gap under tight factor λ = 1. After enough iterations, the scheduling solution
[36-7-17-6-20-5-29-1-13-26-19-38-28-24-9-25-3-31-30-14-4-21-2-35-11-34-15-8-32-37-10-39-12-27-18-33-
40-16-22-23] is obtained by the proposed HEDA_CS. Following this scheduling solution, the 40 jobs
in the instance VFR40_20_1_Gap can be processed with the lowest total tardiness among all of the
solutions achieved during the iteration in HEDA_CS. Figure 11 illustrates the best scheduling
solution of the instance VFR50_20_6_Gap under the tight factor λ = 2. This instance contains 50 jobs.
Its best scheduling solution is [34-19-20-9-30-35-48-50-28-5-18-36-39-32-11-6-40-14-17-45-29-38-37-7
-25-49-42-13-16-1-8-23-4-24-31-47-3-21-22-2-15-27-46-44-43-10-41-12-26-33], which has lower total
tardiness than the other solutions. To enhance the expression optimal scheduling result in the Gantt
chart, each job has a unique color. The tight connection between neighbouring jobs reflects the no
idle tight constraint.

Figure 8. Factor trends of main parameters in the HEDA_CS.

4.2. Results and Comparison of the Instances

Six sets of benchmark instances are selected from the Ruiz benchmark instances and are used
to test the performance of the proposed HEDA_CS. Each set contains 10 different benchmarks with
the same job and machine numbers. The factors and levels of these benchmarks are listed in Table 4.
The benchmarks can generally describe the NIPFSP characteristics with the total tardiness criterion
minimization. The range of the processing time distribution is U(1, 100). The selected benchmark job
is in the range of [40, 50, 60, 100]. The number of process machines is in the range of [20, 40, 60].

Table 4. Factors and their levels for the selected Ruiz benchmarks.

Factors Levels

Number of jobs 40, 50, 60, 100
Number of machines 20, 40, 60

Processing time on each machine U(1, 100)

The proposed HEDA_CS is compared with several existing algorithms, such as GA, IEDA,
and CS, by utilizing these instances. For each instance, all of the algorithms are run 20 times each.
The computational results are summarized in Tables 5–7 with different values of the tightness
factor λ. The HEDA_CS obtained nearly all of the total tardiness minimization of the instances.
The convergence curves of the four algorithms that solved the instance VFR100_20_3_Gap are
shown in Figure 9. The best Gantt charts obtained by the HEDA_CS for better illustrating the
scheduling production process and providing the actual production reference for engineers
are shown in Figures 10 and 11. Figure 10 illustrates the best scheduling solution of the
instance VFR40_20_1_Gap under tight factor λ = 1. After enough iterations, the scheduling solution
[36-7-17-6-20-5-29-1-13-26-19-38-28-24-9-25-3-31-30-14-4-21-2-35-11-34-15-8-32-37-10-39-12-27-18-33-40
-16-22-23] is obtained by the proposed HEDA_CS. Following this scheduling solution, the 40 jobs
in the instance VFR40_20_1_Gap can be processed with the lowest total tardiness among all of
the solutions achieved during the iteration in HEDA_CS. Figure 11 illustrates the best scheduling
solution of the instance VFR50_20_6_Gap under the tight factor λ = 2. This instance contains 50 jobs.
Its best scheduling solution is [34-19-20-9-30-35-48-50-28-5-18-36-39-32-11-6-40-14-17-45-29-38-37-7
-25-49-42-13-16-1-8-23-4-24-31-47-3-21-22-2-15-27-46-44-43-10-41-12-26-33], which has lower total
tardiness than the other solutions. To enhance the expression optimal scheduling result in the Gantt
chart, each job has a unique color. The tight connection between neighbouring jobs reflects the no idle
tight constraint.

Sustainability 2017, 9, 953 12 of 16Sustainability 2017, 9, 953 12 of 16

0 100 200 300 400 500 600 700 800 900 1000
8000

8050

8100

8150

8200

8250

8300

8350

8400

8450

Generation

T
ot

al
 T

ar
di

ne
ss

The convergence curves

GA

IEDA

CS

HEDA__CS

Figure 9. Convergence curves of the instance VFR100_20_3_Gap (n = 100, m = 20, λ = 1).

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Processing Time

Pr
oc

es
si

ng
 M

ac
hi

ne

 Scheduling Result

5 10 15 20 25 30 35 40
Scheduling solution
36-7-17-6-20-5-29-1-13-26-19-38-28-24-9-25-3-31-30-14-4-21-2-35-11-34-15-8-32-37-10-39-12-27-18-33-40-16-22-23

Figure 10. Gantt chart of the instance VFR40_20_1_Gap (n = 40, m = 20, λ = 1) obtained by
HEDA_CS.

Figure 9. Convergence curves of the instance VFR100_20_3_Gap (n = 100, m = 20, λ = 1).

Sustainability 2017, 9, 953 12 of 16

0 100 200 300 400 500 600 700 800 900 1000
8000

8050

8100

8150

8200

8250

8300

8350

8400

8450

Generation

T
ot

al
 T

ar
di

ne
ss

The convergence curves

GA

IEDA

CS

HEDA__CS

Figure 9. Convergence curves of the instance VFR100_20_3_Gap (n = 100, m = 20, λ = 1).

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Processing Time

Pr
oc

es
si

ng
 M

ac
hi

ne

 Scheduling Result

5 10 15 20 25 30 35 40
Scheduling solution
36-7-17-6-20-5-29-1-13-26-19-38-28-24-9-25-3-31-30-14-4-21-2-35-11-34-15-8-32-37-10-39-12-27-18-33-40-16-22-23

Figure 10. Gantt chart of the instance VFR40_20_1_Gap (n = 40, m = 20, λ = 1) obtained by
HEDA_CS.

Figure 10. Gantt chart of the instance VFR40_20_1_Gap (n = 40, m = 20, λ = 1) obtained by HEDA_CS.

Table 5. Comparison results on each set of benchmark problems (λ = 1).

Problem
GA IEDA CS HEDA_CS

AVE MIN MAX AVE MIN MAX AVE MIN MAX AVE MIN MAX

n = 40, m = 20 1.13 0.33 1.98 0.86 0.03 1.89 0.85 0.09 1.79 0.83 0.00 1.82
n = 50, m = 20 1.31 0.45 2.05 0.94 0.23 1.87 0.89 0.10 1.77 0.77 0.00 1.70
n = 60, m = 20 1.93 1.03 4.26 1.31 0.35 3.06 1.38 0.21 2.89 0.73 0.00 1.52
n = 100, m = 20 2.36 1.31 5.18 1.53 0.36 3.86 1.21 0.18 3.41 0.43 0.00 0.93
n = 100, m = 40 2.53 2.13 6.31 1.43 0.61 4.19 1.10 0.53 1.95 0.85 0.00 1.76
n = 100, m = 60 3.76 3.35 7.51 1.51 1.03 4.51 1.43 0.99 2.97 0.94 0.00 1.92

Average 2.17 1.43 4.55 1.26 0.44 3.23 1.14 0.35 2.46 0.76 0.00 1.61

Sustainability 2017, 9, 953 13 of 16Sustainability 2017, 9, 953 13 of 16

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Processing Time

Pr
oc

es
si

ng
 M

ac
hi

ne

Scheduling Result

5 10 15 20 25 30 35 40 45 50Scheduling solution
34-19-20-9-30-35-48-50-28-5-18-36-39-32-11-6-40-14-17-45-29-38-37-7-25-49-42-13-16-1-8-23-4-24-31-47-3-21-22-2-15-27-46-44-43-10-41-12-26-33

Figure 11. Gantt chart of the instance VFR50_20_6_Gap (n = 50, m = 20, λ = 2) obtained by
HEDA_CS.

Table 5. Comparison results on each set of benchmark problems (= 1).

Problem
GA IEDA CS HEDA_CS

AVE MIN MAX AVE MIN MAX AVE MIN MAX AVE MIN MAX
n = 40, m = 20 1.13 0.33 1.98 0.86 0.03 1.89 0.85 0.09 1.79 0.83 0.00 1.82
n = 50, m = 20 1.31 0.45 2.05 0.94 0.23 1.87 0.89 0.10 1.77 0.77 0.00 1.70
n = 60, m = 20 1.93 1.03 4.26 1.31 0.35 3.06 1.38 0.21 2.89 0.73 0.00 1.52

n = 100, m = 20 2.36 1.31 5.18 1.53 0.36 3.86 1.21 0.18 3.41 0.43 0.00 0.93
n = 100, m = 40 2.53 2.13 6.31 1.43 0.61 4.19 1.10 0.53 1.95 0.85 0.00 1.76
n = 100, m = 60 3.76 3.35 7.51 1.51 1.03 4.51 1.43 0.99 2.97 0.94 0.00 1.92

Average 2.17 1.43 4.55 1.26 0.44 3.23 1.14 0.35 2.46 0.76 0.00 1.61

Table 6. Comparison results on each set of benchmark problems (= 2).

Problem
GA IEDA CS HEDA_CS

AVE MIN MAX AVE MIN MAX AVE MIN MAX AVE MIN MAX
n = 40, m = 20 1.14 0.29 2.07 0.89 0.01 2.13 0.91 0.06 1.93 0.89 0.00 1.84
n = 50, m = 20 1.19 0.36 2.84 1.18 0.17 2.52 1.09 0.15 2.21 0.75 0.00 1.88
n = 60, m = 20 1.67 1.07 2.65 1.51 0.68 3.15 1.38 0.23 2.97 0.62 0.00 1.42

n = 100, m = 20 2.13 1.79 3.09 1.87 1.01 3.24 1.57 0.29 3.31 0.41 0.00 0.92
n =100, m = 40 2.31 1.93 4.35 2.01 0.97 4.13 1.51 0.35 3.15 0.93 0.00 1.99
n = 100, m = 60 2.60 2.01 4.32 1.97 1.13 5.01 1.89 0.51 3.68 1.16 0.00 2.07

Average 1.84 1.24 3.22 1.57 0.66 3.36 1.39 0.27 2.88 0.79 0.00 1.69

4.3. Discussion of Experimental Results

The performance of the proposed HEDA_CS is tested and compared with several existing
algorithms by calculating the group of instances in the aforementioned sections. The comparative
results show that the HEDA_CS performs better in solving the benchmark instances than the other
algorithms. Tables 5–7, show that the proposed HEDA_CS obtains nearly the best scheduling
solution with better total tardiness than the compared algorithms at all tightness factor scenarios.
The convergence curves show that the proposed HEDA_CS is more efficient than the other

Figure 11. Gantt chart of the instance VFR50_20_6_Gap (n = 50, m = 20, λ = 2) obtained by HEDA_CS.

Table 6. Comparison results on each set of benchmark problems (λ = 2).

Problem
GA IEDA CS HEDA_CS

AVE MIN MAX AVE MIN MAX AVE MIN MAX AVE MIN MAX

n = 40, m = 20 1.14 0.29 2.07 0.89 0.01 2.13 0.91 0.06 1.93 0.89 0.00 1.84
n = 50, m = 20 1.19 0.36 2.84 1.18 0.17 2.52 1.09 0.15 2.21 0.75 0.00 1.88
n = 60, m = 20 1.67 1.07 2.65 1.51 0.68 3.15 1.38 0.23 2.97 0.62 0.00 1.42
n = 100, m = 20 2.13 1.79 3.09 1.87 1.01 3.24 1.57 0.29 3.31 0.41 0.00 0.92
n =100, m = 40 2.31 1.93 4.35 2.01 0.97 4.13 1.51 0.35 3.15 0.93 0.00 1.99
n = 100, m = 60 2.60 2.01 4.32 1.97 1.13 5.01 1.89 0.51 3.68 1.16 0.00 2.07

Average 1.84 1.24 3.22 1.57 0.66 3.36 1.39 0.27 2.88 0.79 0.00 1.69

Table 7. Comparison results on each set of benchmark problems (λ = 3).

Problem
GA IEDA CS HEDA_CS

AVE MIN MAX AVE MIN MAX AVE MIN MAX AVE MIN MAX

n =40, m = 20 0.83 0.13 2.11 0.79 0.09 1.99 0.81 0.05 1.81 0.78 0.00 1.93
n = 50, m = 20 0.99 0.27 2.25 0.86 0.14 2.07 0.82 0.01 1.83 0.78 0.00 1.62
n = 60, m = 20 1.46 1.12 2.69 0.97 0.31 2.21 0.95 0.16 2.12 0.67 0.00 1.52
n = 100, m = 20 1.68 1.53 2.86 1.31 0.46 2.56 1.16 0.25 2.51 0.42 0.00 0.93
n = 100, m = 40 1.79 1.67 2.90 1.46 0.51 2.73 1.31 0.29 2.75 1.02 0.00 1.85
n = 100, m = 60 2.14 1.89 2.98 1.58 0.59 2.64 1.62 0.36 2.81 1.28 0.00 2.12

Average 1.48 1.10 2.63 1.16 0.35 2.37 1.11 0.19 2.03 0.83 0.00 1.66

4.3. Discussion of Experimental Results

The performance of the proposed HEDA_CS is tested and compared with several existing
algorithms by calculating the group of instances in the aforementioned sections. The comparative
results show that the HEDA_CS performs better in solving the benchmark instances than the other
algorithms. Tables 5–7, show that the proposed HEDA_CS obtains nearly the best scheduling
solution with better total tardiness than the compared algorithms at all tightness factor scenarios.
The convergence curves show that the proposed HEDA_CS is more efficient than the other algorithms.
The proposed HEDA_CS can still continue to optimize the total tardiness of the NIPFSP after much

Sustainability 2017, 9, 953 14 of 16

iteration. The discrete job vector coding method can help optimize the HEDA_CS operator. Hence,
this hybrid strategy can better balance the HEDA_CS exploration and exploitation. The Gantt chart
arrangement is regular. The optimization results can also improve the production process effectively.

5. Conclusions and Future Work

This study proposes an effective and efficient HEDA_CS to solve the NIPFSP with the total
tardiness minimization. A time point-based problem formulation is demonstrated with an example.
As a novel hybrid discrete algorithm, a discrete vector decoding method is utilized in the HEDA_CS.
Several operators are designed in the EDA with the knowledge of the process time matrix. The Lévy
flight strategy enhances the EDA exploration. The PMX operator is applied in the CS, and the
knowledge-based local search ensures the HEDA_CS exploitation. The HEDA_CS effectiveness
is shown by utilizing the novel Ruiz benchmark instances and comparing with other algorithms.
The HEDA_CS is highly efficient in solving the NIPFSP with the total tardiness minimization by
setting the suitable main parameters. The proposed HEDA_CS performs best by comparing with other
algorithm in solving the NIPFSP.

Future research can be devoted to other hybrid algorithm strategies. The new strategies which
better combine the key characteristics of the problem will be more effective. In addition, the proposed
approaches can be considered to extend to other scheduling problems with different objectives, such as
total completion time, earliness, and makespan. Further studies can also focus on solving this problem
with multi-objectives, since existing research mainly considered the single-criterion problems.

Acknowledgments: This work is supported by the National Natural Science Foundation of China (Grant
No. 61573144, 61174040, 61673175) and the Fundamental Research Funds for the Central Universities under
Grant 222201717006.

Author Contributions: The author Zewen Sun designed the algorithms and the experiments, analyzed the data,
and wrote most of the manuscript. Xingsheng Gu discussed the original idea and the concept, gave many
constructive comments, and was in charge of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cepek, O.; Okada, M.; Vlach, M. Note: On the two-machine no-idle flowshop problem. Nav. Res. Log. 2000,
47, 353–358. [CrossRef]

2. Ruiz, R.; Maroto, C. A comprehensive review and evaluation of permutation flowshop heuristics. Eur. J.
Oper. Res. 2005, 165, 479–494. [CrossRef]

3. Adiri, I.; Pohoryles, D. Flowshop/no-idle or no-wait scheduling to minimize the sum of completion times.
Nav. Res. Log. Q. 1982, 29, 495–504. [CrossRef]

4. Woollam, C.R. Flowshop with no idle machine time allowed. Comput. Ind. Eng. 1986, 10, 69–76. [CrossRef]
5. Saadani, N.E.; Guinet, A.; Moalla, M. Three stage no-idle flow-shops. Comput. Ind. Eng. 2003, 44, 425–434.

[CrossRef]
6. Bozorgirad, M.A.; Logendran, R. A comparison of local search algorithms with population-based algorithms

in hybrid flow shop scheduling problems with realistic characteristics. Int. J. Adv. Manuf. Technol. 2015, 83,
1135–1151. [CrossRef]

7. Ramezani, P.; Rabiee, M.; Jolai, F. No-wait flexible flowshop with uniform parallel machines and
sequence-dependent setup time: A hybrid meta-heuristic approach. J. Intell. Manuf. 2013, 26, 731–744.
[CrossRef]

8. Samarghandi, H. Studying the effect of server side-constraints on the makespan of the no-wait flow-shop
problem with sequence-dependent set-up times. Int. J. Prod. Res. 2014, 53, 2652–2673. [CrossRef]

9. Vasile, M.-A.; Pop, F.; Tutueanu, R.-I.; Cristea, V.; Kołodziej, J. Resource-aware hybrid scheduling algorithm
in heterogeneous distributed computing. Future Gener. Comput. Syst. 2015, 51, 61–71. [CrossRef]

10. Zhu, X.; Li, X. Iterative search method for total flowtime minimization no-wait flowshop problem. Int. J.
Mach. Learn Cybern. 2014, 6, 747–761. [CrossRef]

http://dx.doi.org/10.1002/(SICI)1520-6750(200006)47:4<353::AID-NAV5>3.0.CO;2-U
http://dx.doi.org/10.1016/j.ejor.2004.04.017
http://dx.doi.org/10.1002/nav.3800290311
http://dx.doi.org/10.1016/0360-8352(86)90028-8
http://dx.doi.org/10.1016/S0360-8352(02)00217-6
http://dx.doi.org/10.1007/s00170-015-7650-9
http://dx.doi.org/10.1007/s10845-013-0830-2
http://dx.doi.org/10.1080/00207543.2014.974846
http://dx.doi.org/10.1016/j.future.2014.11.019
http://dx.doi.org/10.1007/s13042-014-0312-7

Sustainability 2017, 9, 953 15 of 16

11. Dong, X.; Huang, H.; Chen, P. An improved neh-based heuristic for the permutation flowshop problem.
Comput. Oper. Res. 2008, 35, 3962–3968. [CrossRef]

12. Baraz, D.; Mosheiov, G. A note on a greedy heuristic for flow-shop makespan minimization with no machine
idle-time. Eur. J. Oper. Res. 2008, 184, 810–813. [CrossRef]

13. Kalczynski, P.J.; Kamburowski, J. A heuristic for minimizing the makespan in no-idle permutation flow
shops. Comput. Ind. Eng. 2005, 49, 146–154. [CrossRef]

14. Pan, Q.K.; Wang, L. A novel differential evolution algorithm for no-idle permutation flow-shop scheduling
problems. Eur. J. Ind. Eng. 2008, 2, 279–297. [CrossRef]

15. Pan, Q.-K.; Tasgetiren, M.F.; Liang, Y.-C. A discrete differential evolution algorithm for the permutation
flowshop scheduling problem. Comput. Ind. Eng. 2008, 55, 795–816. [CrossRef]

16. Tasgetiren, M.F.; Pan, Q.-K.; Liang, Y.-C. A discrete differential evolution algorithm for the single machine
total weighted tardiness problem with sequence dependent setup times. Comput. Oper. Res. 2009, 36,
1900–1915. [CrossRef]

17. He, Q.; Wang, L. A hybrid particle swarm optimization with a feasibility-based rule for constrained
optimization. Appl. Math. Comput. 2007, 186, 1407–1422. [CrossRef]

18. Li, B.B.; Wang, L. A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.
IEEE Trans. Syst. Man Cybern. Part B Cybern. 2007, 37, 576–591. [CrossRef]

19. Deng, G.; Gu, X. A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop
scheduling problem with makespan criterion. Comput. Oper. Res. 2012, 39, 2152–2160. [CrossRef]

20. Tasgetiren, M.F.; Pan, Q.-K.; Suganthan, P.N.; Jin Chua, T. A differential evolution algorithm for the no-idle
flowshop scheduling problem with total tardiness criterion. Int. J. Prod. Res. 2011, 49, 5033–5050. [CrossRef]

21. Tasgetiren, M.F.; Pan, Q.-K.; Suganthan, P.N.; Buyukdagli, O. A variable iterated greedy algorithm with
differential evolution for the no-idle permutation flowshop scheduling problem. Comput. Oper. Res. 2013, 40,
1729–1743. [CrossRef]

22. Pan, Q.-K.; Ruiz, R. An effective iterated greedy algorithm for the mixed no-idle permutation flowshop
scheduling problem. Omega 2014, 44, 41–50. [CrossRef]

23. Yang, X.-S.; Deb, S. Cuckoo search via levy flights. In Proceedings of the 2009 World Congress on Nature
& Biologically Inspired Computing (NaBIC 2009), Coimbatore, India, 9–11 December 2009; pp. 210–214.
[CrossRef]

24. Dubey, H.M.; Pandit, M.; Panigrahi, B.K. Cuckoo search algorithm for short term hydrothermal scheduling.
In Power Electronics and Renewable Energy Systems: Proceedings of Icperes 2014; Kamalakannan, C., Suresh, L.P.,
Dash, S.S., Panigrahi, B.K., Eds.; Springer: New Delhi, India, 2015; pp. 573–589.

25. Lim, W.C.E.; Kanagaraj, G.; Ponnambalam, S.G. A hybrid cuckoo search-genetic algorithm for hole-making
sequence optimization. J. Intell. Manuf. 2014, 27, 417–429. [CrossRef]

26. Majumder, A.; Laha, D. A new cuckoo search algorithm for 2-machine robotic cell scheduling problem with
sequence-dependent setup times. Swarm Evolut. Comput. 2016, 28, 131–143. [CrossRef]

27. Marichelvam, M.K.; Prabaharan, T.; Yang, X.S. Improved cuckoo search algorithm for hybrid flow shop
scheduling problems to minimize makespan. Appl. Soft Comput. 2014, 19, 93–101. [CrossRef]

28. Dasgupta, P.; Das, S. A discrete inter-species cuckoo search for flowshop scheduling problems.
Comput. Oper. Res. 2015, 60, 111–120. [CrossRef]

29. Niknam, T.; Azizipanah-Abarghooee, R.; Aghaei, J. A new modified teaching-learning algorithm for reserve
constrained dynamic economic dispatch. IEEE Trans. Power Syst. 2013, 28, 749–763. [CrossRef]

30. Vallada, E.; Ruiz, R.; Framinan, J.M. New hard benchmark for flowshop scheduling problems minimising
makespan. Eur. J. Oper. Res. 2015, 240, 666–677. [CrossRef]

31. Xu, Y.; Wang, L.; Wang, S.-Y.; Liu, M. An effective teaching–learning-based optimization algorithm for
the flexible job-shop scheduling problem with fuzzy processing time. Neurocomputing 2015, 148, 260–268.
[CrossRef]

32. Wang, L.; Wang, S.; Xu, Y.; Zhou, G.; Liu, M. A bi-population based estimation of distribution algorithm for
the flexible job-shop scheduling problem. Comput. Ind. Eng. 2012, 62, 917–926. [CrossRef]

33. Viswanathan, G.M.; Afanasyev, V.; Buldyrev, S.V.; Murphy, E.J.; Prince, P.A.; Stanley, H.E. Levy flight search
patterns of wandering albatrosses. Nature (London) 1996, 381, 413–415. [CrossRef]

34. Grabowski, J.; Wodecki, M. A very fast tabu search algorithm for the permutation flow shop problem with
makespan criterion. Comput. Oper. Res. 2004, 31, 1891–1909. [CrossRef]

http://dx.doi.org/10.1016/j.cor.2007.05.005
http://dx.doi.org/10.1016/j.ejor.2006.11.025
http://dx.doi.org/10.1016/j.cie.2005.05.002
http://dx.doi.org/10.1504/EJIE.2008.017687
http://dx.doi.org/10.1016/j.cie.2008.03.003
http://dx.doi.org/10.1016/j.cor.2008.06.007
http://dx.doi.org/10.1016/j.amc.2006.07.134
http://dx.doi.org/10.1109/TSMCB.2006.887946
http://dx.doi.org/10.1016/j.cor.2011.10.024
http://dx.doi.org/10.1080/00207543.2010.497781
http://dx.doi.org/10.1016/j.cor.2013.01.005
http://dx.doi.org/10.1016/j.omega.2013.10.002
http://dx.doi.org/10.1109/nabic.2009.5393690
http://dx.doi.org/10.1007/s10845-014-0873-z
http://dx.doi.org/10.1016/j.swevo.2016.02.001
http://dx.doi.org/10.1016/j.asoc.2014.02.005
http://dx.doi.org/10.1016/j.cor.2015.01.005
http://dx.doi.org/10.1109/TPWRS.2012.2208273
http://dx.doi.org/10.1016/j.ejor.2014.07.033
http://dx.doi.org/10.1016/j.neucom.2013.10.042
http://dx.doi.org/10.1016/j.cie.2011.12.014
http://dx.doi.org/10.1038/381413a0
http://dx.doi.org/10.1016/S0305-0548(03)00145-X

Sustainability 2017, 9, 953 16 of 16

35. Dong, X.; Nowak, M.; Chen, P.; Lin, Y. Self-adaptive perturbation and multi-neighborhood search for iterated
local search on the permutation flow shop problem. Comput. Ind. Eng. 2015, 87, 176–185. [CrossRef]

36. Tasgetiren, M.F.; Pan, Q.-K.; Suganthan, P.N.; Oner, A. A discrete artificial bee colony algorithm for the
no-idle permutation flowshop scheduling problem with the total tardiness criterion. Appl. Math. Model.
2013, 37, 6758–6779. [CrossRef]

37. Wang, S.-Y.; Wang, L. An estimation of distribution algorithm-based memetic algorithm for the distributed
assembly permutation flow-shop scheduling problem. IEEE. Trans. Syst. Man Cybern. Syst. 2016, 46, 139–149.
[CrossRef]

38. Masselink, G.; Ruju, A.; Conley, D.; Turner, I.; Ruessink, G.; Matias, A.; Thompson, C.; Castelle, B.;
Puleo, J.; Citerone, V.; et al. Large-scale barrier dynamics experiment II (bardex II): Experimental design,
instrumentation, test program, and data set. Coast. Eng. 2016, 113, 3–18. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cie.2015.04.030
http://dx.doi.org/10.1016/j.apm.2013.02.011
http://dx.doi.org/10.1109/TSMC.2015.2416127
http://dx.doi.org/10.1016/j.coastaleng.2015.07.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation
	Notation
	Mathematical Model

	HEDA_CS for NIPFSP
	Solution Representation
	Initialization and Probability Model
	Lévy Flight Strategy in CS
	Updating Mechanism
	Knowledge-Based Local Search
	Overall Implementation

	Results and Analysis
	Parameter Setting
	Results and Comparison of the Instances
	Discussion of Experimental Results

	Conclusions and Future Work

