
sustainability

Article

Using Specification and Description Language for
Life Cycle Assesment in Buildings

Pau Fonseca i Casas 1,* and Antoni Fonseca i Casas 2

1 Statistics and Operations Department, Universitat Politècnica de Catalunya, Barcelona-Tech,
08034 Barcelona, Spain

2 Polyhedra Tech SL, 08026 Barcelona, Spain; antoni.fonseca@necada.com
* Correspondence: pau.fonseca@upc.edu; Tel.: +34-934-017-732

Academic Editor: Avi Friedman
Received: 10 March 2017; Accepted: 5 June 2017; Published: 10 June 2017

Abstract: The definition of a Life Cycle Assesment (LCA) for a building or an urban area is a complex
task due to the inherent complexity of all the elements that must be considered. Furthermore,
a multidisciplinary approach is required due to the different sources of knowledge involved in this
project. This multidisciplinary approach makes it necessary to use formal language to fully represent
the complexity of the used models. In this paper, we explore the use of Specification and Description
Language (SDL) to represent the LCA of a building and residential area. We also introduce a tool
that uses this idea to implement an optimization and simulation mechanism to define the optimal
solution for the sustainability of a specific building or residential.

Keywords: Specification and Description Language (SDL); Life Cycle Assesment (LCA); smart cities;
IoT; buildings simulation; sustainability; resilience

1. Introduction

Currently, there is worldwide awareness of the global increase in energy consumption and the
limited amount of resources available to provide energy to citizens and enterprises. This creates a
huge energy demand and the need to define a new economy and transition methods to increase energy
savings [1]. Considering more effective methods to reduce energy consumption in residential and
commercial areas is strongly related to building efficiency, which has a great impact on electricity
consumption. Although electricity represents only a part of the total energy consumption, it clearly
reflects the importance of the building in the global impact.

In the USA, the residential sector represents approximately 38% of the electricity consumed and
in the commercial area, approximately 36% [2]. The Life Cycle Assesment (LCA) in a building or an
urban area helps to obtain a clear image of all processes involved in the planning, construction, use,
and deconstruction of a house. This holistic view can assist in the reduction of the impact, taking
care of the economic, social, and environmental aspects in a cradle to cradle approach [3]. From an
environmental point of view, reducing energy consumption would have a great impact in decreasing
the environmental impacts. In addition, the analysis of the LCA for houses has a great impact on
energy consumption in all sectors, not only in houses, but also shows a foreseeable greater impact
on the residential and commercial sectors that represent a huge part of the total. For example, all
materials that must be used in a building must be transported from several different origins to its final
destination of the building. By incorporating these parameters in the model, we can also reduce the
emissions from transportation, which are huge.

Sustainability 2017, 9, 1004; doi:10.3390/su9061004 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://dx.doi.org/10.3390/su9061004
http://www.mdpi.com/journal/sustainability

Sustainability 2017, 9, 1004 2 of 17

2. State of the Art

Building or residential area LCA is complex, mainly because it needs to use powerful tools to
scope the complex dynamics of the environment and the energy. Several problems arise with this type
of analysis and includes the amount and the diversity of the data that must be used, and the fact that
this area utilizes different specialists working with different skills in multidisciplinary teams. Mainly,
these problems are related to the choice of unit of the analysis and the methodological and practical
approaches used [4]. In this context, some approaches have been undertaken to improve the LCA
application in architecture [5,6]. A complete review of the development of the LCA in the field of
architecture can be found in the studies presented by [7,8].

By 31 December 2020, EU directive 2010/31/EU requires that all new buildings must be nearly
zero-energy buildings (nZEB). The aim of this directive is to incorporate concepts for reducing their
impact on the environment [9]; thus, the member states must also complete the thresholds and policies
to update their building stock [10–13].

Member states have launched a series of projects, actions, and policy guidelines to specify the
optimal cost-performance actions to achieve the objectives proposed by the regulation on energy
rehabilitation (Royal Decree 235/2013). This allows researchers to check which urban areas are in the
greatest need of rehabilitation and/or that suffer from so-called “energy poverty” [14]. Furthermore,
several European and national projects have been proposed [15,16] to provide funding for initiatives
which, in addition to addressing the issue of energy efficiency either for new construction or
rehabilitation, also include the impact of construction on the environment; that is to say, be capable
of conducting a LCA (Life Cycle Assesment) of the building and thereby ascertain its associated
impacts. Such concepts must be addressed to complete the analysis, not solely in terms of energy and
economic cost.

To perform a comprehensive study of sustainability, one must include the proposed European
standards developed by the CEN TC 350 Working Group, and implemented nationally via Standard
UNE EN 15643 on the Sustainability of Construction Works [17]. This set of standards describes and
specifies the impacts that must be considered (environmental, economic and social impacts), details
indicators, and proposes methodologies.

If we consider the criteria and objectives that must be achieved based on the above-mentioned
standards, programs and applications must be employed to simulate energy consumption, calculate
economic and environmental impacts, and conduct a complete LCA.

No global proposals exist for analyzing certain parameters. Often the designer or engineer
has to invest a significant amount of time designing a virtual model just to study a few design
iterations to identify a good solution. The designer is not in a position to ensure that the best solution
is adopted, or at least one of the best solutions, without analyzing all, or an accurately selected
subset, of the possibilities. In addition, most commercial simulation software packages allow for a
building’s annual energy analysis to be calculated, but do not perform any kind of optimization for
the process. Hence, none of the results for the previous steps, such as the design, construction, or
demolition processes, are optimized. Efforts have been made to develop approaches and methods for
assessing buildings [18], methods for integrating daylight and thermal efficiency [19–21], photovoltaic
systems [22], and multi-objective optimization systems into urban design [23], which consider several
aspects when creating an energy optimization system.

Languages that are commonly used for programming simulators or optimization tools are C++, C#,
Fortran, Java and Delphi, among many others. The use of different languages may cause problems with
integration, model determination and understanding between researchers from different disciplines,
as not everyone understands the low-level code finally used. One of the proposals presented in this
work is the use of a formal language to simplify model definition and use.

The use of formal languages, such as Discrete Event System Specification (DEVS) [24],
Specification and Description Language (SDL) [25,26], or Petri nets [27], is without a doubt one of the
best solutions. These languages allow for an easy integration and communication of ideas related to

Sustainability 2017, 9, 1004 3 of 17

the model with the other members of the team. Additionally, these tools improve interoperability with
other models (co-simulation) and promotes cooperation. Examples of recent works that explore the
use of official languages in this area are [28,29], which explore the use of the co-simulation approach
for calculating building HVAC systems (heating, ventilation, and air conditioning). To represent this
LCA, we used a discrete simulation model formalized using Specification and Description Language
(SDL). In this area, several approaches exist, mainly ruled by the tools used. Classical languages like
GPSS/H® [30], Slam II® [31], or others considered more modern like Simprocess® [32], Arena [33], or
SIMIO [34], among many others, can be used. These software packages allow a complete definition of
the model behavior, structure, time and representation; however, once the model is defined in one of
these simulation packages, it is often difficult to migrate to another. All specialists who interact with
the model must also understand how the tool works. In this context, the use of formal language to
represent the model and to later use a specific tool to implement the model is necessary, even more so
if the model is complex or the personnel working on the model own different forms or, do not know
how to implement the model in the specific tool selected to perform its implementation.

Programming libraries and infrastructures exist that allow for the definition of a simulation model
following a formal language. The tools related to DEVS [35–37] and PetriNets formalisms [27] often
represent an excellent alternative to define and implement a simulation model based on Petri nets
or DEVS. Specifically to model buildings and their related processes, several experiences exist using
DEVS as a language, based on the BIM (Building Information Modeling) philosophy, see [28,38], but
no experiences trying to model the entire LCA of a house or urban area have been found.

SDL is not new for modeling energy-related issues. [39] presented two complementary approaches
to specify energy aspects during the design phase of wireless networks, but like DEVS, no studies that
model the LCA of a building exist.

In this paper, we describe our experience of using SDL to describe the main processes that define
the LCA of a building and show how to take advantage of a formal representation to expand the
model implementation easily over different platforms. The paper is organized as follows: in Section 3,
we describe the SDL based model we use; in Section 4, we discuss how to implement this model; in
Section 5, we describe how to execute the model on the web using a cloud infrastructure. Finally,
Section 6 contains our conclusions.

3. Methodology

One of the aims of this research was to describe, as formally as possible, the structure and behavior
of the LCA of a building. This goal was crucial as the people involved are diverse and come from many
different backgrounds. To address this issue, we used SDL to formally define the model. The use of the
SDL language afforded maximum flexibility to integrate new processes and procedures to the system
in a co-simulation scenario [29]. Using a graphical formal language allowed nonspecialized technicians
access to the programming details of the model and definitively contributed to the validation and
verification processes. In addition, the explanation of the model itself was more intuitive, simple, and
direct than using a programming language such as C or Java. Thus, the group can share the model,
making it much easier to understand and detect errors, as well as propose improvements.

3.1. Specification and Description Language

In this section, we do not describe specifically how SDL behaves, more information on this
language can be found in [25,26]. However, we want to note that the graphical capabilities, the
completeness, and lack of language ambiguity makes it a great candidate to formally define any kind
of simulation model.

Specification and Description Language (SDL) is an object-oriented, formal language defined
by The International Telecommunications Union-Telecommunications Standardization Sector [25],
formerly Comité Consultatif International Telegraphique et Telephonique (CCITT), in recommendation
Z.100. The language is intended for the specification of complex, event-driven, real-time, and

Sustainability 2017, 9, 1004 4 of 17

interactive applications involving many concurrent activities that communicate using discrete signals.
SDL uses four levels to describe model behaviors: system, blocks, processes, and procedures, see
Figure 1.

Sustainability 2017, 9, 1004 4 of 17

discrete signals. SDL uses four levels to describe model behaviors: system, blocks, processes, and

procedures, see Figure 1.

Figure 1. Structural view of a Specification and Description Language (SDL) System.

With SDL, it is possible to generate unambiguous code from the specification; thus, the ideal to

avoid the implementation process and assure that the current implementation of the model

represented, as closely as possible, the model proposed. SDL has different advantages: it is a non-

ambiguous language, graphical, and standardized (the ITU-T), and as SDL allows the definition of

distributed systems, the resulting model can be executed over different computers without any

modification of the model representation. This allows a process where a model can be implemented

and executed in distributed, parallel, or sequential ways without any modification; the only issue is

selecting the proper tool to perform the execution or implementation. SDL is designed to assure its

compatibility with Unified Modeling Language (UML) and Message Sequence Chart (MSC) (see

document Z.105 of the ITU that describes how to use Message Sequence Charts in combination with

SDL). SDL, like UML, is a standard of the ITU, and one of the main concerns is assuring compatibility

between the different proposed standards. As SDL is compatible with some extensions that are

proposed to UML, such as SysML or AUML, that extends the language to represent intelligent agents.

The different model concepts that the SDL formalism describes are (i) Structure: system, blocks,

processes and processes hierarchy; (ii) Communication: signals, along with the parameters and

channels that the signals use to travel; (iii) Behavior: defined through the different processes; (iv)

Data: based on Abstract Data Types (ADT); and (v) Inheritances: to describe the relationships

between, and specialization of, the model elements.

System diagrams, i.e., block diagrams describing the model structure, represent hierarchical

decompositions of the different model elements; some good examples can be reviewed in [26]. A

process diagram defines the behavior of the agents when a specific signal is received and uses

different graphical elements to represent its behavior.

Start. This element defines the initial condition for a PROCESS diagram.

State. The state element contains the name of a state. This element defines the states of

behavioral diagrams, such as PROCESS diagrams.

Input. Input elements describe the type of events that can be received by the process. All

branches of a specific state start with an Input element because an object only changes its state when

a new event is received.

Create. This element allows the creation of an agent.

Task. This element allows the interpretation of informal texts or programming code. In

this paper, following SDL-RT (PragmaDev SARL, 2006), we used C code.

Procedure call. These elements perform a procedure call. A PROCEDURE can be defined

in the last level of the SDL language and used to encapsulate pieces of the model for reuse.

Figure 1. Structural view of a Specification and Description Language (SDL) System.

With SDL, it is possible to generate unambiguous code from the specification; thus, the ideal to
avoid the implementation process and assure that the current implementation of the model represented,
as closely as possible, the model proposed. SDL has different advantages: it is a non-ambiguous
language, graphical, and standardized (the ITU-T), and as SDL allows the definition of distributed
systems, the resulting model can be executed over different computers without any modification of
the model representation. This allows a process where a model can be implemented and executed
in distributed, parallel, or sequential ways without any modification; the only issue is selecting the
proper tool to perform the execution or implementation. SDL is designed to assure its compatibility
with Unified Modeling Language (UML) and Message Sequence Chart (MSC) (see document Z.105 of
the ITU that describes how to use Message Sequence Charts in combination with SDL). SDL, like UML,
is a standard of the ITU, and one of the main concerns is assuring compatibility between the different
proposed standards. As SDL is compatible with some extensions that are proposed to UML, such as
SysML or AUML, that extends the language to represent intelligent agents.

The different model concepts that the SDL formalism describes are (i) Structure: system, blocks,
processes and processes hierarchy; (ii) Communication: signals, along with the parameters and
channels that the signals use to travel; (iii) Behavior: defined through the different processes; (iv) Data:
based on Abstract Data Types (ADT); and (v) Inheritances: to describe the relationships between, and
specialization of, the model elements.

System diagrams, i.e., block diagrams describing the model structure, represent hierarchical
decompositions of the different model elements; some good examples can be reviewed in [26].
A process diagram defines the behavior of the agents when a specific signal is received and uses
different graphical elements to represent its behavior.

Start.

Sustainability 2017, 9, 1004 4 of 17

discrete signals. SDL uses four levels to describe model behaviors: system, blocks, processes, and

procedures, see Figure 1.

Figure 1. Structural view of a Specification and Description Language (SDL) System.

With SDL, it is possible to generate unambiguous code from the specification; thus, the ideal to

avoid the implementation process and assure that the current implementation of the model

represented, as closely as possible, the model proposed. SDL has different advantages: it is a non-

ambiguous language, graphical, and standardized (the ITU-T), and as SDL allows the definition of

distributed systems, the resulting model can be executed over different computers without any

modification of the model representation. This allows a process where a model can be implemented

and executed in distributed, parallel, or sequential ways without any modification; the only issue is

selecting the proper tool to perform the execution or implementation. SDL is designed to assure its

compatibility with Unified Modeling Language (UML) and Message Sequence Chart (MSC) (see

document Z.105 of the ITU that describes how to use Message Sequence Charts in combination with

SDL). SDL, like UML, is a standard of the ITU, and one of the main concerns is assuring compatibility

between the different proposed standards. As SDL is compatible with some extensions that are

proposed to UML, such as SysML or AUML, that extends the language to represent intelligent agents.

The different model concepts that the SDL formalism describes are (i) Structure: system, blocks,

processes and processes hierarchy; (ii) Communication: signals, along with the parameters and

channels that the signals use to travel; (iii) Behavior: defined through the different processes; (iv)

Data: based on Abstract Data Types (ADT); and (v) Inheritances: to describe the relationships

between, and specialization of, the model elements.

System diagrams, i.e., block diagrams describing the model structure, represent hierarchical

decompositions of the different model elements; some good examples can be reviewed in [26]. A

process diagram defines the behavior of the agents when a specific signal is received and uses

different graphical elements to represent its behavior.

Start. This element defines the initial condition for a PROCESS diagram.

State. The state element contains the name of a state. This element defines the states of

behavioral diagrams, such as PROCESS diagrams.

Input. Input elements describe the type of events that can be received by the process. All

branches of a specific state start with an Input element because an object only changes its state when

a new event is received.

Create. This element allows the creation of an agent.

Task. This element allows the interpretation of informal texts or programming code. In

this paper, following SDL-RT (PragmaDev SARL, 2006), we used C code.

Procedure call. These elements perform a procedure call. A PROCEDURE can be defined

in the last level of the SDL language and used to encapsulate pieces of the model for reuse.

This element defines the initial condition for a PROCESS diagram.

State.

Sustainability 2017, 9, 1004 4 of 17

discrete signals. SDL uses four levels to describe model behaviors: system, blocks, processes, and

procedures, see Figure 1.

Figure 1. Structural view of a Specification and Description Language (SDL) System.

With SDL, it is possible to generate unambiguous code from the specification; thus, the ideal to

avoid the implementation process and assure that the current implementation of the model

represented, as closely as possible, the model proposed. SDL has different advantages: it is a non-

ambiguous language, graphical, and standardized (the ITU-T), and as SDL allows the definition of

distributed systems, the resulting model can be executed over different computers without any

modification of the model representation. This allows a process where a model can be implemented

and executed in distributed, parallel, or sequential ways without any modification; the only issue is

selecting the proper tool to perform the execution or implementation. SDL is designed to assure its

compatibility with Unified Modeling Language (UML) and Message Sequence Chart (MSC) (see

document Z.105 of the ITU that describes how to use Message Sequence Charts in combination with

SDL). SDL, like UML, is a standard of the ITU, and one of the main concerns is assuring compatibility

between the different proposed standards. As SDL is compatible with some extensions that are

proposed to UML, such as SysML or AUML, that extends the language to represent intelligent agents.

The different model concepts that the SDL formalism describes are (i) Structure: system, blocks,

processes and processes hierarchy; (ii) Communication: signals, along with the parameters and

channels that the signals use to travel; (iii) Behavior: defined through the different processes; (iv)

Data: based on Abstract Data Types (ADT); and (v) Inheritances: to describe the relationships

between, and specialization of, the model elements.

System diagrams, i.e., block diagrams describing the model structure, represent hierarchical

decompositions of the different model elements; some good examples can be reviewed in [26]. A

process diagram defines the behavior of the agents when a specific signal is received and uses

different graphical elements to represent its behavior.

Start. This element defines the initial condition for a PROCESS diagram.

State. The state element contains the name of a state. This element defines the states of

behavioral diagrams, such as PROCESS diagrams.

Input. Input elements describe the type of events that can be received by the process. All

branches of a specific state start with an Input element because an object only changes its state when

a new event is received.

Create. This element allows the creation of an agent.

Task. This element allows the interpretation of informal texts or programming code. In

this paper, following SDL-RT (PragmaDev SARL, 2006), we used C code.

Procedure call. These elements perform a procedure call. A PROCEDURE can be defined

in the last level of the SDL language and used to encapsulate pieces of the model for reuse.

The state element contains the name of a state. This element defines the states of
behavioral diagrams, such as PROCESS diagrams.

Input.

Sustainability 2017, 9, 1004 4 of 17

discrete signals. SDL uses four levels to describe model behaviors: system, blocks, processes, and

procedures, see Figure 1.

Figure 1. Structural view of a Specification and Description Language (SDL) System.

With SDL, it is possible to generate unambiguous code from the specification; thus, the ideal to

avoid the implementation process and assure that the current implementation of the model

represented, as closely as possible, the model proposed. SDL has different advantages: it is a non-

ambiguous language, graphical, and standardized (the ITU-T), and as SDL allows the definition of

distributed systems, the resulting model can be executed over different computers without any

modification of the model representation. This allows a process where a model can be implemented

and executed in distributed, parallel, or sequential ways without any modification; the only issue is

selecting the proper tool to perform the execution or implementation. SDL is designed to assure its

compatibility with Unified Modeling Language (UML) and Message Sequence Chart (MSC) (see

document Z.105 of the ITU that describes how to use Message Sequence Charts in combination with

SDL). SDL, like UML, is a standard of the ITU, and one of the main concerns is assuring compatibility

between the different proposed standards. As SDL is compatible with some extensions that are

proposed to UML, such as SysML or AUML, that extends the language to represent intelligent agents.

The different model concepts that the SDL formalism describes are (i) Structure: system, blocks,

processes and processes hierarchy; (ii) Communication: signals, along with the parameters and

channels that the signals use to travel; (iii) Behavior: defined through the different processes; (iv)

Data: based on Abstract Data Types (ADT); and (v) Inheritances: to describe the relationships

between, and specialization of, the model elements.

System diagrams, i.e., block diagrams describing the model structure, represent hierarchical

decompositions of the different model elements; some good examples can be reviewed in [26]. A

process diagram defines the behavior of the agents when a specific signal is received and uses

different graphical elements to represent its behavior.

Start. This element defines the initial condition for a PROCESS diagram.

State. The state element contains the name of a state. This element defines the states of

behavioral diagrams, such as PROCESS diagrams.

Input. Input elements describe the type of events that can be received by the process. All

branches of a specific state start with an Input element because an object only changes its state when

a new event is received.

Create. This element allows the creation of an agent.

Task. This element allows the interpretation of informal texts or programming code. In

this paper, following SDL-RT (PragmaDev SARL, 2006), we used C code.

Procedure call. These elements perform a procedure call. A PROCEDURE can be defined

in the last level of the SDL language and used to encapsulate pieces of the model for reuse.

Input elements describe the type of events that can be received by the process.
All branches of a specific state start with an Input element because an object only changes its state
when a new event is received.

Create.

Sustainability 2017, 9, 1004 4 of 17

discrete signals. SDL uses four levels to describe model behaviors: system, blocks, processes, and

procedures, see Figure 1.

Figure 1. Structural view of a Specification and Description Language (SDL) System.

With SDL, it is possible to generate unambiguous code from the specification; thus, the ideal to

avoid the implementation process and assure that the current implementation of the model

represented, as closely as possible, the model proposed. SDL has different advantages: it is a non-

ambiguous language, graphical, and standardized (the ITU-T), and as SDL allows the definition of

distributed systems, the resulting model can be executed over different computers without any

modification of the model representation. This allows a process where a model can be implemented

and executed in distributed, parallel, or sequential ways without any modification; the only issue is

selecting the proper tool to perform the execution or implementation. SDL is designed to assure its

compatibility with Unified Modeling Language (UML) and Message Sequence Chart (MSC) (see

document Z.105 of the ITU that describes how to use Message Sequence Charts in combination with

SDL). SDL, like UML, is a standard of the ITU, and one of the main concerns is assuring compatibility

between the different proposed standards. As SDL is compatible with some extensions that are

proposed to UML, such as SysML or AUML, that extends the language to represent intelligent agents.

The different model concepts that the SDL formalism describes are (i) Structure: system, blocks,

processes and processes hierarchy; (ii) Communication: signals, along with the parameters and

channels that the signals use to travel; (iii) Behavior: defined through the different processes; (iv)

Data: based on Abstract Data Types (ADT); and (v) Inheritances: to describe the relationships

between, and specialization of, the model elements.

System diagrams, i.e., block diagrams describing the model structure, represent hierarchical

decompositions of the different model elements; some good examples can be reviewed in [26]. A

process diagram defines the behavior of the agents when a specific signal is received and uses

different graphical elements to represent its behavior.

Start. This element defines the initial condition for a PROCESS diagram.

State. The state element contains the name of a state. This element defines the states of

behavioral diagrams, such as PROCESS diagrams.

Input. Input elements describe the type of events that can be received by the process. All

branches of a specific state start with an Input element because an object only changes its state when

a new event is received.

Create. This element allows the creation of an agent.

Task. This element allows the interpretation of informal texts or programming code. In

this paper, following SDL-RT (PragmaDev SARL, 2006), we used C code.

Procedure call. These elements perform a procedure call. A PROCEDURE can be defined

in the last level of the SDL language and used to encapsulate pieces of the model for reuse.

This element allows the creation of an agent.
Task.

Sustainability 2017, 9, 1004 4 of 17

discrete signals. SDL uses four levels to describe model behaviors: system, blocks, processes, and

procedures, see Figure 1.

Figure 1. Structural view of a Specification and Description Language (SDL) System.

With SDL, it is possible to generate unambiguous code from the specification; thus, the ideal to

avoid the implementation process and assure that the current implementation of the model

represented, as closely as possible, the model proposed. SDL has different advantages: it is a non-

ambiguous language, graphical, and standardized (the ITU-T), and as SDL allows the definition of

distributed systems, the resulting model can be executed over different computers without any

modification of the model representation. This allows a process where a model can be implemented

and executed in distributed, parallel, or sequential ways without any modification; the only issue is

selecting the proper tool to perform the execution or implementation. SDL is designed to assure its

compatibility with Unified Modeling Language (UML) and Message Sequence Chart (MSC) (see

document Z.105 of the ITU that describes how to use Message Sequence Charts in combination with

SDL). SDL, like UML, is a standard of the ITU, and one of the main concerns is assuring compatibility

between the different proposed standards. As SDL is compatible with some extensions that are

proposed to UML, such as SysML or AUML, that extends the language to represent intelligent agents.

The different model concepts that the SDL formalism describes are (i) Structure: system, blocks,

processes and processes hierarchy; (ii) Communication: signals, along with the parameters and

channels that the signals use to travel; (iii) Behavior: defined through the different processes; (iv)

Data: based on Abstract Data Types (ADT); and (v) Inheritances: to describe the relationships

between, and specialization of, the model elements.

System diagrams, i.e., block diagrams describing the model structure, represent hierarchical

decompositions of the different model elements; some good examples can be reviewed in [26]. A

process diagram defines the behavior of the agents when a specific signal is received and uses

different graphical elements to represent its behavior.

Start. This element defines the initial condition for a PROCESS diagram.

State. The state element contains the name of a state. This element defines the states of

behavioral diagrams, such as PROCESS diagrams.

Input. Input elements describe the type of events that can be received by the process. All

branches of a specific state start with an Input element because an object only changes its state when

a new event is received.

Create. This element allows the creation of an agent.

Task. This element allows the interpretation of informal texts or programming code. In

this paper, following SDL-RT (PragmaDev SARL, 2006), we used C code.

Procedure call. These elements perform a procedure call. A PROCEDURE can be defined

in the last level of the SDL language and used to encapsulate pieces of the model for reuse.

This element allows the interpretation of informal texts or programming code. In this
paper, following SDL-RT (PragmaDev SARL, 2006), we used C code.

Sustainability 2017, 9, 1004 5 of 17

Procedure call.

Sustainability 2017, 9, 1004 4 of 17

discrete signals. SDL uses four levels to describe model behaviors: system, blocks, processes, and

procedures, see Figure 1.

Figure 1. Structural view of a Specification and Description Language (SDL) System.

With SDL, it is possible to generate unambiguous code from the specification; thus, the ideal to

avoid the implementation process and assure that the current implementation of the model

represented, as closely as possible, the model proposed. SDL has different advantages: it is a non-

ambiguous language, graphical, and standardized (the ITU-T), and as SDL allows the definition of

distributed systems, the resulting model can be executed over different computers without any

modification of the model representation. This allows a process where a model can be implemented

and executed in distributed, parallel, or sequential ways without any modification; the only issue is

selecting the proper tool to perform the execution or implementation. SDL is designed to assure its

compatibility with Unified Modeling Language (UML) and Message Sequence Chart (MSC) (see

document Z.105 of the ITU that describes how to use Message Sequence Charts in combination with

SDL). SDL, like UML, is a standard of the ITU, and one of the main concerns is assuring compatibility

between the different proposed standards. As SDL is compatible with some extensions that are

proposed to UML, such as SysML or AUML, that extends the language to represent intelligent agents.

The different model concepts that the SDL formalism describes are (i) Structure: system, blocks,

processes and processes hierarchy; (ii) Communication: signals, along with the parameters and

channels that the signals use to travel; (iii) Behavior: defined through the different processes; (iv)

Data: based on Abstract Data Types (ADT); and (v) Inheritances: to describe the relationships

between, and specialization of, the model elements.

System diagrams, i.e., block diagrams describing the model structure, represent hierarchical

decompositions of the different model elements; some good examples can be reviewed in [26]. A

process diagram defines the behavior of the agents when a specific signal is received and uses

different graphical elements to represent its behavior.

Start. This element defines the initial condition for a PROCESS diagram.

State. The state element contains the name of a state. This element defines the states of

behavioral diagrams, such as PROCESS diagrams.

Input. Input elements describe the type of events that can be received by the process. All

branches of a specific state start with an Input element because an object only changes its state when

a new event is received.

Create. This element allows the creation of an agent.

Task. This element allows the interpretation of informal texts or programming code. In

this paper, following SDL-RT (PragmaDev SARL, 2006), we used C code.

Procedure call. These elements perform a procedure call. A PROCEDURE can be defined

in the last level of the SDL language and used to encapsulate pieces of the model for reuse.

These elements perform a procedure call. A PROCEDURE can be defined in
the last level of the SDL language and used to encapsulate pieces of the model for reuse.

Output.

Sustainability 2017, 9, 1004 5 of 17

Output. Output elements describe the types of signals to be sent, the parameters that the

signal carries, and the destination. If ambiguity about the signal destination exists, communication

can be directed by specifying destinations using a processing identity value (PId), an agent name, or

using the sentence via path. If there is more than one path and no specific output is defined, an

arbitrary one is used. The destination value can be stored in a variable for later use. Four PId

expressions can be used: (i) self, an agent’s own identity; (ii) parent, the agent that created the agent

(Null for initial agents); (iii) offspring, the most recent agent created by the agent; and (iv) sender, the

agent that sent the last signal input (null before any signal received).

Decision. These elements describe bifurcations. Their behavior depends on how the related

question is answered.

The last level of the SDL language (PROCEDURE diagrams) allows the description of

procedures that can be used in the PROCESS diagrams through the procedure calls . These

diagrams are very similar to the PROCESS diagrams with the exception that they do not need state

definitions.

3.2. The Model

Here, the model is described with its main elements to understand the benefits of the approach.

For a detailed description of the model please refer to [40]. Figure 2 shows the first level of the

building simulation model. Four main blocks represent the environment, the building, the

compensation and the waste treatments.

Figure 2. SDL system diagram detailing the main components of the model considered in the study.

In this model, the structure and behavior of the building LCA are described as formally as

possible. The detailed description of the model helps in the validation process. The validation was

done by a team of specialists on the system, architects, and engineers who clearly understand the

system. This type of validation (for validation of the conceptual model, see [41]) is needed to depict

the relationships between all the components that the experts depict as important for system

behavior. Once this has been achieved, the structure of the model is complete, and one can start

analyzing the model behavior.

Output elements describe the types of signals to be sent, the parameters that the
signal carries, and the destination. If ambiguity about the signal destination exists, communication can
be directed by specifying destinations using a processing identity value (PId), an agent name, or using
the sentence via path. If there is more than one path and no specific output is defined, an arbitrary
one is used. The destination value can be stored in a variable for later use. Four PId expressions can
be used: (i) self, an agent’s own identity; (ii) parent, the agent that created the agent (Null for initial
agents); (iii) offspring, the most recent agent created by the agent; and (iv) sender, the agent that sent
the last signal input (null before any signal received).

Decision.

Sustainability 2017, 9, 1004 5 of 17

Output. Output elements describe the types of signals to be sent, the parameters that the

signal carries, and the destination. If ambiguity about the signal destination exists, communication

can be directed by specifying destinations using a processing identity value (PId), an agent name, or

using the sentence via path. If there is more than one path and no specific output is defined, an

arbitrary one is used. The destination value can be stored in a variable for later use. Four PId

expressions can be used: (i) self, an agent’s own identity; (ii) parent, the agent that created the agent

(Null for initial agents); (iii) offspring, the most recent agent created by the agent; and (iv) sender, the

agent that sent the last signal input (null before any signal received).

Decision. These elements describe bifurcations. Their behavior depends on how the related

question is answered.

The last level of the SDL language (PROCEDURE diagrams) allows the description of

procedures that can be used in the PROCESS diagrams through the procedure calls . These

diagrams are very similar to the PROCESS diagrams with the exception that they do not need state

definitions.

3.2. The Model

Here, the model is described with its main elements to understand the benefits of the approach.

For a detailed description of the model please refer to [40]. Figure 2 shows the first level of the

building simulation model. Four main blocks represent the environment, the building, the

compensation and the waste treatments.

Figure 2. SDL system diagram detailing the main components of the model considered in the study.

In this model, the structure and behavior of the building LCA are described as formally as

possible. The detailed description of the model helps in the validation process. The validation was

done by a team of specialists on the system, architects, and engineers who clearly understand the

system. This type of validation (for validation of the conceptual model, see [41]) is needed to depict

the relationships between all the components that the experts depict as important for system

behavior. Once this has been achieved, the structure of the model is complete, and one can start

analyzing the model behavior.

These elements describe bifurcations. Their behavior depends on how the related
question is answered.

The last level of the SDL language (PROCEDURE diagrams) allows the description of procedures

that can be used in the PROCESS diagrams through the procedure calls

Sustainability 2017, 9, 1004 4 of 17

discrete signals. SDL uses four levels to describe model behaviors: system, blocks, processes, and

procedures, see Figure 1.

Figure 1. Structural view of a Specification and Description Language (SDL) System.

With SDL, it is possible to generate unambiguous code from the specification; thus, the ideal to

avoid the implementation process and assure that the current implementation of the model

represented, as closely as possible, the model proposed. SDL has different advantages: it is a non-

ambiguous language, graphical, and standardized (the ITU-T), and as SDL allows the definition of

distributed systems, the resulting model can be executed over different computers without any

modification of the model representation. This allows a process where a model can be implemented

and executed in distributed, parallel, or sequential ways without any modification; the only issue is

selecting the proper tool to perform the execution or implementation. SDL is designed to assure its

compatibility with Unified Modeling Language (UML) and Message Sequence Chart (MSC) (see

document Z.105 of the ITU that describes how to use Message Sequence Charts in combination with

SDL). SDL, like UML, is a standard of the ITU, and one of the main concerns is assuring compatibility

between the different proposed standards. As SDL is compatible with some extensions that are

proposed to UML, such as SysML or AUML, that extends the language to represent intelligent agents.

The different model concepts that the SDL formalism describes are (i) Structure: system, blocks,

processes and processes hierarchy; (ii) Communication: signals, along with the parameters and

channels that the signals use to travel; (iii) Behavior: defined through the different processes; (iv)

Data: based on Abstract Data Types (ADT); and (v) Inheritances: to describe the relationships

between, and specialization of, the model elements.

System diagrams, i.e., block diagrams describing the model structure, represent hierarchical

decompositions of the different model elements; some good examples can be reviewed in [26]. A

process diagram defines the behavior of the agents when a specific signal is received and uses

different graphical elements to represent its behavior.

Start. This element defines the initial condition for a PROCESS diagram.

State. The state element contains the name of a state. This element defines the states of

behavioral diagrams, such as PROCESS diagrams.

Input. Input elements describe the type of events that can be received by the process. All

branches of a specific state start with an Input element because an object only changes its state when

a new event is received.

Create. This element allows the creation of an agent.

Task. This element allows the interpretation of informal texts or programming code. In

this paper, following SDL-RT (PragmaDev SARL, 2006), we used C code.

Procedure call. These elements perform a procedure call. A PROCEDURE can be defined

in the last level of the SDL language and used to encapsulate pieces of the model for reuse.

. These diagrams are
very similar to the PROCESS diagrams with the exception that they do not need state definitions.

3.2. The Model

Here, the model is described with its main elements to understand the benefits of the approach.
For a detailed description of the model please refer to [40]. Figure 2 shows the first level of the building
simulation model. Four main blocks represent the environment, the building, the compensation and
the waste treatments.

Sustainability 2017, 9, 1004 5 of 17

Output. Output elements describe the types of signals to be sent, the parameters that the

signal carries, and the destination. If ambiguity about the signal destination exists, communication

can be directed by specifying destinations using a processing identity value (PId), an agent name, or

using the sentence via path. If there is more than one path and no specific output is defined, an

arbitrary one is used. The destination value can be stored in a variable for later use. Four PId

expressions can be used: (i) self, an agent’s own identity; (ii) parent, the agent that created the agent

(Null for initial agents); (iii) offspring, the most recent agent created by the agent; and (iv) sender, the

agent that sent the last signal input (null before any signal received).

Decision. These elements describe bifurcations. Their behavior depends on how the related

question is answered.

The last level of the SDL language (PROCEDURE diagrams) allows the description of

procedures that can be used in the PROCESS diagrams through the procedure calls . These

diagrams are very similar to the PROCESS diagrams with the exception that they do not need state

definitions.

3.2. The Model

Here, the model is described with its main elements to understand the benefits of the approach.

For a detailed description of the model please refer to [40]. Figure 2 shows the first level of the

building simulation model. Four main blocks represent the environment, the building, the

compensation and the waste treatments.

Figure 2. SDL system diagram detailing the main components of the model considered in the study.

In this model, the structure and behavior of the building LCA are described as formally as

possible. The detailed description of the model helps in the validation process. The validation was

done by a team of specialists on the system, architects, and engineers who clearly understand the

system. This type of validation (for validation of the conceptual model, see [41]) is needed to depict

the relationships between all the components that the experts depict as important for system

behavior. Once this has been achieved, the structure of the model is complete, and one can start

analyzing the model behavior.

Figure 2. SDL system diagram detailing the main components of the model considered in the study.

In this model, the structure and behavior of the building LCA are described as formally as possible.
The detailed description of the model helps in the validation process. The validation was done by a
team of specialists on the system, architects, and engineers who clearly understand the system. This
type of validation (for validation of the conceptual model, see [41]) is needed to depict the relationships

Sustainability 2017, 9, 1004 6 of 17

between all the components that the experts depict as important for system behavior. Once this has
been achieved, the structure of the model is complete, and one can start analyzing the model behavior.

Every building is connected to energy (isolated or in a network) and to social networking (the
residents), and these concepts must be modeled to complete the cycle, an idea already introduced in
Cradle to Cradle [3] where we face a new paradigm of design (see Figure 3).

Sustainability 2017, 9, 1004 6 of 17

Every building is connected to energy (isolated or in a network) and to social networking (the

residents), and these concepts must be modeled to complete the cycle, an idea already introduced in

Cradle to Cradle [3] where we face a new paradigm of design (see Figure 3).

This vision of the reality is characterized in the SDL model presented in Figure 2. The

B1_Environment block encapsulates all processes related to the environment. For example, it

represents the amount of radiation that the building receives, the hydrologic conditions, and so on.

All of the information calculated in this BLOCK is sent to the B1_building block through data that

represents all of the required weather information. B1_Building is the main BLOCK of the model as it

represents the main processes that rule the behavior and structure of the building. B1_compensation

encapsulates the processes necessary to deliver the energy consumed by the building and to

neutralize the environmental impacts (through the process of energy generation, for example, with

solar photovoltaic or CO2 gas absorption systems).

Figure 3. Cradle to Cradle, see [3]. Every house (and product) from the point of view of the complete

life cycle. The phases that are now included in the model are Transportation, defining a CO2

consumption for the materials; Manufacturing and Distribution, defining a CO2 consumption for the

constructing solutions; and Use, detailed with the main processes of the model that represents the

behavior of the buildings during this phase.

B1_WasteTreatment represents the processes related to waste disposal. Each of the different

blocks of the model is decomposed into a single process.

The main variables that the model uses are detailed in Table 1. The BIM model is represented by

the Energy+ format, idf files, and climatic information is represented on the andepw files. Several

other factors (variables) can be modified in the model to define the scenarios to be executed.

Table 1. Main input model variables.

Variable Description

*.epw file (climate file)
This file contains the description of the climate that affects the building. In

this case, the building is located in Madrid, Spain.

*.idf file (model file) This file contains the structure of the building (geometry, materials, etc.).

Materials and constructing

solutions database

Needed for the calculations and is obtained using a dedicated database or

connected to external databases like the one provided by the ITeC [42].

The main output variables are shown in Table 2 and represent only a few subsets of the

information obtained from the model that is stored in a text file following an XML format.

Table 2. Main output variables.

Variable Description

Energy Impact
The energy demand of the model will be determined to minimize the building’s

energy (energy for heating and cooling).

Environmental

Impact

Analysis of the environmental impact of materials used (Global Warming, Ozone

Depletion, etc.) according to an LCA (Life Cycle Assesment).

Extraction of
raw materials

Transportation

Manufacturing

Distribution

Use

Reuse /
recycling

Figure 3. Cradle to Cradle, see [3]. Every house (and product) from the point of view of the complete life
cycle. The phases that are now included in the model are Transportation, defining a CO2 consumption
for the materials; Manufacturing and Distribution, defining a CO2 consumption for the constructing
solutions; and Use, detailed with the main processes of the model that represents the behavior of the
buildings during this phase.

This vision of the reality is characterized in the SDL model presented in Figure 2.
The B1_Environment block encapsulates all processes related to the environment. For example,
it represents the amount of radiation that the building receives, the hydrologic conditions, and
so on. All of the information calculated in this BLOCK is sent to the B1_building block through
data that represents all of the required weather information. B1_Building is the main BLOCK of
the model as it represents the main processes that rule the behavior and structure of the building.
B1_compensation encapsulates the processes necessary to deliver the energy consumed by the building
and to neutralize the environmental impacts (through the process of energy generation, for example,
with solar photovoltaic or CO2 gas absorption systems).

B1_WasteTreatment represents the processes related to waste disposal. Each of the different blocks
of the model is decomposed into a single process.

The main variables that the model uses are detailed in Table 1. The BIM model is represented
by the Energy+ format, idf files, and climatic information is represented on the andepw files. Several
other factors (variables) can be modified in the model to define the scenarios to be executed.

Table 1. Main input model variables.

Variable Description

*.epw file (climate file) This file contains the description of the climate that affects the building.
In this case, the building is located in Madrid, Spain.

*.idf file (model file) This file contains the structure of the building (geometry, materials, etc.).

Materials and constructing
solutions database

Needed for the calculations and is obtained using a dedicated database or
connected to external databases like the one provided by the ITeC [42].

The main output variables are shown in Table 2 and represent only a few subsets of the information
obtained from the model that is stored in a text file following an XML format.

Sustainability 2017, 9, 1004 7 of 17

Table 2. Main output variables.

Variable Description

Energy Impact The energy demand of the model will be determined to minimize the
building’s energy (energy for heating and cooling).

Environmental Impact Analysis of the environmental impact of materials used (Global Warming,
Ozone Depletion, etc.) according to an LCA (Life Cycle Assesment).

Economic Impact
Analysis of the economic costs of the LCA process, the materials used in
construction, and the energy and material demand of the prototype
(described in the standard prEN 15643-4 [43]).

Social Impact Analysis of the social impacts of the building on its immediate environment
(impacts can be positive or negative)

An example of the SDL PROCESS that rules the model behavior (Figure 4) shows the behavior for
the DESIGNED state of the P1_Building PROCESS. This is the process responsible for the representation
of the entire life of the building, from the design phase to the destruction and recycling phases. In this
case, the building starts in the DESIGNED state, representing the fact that a specific design has been
selected for the building and the building process can begin. The BUILD state represents the fact that
the building has been constructed and can be used. The USED state represents the fact that the useful
life of the building is over and it needs to be demolished. Finally, the DESTROYED state represents
the fact that the building has been demolished. Every one of these states has its own calculations and
logistics; some of them using external calculus engines in a co-simulation scenario.

Sustainability 2017, 9, 1004 7 of 17

Economic Impact

Analysis of the economic costs of the LCA process, the materials used in construction,

and the energy and material demand of the prototype (described in the standard prEN

15643-4 [43]).

Social Impact
Analysis of the social impacts of the building on its immediate environment (impacts

can be positive or negative)

An example of the SDL PROCESS that rules the model behavior (Figure 4) shows the behavior

for the DESIGNED state of the P1_Building PROCESS. This is the process responsible for the

representation of the entire life of the building, from the design phase to the destruction and recycling

phases. In this case, the building starts in the DESIGNED state, representing the fact that a specific

design has been selected for the building and the building process can begin. The BUILD state

represents the fact that the building has been constructed and can be used. The USED state represents

the fact that the useful life of the building is over and it needs to be demolished. Finally, the

DESTROYED state represents the fact that the building has been demolished. Every one of these

states has its own calculations and logistics; some of them using external calculus engines in a co-

simulation scenario.

The standard ISO 14040 was adopted for the LCA and impact method analysis. Specifically,

impact method ECO 99 [44] was used.

Figure 4. Behavior of the building in the DESIGNED state.

Auxiliary variables defined in DCL allowed us to represent the parametrizations for a house in

an experiment, which helps in defining the experimental design. The main model elements are

represented in PROCESS diagrams; PROCEDURES are used to calculate the building energy

Figure 4. Behavior of the building in the DESIGNED state.

Sustainability 2017, 9, 1004 8 of 17

The standard ISO 14040 was adopted for the LCA and impact method analysis. Specifically,
impact method ECO 99 [44] was used.

Auxiliary variables defined in DCL allowed us to represent the parametrizations for a house
in an experiment, which helps in defining the experimental design. The main model elements are
represented in PROCESS diagrams; PROCEDURES are used to calculate the building energy consumed
(this part of the model can analyze and optimize different HVAC systems based on the COP and
the performance of each active climate machine where we know the kWh/m2 energy consumption
required to reach the thermal comfort for each situation studied). Once the model is correct, the final
users can only modify the DCL’s of the model by using a cloud infrastructure.

We can analyze the behavior of the PROCEDURES (that use a database to calculate the
environmental, social, and economic aspects of the materials used), and the systems applied to
build the model. The S1_ACV-Materials PROCEDURE analyzes the environmental impacts and the
economic and social costs related to materials. The S1_ConstructionProcess PROCEDURE analyzes the
construction process, as seen in Figure 5.

Sustainability 2017, 9, 1004 8 of 17

consumed (this part of the model can analyze and optimize different HVAC systems based on the

COP and the performance of each active climate machine where we know the kWh/m2 energy

consumption required to reach the thermal comfort for each situation studied). Once the model is

correct, the final users can only modify the DCL’s of the model by using a cloud infrastructure.

We can analyze the behavior of the PROCEDURES (that use a database to calculate the

environmental, social, and economic aspects of the materials used), and the systems applied to build

the model. The S1_ACV-Materials PROCEDURE analyzes the environmental impacts and the

economic and social costs related to materials. The S1_ConstructionProcess PROCEDURE analyzes the

construction process, as seen in Figure 5.

Figure 5. This figure details the S1_ACV_Materials and S1_ConstructionProcess.

One can connect, thanks to the SDL modularity, several buildings to define an urban area. In

this case, the model only needs to define the communication mechanisms to be used (on the model

itself). The execution of the model that contains several buildings provides information of an urban

area, instead of providing information of just a single isolated building.

Co-simulation techniques can be applied on PROCEDURES to calculate the energy impacts

using state-of-the-art calculus engines like Energy+ [45]. Heuristic optimization is used, based on Hill

Climbing, Simulated Annealing, or NSGAII algorithms. These optimization techniques allow the

dramatic reduction of the number of scenarios to be executed, whilst still obtaining a good answer.

The time needed to obtain an answer for an experimental design can be large, as suggested in [46]

who presented an example of an execution of a real experiment in a distributed scenario. The criteria

used was based on an expression that combined the different variables that were interesting in the

definition of the LCA. This expression was defined by the user in the software we used (see next

section), which defined the experimental design and how it was executed.

4. Results

The model was implemented using SDLPS software [47,48]. SDLPS was built using C++ and C

languages. The model code (written in C for the tasks and procedures of the SDL blocks) was used

through a Dynamic Link Library (DLL). The model was defined directly using Microsoft Visio® ,

following the standard implemented on the 2013 version as SDLPS understands this format and

transforms it to an XML format that represents the SDL model. This coding implies that the model

can be validated and verified by reviewing the graphic diagrams in Microsoft Visio® . This property

dramatically simplifies the interaction between the different actors involved in the project. Figure 6

shows the SDLPS loaded with a model for a building.

Figure 5. This figure details the S1_ACV_Materials and S1_ConstructionProcess.

One can connect, thanks to the SDL modularity, several buildings to define an urban area. In this
case, the model only needs to define the communication mechanisms to be used (on the model itself).
The execution of the model that contains several buildings provides information of an urban area,
instead of providing information of just a single isolated building.

Co-simulation techniques can be applied on PROCEDURES to calculate the energy impacts using
state-of-the-art calculus engines like Energy+ [45]. Heuristic optimization is used, based on Hill
Climbing, Simulated Annealing, or NSGAII algorithms. These optimization techniques allow the
dramatic reduction of the number of scenarios to be executed, whilst still obtaining a good answer.
The time needed to obtain an answer for an experimental design can be large, as suggested in [46] who
presented an example of an execution of a real experiment in a distributed scenario. The criteria used
was based on an expression that combined the different variables that were interesting in the definition
of the LCA. This expression was defined by the user in the software we used (see next section), which
defined the experimental design and how it was executed.

4. Results

The model was implemented using SDLPS software [47,48]. SDLPS was built using C++ and
C languages. The model code (written in C for the tasks and procedures of the SDL blocks) was
used through a Dynamic Link Library (DLL). The model was defined directly using Microsoft Visio®,
following the standard implemented on the 2013 version as SDLPS understands this format and
transforms it to an XML format that represents the SDL model. This coding implies that the model
can be validated and verified by reviewing the graphic diagrams in Microsoft Visio®. This property
dramatically simplifies the interaction between the different actors involved in the project. Figure 6
shows the SDLPS loaded with a model for a building.

Sustainability 2017, 9, 1004 9 of 17
Sustainability 2017, 9, 1004 9 of 17

Figure 6. SDLPS interface with the building model.

5. Executing on the Cloud: NECADA

The model was defined using SDL and all team members were aware of the hypotheses used in

it. However, in this type of model, parametrization is a key element that needs to be reviewed to

carefully assure that the data introduced are accurate and correct. Additionally, once the developing

team has agreed on the validity of the model (in some sense the model is accredited), no modification

is needed until the underlying hypotheses are modified. In that case, the parametrization proposed

on the SDL diagrams trough the DCL’s is the key element in defining the different scenarios to be

conducted. This parametrization can be done by third party teams who do not have to be directly

connected with the model development.

5.1. Description of the Current Platform

To simplify parametrization and error reduction, a Cloud service named NECADA® was

developed to allow model parametrization and execution. Figure 7 shows the login screen of the

NECADA cloud solution.

Figure 7. NECADA cloud solution login screen.

Figure 6. SDLPS interface with the building model.

5. Executing on the Cloud: NECADA

The model was defined using SDL and all team members were aware of the hypotheses used
in it. However, in this type of model, parametrization is a key element that needs to be reviewed to
carefully assure that the data introduced are accurate and correct. Additionally, once the developing
team has agreed on the validity of the model (in some sense the model is accredited), no modification
is needed until the underlying hypotheses are modified. In that case, the parametrization proposed
on the SDL diagrams trough the DCL’s is the key element in defining the different scenarios to be
conducted. This parametrization can be done by third party teams who do not have to be directly
connected with the model development.

5.1. Description of the Current Platform

To simplify parametrization and error reduction, a Cloud service named NECADA® was
developed to allow model parametrization and execution. Figure 7 shows the login screen of the
NECADA cloud solution.

Sustainability 2017, 9, 1004 9 of 17

Figure 6. SDLPS interface with the building model.

5. Executing on the Cloud: NECADA

The model was defined using SDL and all team members were aware of the hypotheses used in

it. However, in this type of model, parametrization is a key element that needs to be reviewed to

carefully assure that the data introduced are accurate and correct. Additionally, once the developing

team has agreed on the validity of the model (in some sense the model is accredited), no modification

is needed until the underlying hypotheses are modified. In that case, the parametrization proposed

on the SDL diagrams trough the DCL’s is the key element in defining the different scenarios to be

conducted. This parametrization can be done by third party teams who do not have to be directly

connected with the model development.

5.1. Description of the Current Platform

To simplify parametrization and error reduction, a Cloud service named NECADA® was

developed to allow model parametrization and execution. Figure 7 shows the login screen of the

NECADA cloud solution.

Figure 7. NECADA cloud solution login screen.
Figure 7. NECADA cloud solution login screen.

Sustainability 2017, 9, 1004 10 of 17

NECADA manages the parametrization of the experimental design to be executed and sends it
to SDLPS, which executes the LCA building model. SDLPS acts as a simulation server executing the
experiments defined over the web; Figure 8 shows the public projects of the NECADA website.

Each one of these projects owns specific building models (the building geometry), based on
the BIM methodology [49], materials, constructing solution, weathers, and orientations that can be
permutated on the experiments. These permutations are the key elements that are defined by the
analyst since it defines the space to be explored by the model (Figure 9).

Sustainability 2017, 9, 1004 10 of 17

NECADA manages the parametrization of the experimental design to be executed and sends it

to SDLPS, which executes the LCA building model. SDLPS acts as a simulation server executing the

experiments defined over the web; Figure 8 shows the public projects of the NECADA website.

Each one of these projects owns specific building models (the building geometry), based on the

BIM methodology [49], materials, constructing solution, weathers, and orientations that can be

permutated on the experiments. These permutations are the key elements that are defined by the

analyst since it defines the space to be explored by the model (Figure 9).

With this information—and based on the SDL model that defines the LCA of a building—the

LCA could be calculated for the different scenarios. This allowed us to obtain the Pareto frontier,

depending on the selected variables (see Figure 10 to review the file that contained the indicators

used in the analysis). These indicators were defined formally on the SDL model and filled with the

correct values using the database the modeler used on the specific project.

In Figure 11, the results obtained from NECADA for the e(CO) building are shown [50]. The

Pareto frontier represented in the upper left area of the figure, allowed us to determine the best fit

among all the possible alternatives in the model.

Figure 8. Public projects shown on the NECADA website include the BRGF, MARIE, and (e)CO

projects. By using NECADA, the users do not interact directly with the SDL model, but with the

factors (declarations) used inside the model to parametrize the different experiments.

Figure 8. Public projects shown on the NECADA website include the BRGF, MARIE, and (e)CO
projects. By using NECADA, the users do not interact directly with the SDL model, but with the factors
(declarations) used inside the model to parametrize the different experiments.

Sustainability 2017, 9, 1004 11 of 17

Figure 9. File containing the permutations to be executed and those defined in the experimental design.

Figure 10. Indicators to be used on the calculus of the LCA; not all the indicators are used in this

specific example.

Figure 9. File containing the permutations to be executed and those defined in the experimental design.

Sustainability 2017, 9, 1004 11 of 17

With this information—and based on the SDL model that defines the LCA of a building—the LCA
could be calculated for the different scenarios. This allowed us to obtain the Pareto frontier, depending
on the selected variables (see Figure 10 to review the file that contained the indicators used in the
analysis). These indicators were defined formally on the SDL model and filled with the correct values
using the database the modeler used on the specific project.

Sustainability 2017, 9, 1004 11 of 17

Figure 9. File containing the permutations to be executed and those defined in the experimental design.

Figure 10. Indicators to be used on the calculus of the LCA; not all the indicators are used in this

specific example.

Figure 10. Indicators to be used on the calculus of the LCA; not all the indicators are used in this
specific example.

In Figure 11, the results obtained from NECADA for the e(CO) building are shown [50]. The Pareto
frontier represented in the upper left area of the figure, allowed us to determine the best fit among all
the possible alternatives in the model.

Sustainability 2017, 9, 1004 12 of 17

Figure 11. Results from the analysis of the different scenario for the e(CO) building. On top are shown

the Pareto frontiers for the more than 4000 different parametrizations analyzed, on the bottom is a

sensitivity analysis obtained from a detailed analysis of all the obtained information. This helps in the

determination of optimal actions to save energy using the passive elements in the building.

Detailed results obtained on the (e)CO project can be found in [40]. Thanks to this holistic

solution, the e(CO) building LCA can be improved in its design phase. NECADA simplified the

interaction of the non-specialists in the simulation user-group with an SDL model that only needed

to parametrize the different factors that must be introduced in each experiment.

Through the use of SDL, we could go further in our analysis. During the use of the building, we

could take advantage of the different sensors the houses currently had, from the real-time analysis of

energy consumption to the possibility of controlling the windows. Since a model that defines the

optimum solution for an LCA is mainly focused on the planning phase, some deviations and

corrections must be performed during the use phase of the building. Here, a Smart Home connected

through SDL can achieve its full potential.

5.2. A Smart House Connected through SDL and IoT

In the “use” phase (Figure 3), we focused on how people were using the houses and how energy

was managed. A Smart Home is usually seen as a house where almost everything can be controlled,

including the windows, doors, temperature, etc. The concept of smart home was connected through

the Cradle to Cradle metaphor to the sustainability concept. The interconnection of different

hardware and software used to control a house makes it difficult to easily extend and reuse the

solutions. Plenty of different alternatives currently exist, some of them based on standards like KNX

[51,52], standardized on EN 50090, ISO/IEC 14543, or BACnet [53], an ASHRAE, ANSI, and ISO

16484-5 standard protocol, as well as others used as de facto standards like Modbus, a serial

communications protocol originally published by Modicon (now Schneider Electric) in 1979 for use

with its programmable logic controllers (PLCs). There are also many other alternatives like

LonWorks, Home automation, BACnet, DOLLx8, EnOcean INSTEON, Z-Wave, Intelligent building,

Lighting control system, OpenTherm, Room automation, Smart Environments, and Touch panel.

In this scenario, with several communication protocols interacting with several devices, the use

of an abstract layer that helps in the definition and formalization of the several processes that must

be considered in a smart home, or as an extension of this in a smart city, is necessary. Additionally,

as shown in this paper, SDL can be used to represent the LCA of a building, becoming an interesting

Figure 11. Results from the analysis of the different scenario for the e(CO) building. On top are shown
the Pareto frontiers for the more than 4000 different parametrizations analyzed, on the bottom is a
sensitivity analysis obtained from a detailed analysis of all the obtained information. This helps in the
determination of optimal actions to save energy using the passive elements in the building.

Sustainability 2017, 9, 1004 12 of 17

Detailed results obtained on the (e)CO project can be found in [40]. Thanks to this holistic solution,
the e(CO) building LCA can be improved in its design phase. NECADA simplified the interaction of
the non-specialists in the simulation user-group with an SDL model that only needed to parametrize
the different factors that must be introduced in each experiment.

Through the use of SDL, we could go further in our analysis. During the use of the building, we
could take advantage of the different sensors the houses currently had, from the real-time analysis
of energy consumption to the possibility of controlling the windows. Since a model that defines
the optimum solution for an LCA is mainly focused on the planning phase, some deviations and
corrections must be performed during the use phase of the building. Here, a Smart Home connected
through SDL can achieve its full potential.

5.2. A Smart House Connected through SDL and IoT

In the “use” phase (Figure 3), we focused on how people were using the houses and how
energy was managed. A Smart Home is usually seen as a house where almost everything can be
controlled, including the windows, doors, temperature, etc. The concept of smart home was connected
through the Cradle to Cradle metaphor to the sustainability concept. The interconnection of different
hardware and software used to control a house makes it difficult to easily extend and reuse the
solutions. Plenty of different alternatives currently exist, some of them based on standards like
KNX [51,52], standardized on EN 50090, ISO/IEC 14543, or BACnet [53], an ASHRAE, ANSI, and
ISO 16484-5 standard protocol, as well as others used as de facto standards like Modbus, a serial
communications protocol originally published by Modicon (now Schneider Electric) in 1979 for use
with its programmable logic controllers (PLCs). There are also many other alternatives like LonWorks,
Home automation, BACnet, DOLLx8, EnOcean INSTEON, Z-Wave, Intelligent building, Lighting
control system, OpenTherm, Room automation, Smart Environments, and Touch panel.

In this scenario, with several communication protocols interacting with several devices, the use
of an abstract layer that helps in the definition and formalization of the several processes that must
be considered in a smart home, or as an extension of this in a smart city, is necessary. Additionally,
as shown in this paper, SDL can be used to represent the LCA of a building, becoming an interesting
candidate to represent all the processes related to a building life from the planning phase to the
day to day use of the different devices interacting in a home; therefore, giving information to the
residents regarding the deviations detected from the original planning. For a detailed description of
the proposed use of SDL in the frame of IoT, [54] can be consulted.

6. Discussion

The proposed methodology has been successfully used in several projects. To design a double
active façade [55], we used the model (in combination with Computational Fluid Dynamics (CFD)
models) in a co-simulation approach. In the European project MARIE [56–58], we used the model to
perform a double analysis for the residential typologies in the Mediterranean area, first by optimizing
the comfort and economic criteria based on passive measures and, second, by a cost-effective analysis
selecting active energy efficiency measures. Other projects where this model has been used include
the ACE project described in [59], where the model was used to simulate the behavior of the different
typologies that were later implemented in the project.

The model, using different calculus engines, allowed the optimization of the analyzed system
following the European normative CEN/TC 350 (UNE-EN 15643-2, UNE-EN 15643-3, UNE-EN
15643-4). The co-simulation approach made it possible to change the calculus engine to be used,
for example, in the MARIE project, we used Trnsys® [60] while in others we used Energy+ [45].
Hence, the model could be used for normative purposes and to obtain green certification for new or
refurbished buildings.

The proposed methodology allowed us to define the model using a holistic approach and simplify
the interaction between the different specialists. By using an infrastructure that understood this formal

Sustainability 2017, 9, 1004 13 of 17

language, no specific implementation was performed on the projects, thus simplifying the verification
process required for the simulation projects. The steps depicted in red in the simplified version of the
modeling process presented by [41], are those that are improved, see Figure 12.

Sustainability 2017, 9, 1004 13 of 17

candidate to represent all the processes related to a building life from the planning phase to the day

to day use of the different devices interacting in a home; therefore, giving information to the residents

regarding the deviations detected from the original planning. For a detailed description of the

proposed use of SDL in the frame of IoT, [54] can be consulted.

6. Discussion

The proposed methodology has been successfully used in several projects. To design a double

active façade [55], we used the model (in combination with Computational Fluid Dynamics (CFD)

models) in a co-simulation approach. In the European project MARIE [56–58], we used the model to

perform a double analysis for the residential typologies in the Mediterranean area, first by optimizing

the comfort and economic criteria based on passive measures and, second, by a cost-effective analysis

selecting active energy efficiency measures. Other projects where this model has been used include

the ACE project described in [59], where the model was used to simulate the behavior of the different

typologies that were later implemented in the project.

The model, using different calculus engines, allowed the optimization of the analyzed system

following the European normative CEN/TC 350 (UNE-EN 15643-2, UNE-EN 15643-3, UNE-EN 15643-

4). The co-simulation approach made it possible to change the calculus engine to be used, for example,

in the MARIE project, we used Trnsys® [60] while in others we used Energy+ [45]. Hence, the model

could be used for normative purposes and to obtain green certification for new or refurbished

buildings.

The proposed methodology allowed us to define the model using a holistic approach and

simplify the interaction between the different specialists. By using an infrastructure that understood

this formal language, no specific implementation was performed on the projects, thus simplifying the

verification process required for the simulation projects. The steps depicted in red in the simplified

version of the modeling process presented by [41], are those that are improved, see Figure 12.

Figure 12. Simplified version of the modeling process, based on [41]. The SDL executable model can

be validated by all team members; furthermore, the automatic implementation assures its

verifiability.

7. Conclusions

In this paper, the use of SDL to represent the LCA of a building holistically was introduced. We

presented how this methodology simplified the validation and verification problems related to this

type of complex model. It was also shown that the implementation of these models could be achieved

using a desktop program that implemented SDL models (in our case SDLPS) and a cloud

infrastructure that used SDLPS as a simulation server to offer a cloud solution. This cloud solution

simplified the parametrization process of a building. The use of a standard language, such as SDL,

Figure 12. Simplified version of the modeling process, based on [41]. The SDL executable model can
be validated by all team members; furthermore, the automatic implementation assures its verifiability.

7. Conclusions

In this paper, the use of SDL to represent the LCA of a building holistically was introduced.
We presented how this methodology simplified the validation and verification problems related to
this type of complex model. It was also shown that the implementation of these models could be
achieved using a desktop program that implemented SDL models (in our case SDLPS) and a cloud
infrastructure that used SDLPS as a simulation server to offer a cloud solution. This cloud solution
simplified the parametrization process of a building. The use of a standard language, such as SDL,
simplified implementation; as several other tools understand SDL, as mentioned in [61–63], among
many others, this made the definition of the model and the final implementation independent of the
chosen infrastructure.

Model validation was performed with the SDL representation of the model, so that all project
members involved could participate in the validation process. Verification was assured as the tool
recognizes SDL diagrams; however, other validation techniques could also be applied (black box,
white box, Turing test, etc.).

From the perspective of the language proposed (one can select to follow this methodology with
other formal languages like DEVS or PetriNets among others), SDL could be used not only to model
the LCA of a building, but could naturally also represent the existing communications between the
different sensors available in a building [54]. This can complete the vision of the building allowing
models to be used not only at design phase, but also in the operative phase, thus becoming a virtual
advisor for a house or urban area.

Author Contributions: Pau Fonseca i Casas and Antoni Fonseca i Casas conceived the use of SDL in this study
and adapted, designed, and implemented the methodology and the tools described here. The work was based
on a simulator named SDLPS, developed initially by Pau in his Ph.D., that executed the model developed in
Antoni’s Ph.D.

Conflicts of Interest: The authors declare no conflict of interest.

Sustainability 2017, 9, 1004 14 of 17

Abbreviations

The following abbreviations are used in this manuscript:

ANSI American National Standards Institute
ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineer
BRGF Biblioteca Sector Gabriel Ferraté
(e)CO Equilibrium through Cooperation
ISO International Organization for Standardization
LCA Life Cycle Assesment
SDL Specification and Description Language

References

1. IEA. Energy Efficiency Market Report; IEA: Paris, France, 2014.
2. ICER. Energy Efficiency Potential in the U.S.: 2012 through 2035. Available online: http://www.icer-

regulators.net/portal/page/portal/ICER_HOME/publications_press/ICER_Chronicle/Art2_10a.html
(accessed on 2 May 2017).

3. Van der Grintern, B. Cradle to Cradle in a Nutshell. 2008. Available online: http://www.bluehaired.com/
corner/wp-content/uploads/2009/12/Cradle-to-Cradle-in-a-nutshell-Bram-van-der-Grinten-2008.pdf
(accessed on 2 May 2017).

4. Rønning, A.; Brekke, A. Life cycle assessment (LCA) of the building sector: Strengths and weaknesses.
In Eco-Efficient Construction and Building Materials; Woodhead Publishing: Sawston, UK, 2014; pp. 63–83.

5. Hollberg, A.; Ruth, J. LCA in architectural design—A parametric approach. Int. J. Life Cycle Assess. 2016, 21,
943–960. [CrossRef]

6. Means, P.; Guggemos, A. Framework for Life Cycle Assessment (LCA) Based Environmental Decision
Making During the Conceptual Design Phase for Commercial Buildings. Proced. Eng. 2015, 118, 802–812.
[CrossRef]

7. Vilches, A.; Garcia-Martinez, A.; Sanchez-Montañes, B. Life cycle assessment (LCA) of building
refurbishment: A literature review. Energy Build. 2016, 135, 286–301. [CrossRef]

8. Anand, C.; Amor, B. Recent developments, future challenges and new research directions in LCA of buildings:
A critical review. Renew. Sustain. Energy Rev. 2017, 67, 408–416. [CrossRef]

9. BPIE. Principles for Nearly Zero-Energy Buildings. Paving the Way for Effective Implementation of Policy
Requirements; Buildings Performance Institute Europe: Brussels, Belguim, 2011.

10. Salom, J.; Widén, J.; Candanedo, J.; Sartori, I.; Voss, K.; Marszal, A. Understanding net zero energy buildings:
Evaluation of load matching and grid interaction indicators. In Proceedings of the Building Simulation
2011: 12th Conference of International Building Performance Simulation Association, Sydney, Australia,
14–16 November 2011.

11. Sartori, I.; Napolitano, A.; Voss, K. Net zero energy buildings: A consistent definition framework.
Energy Build. 2012, 48, 220–232. [CrossRef]

12. Salom, J.; Cubí, E.; Sánchez, A. Busando una definición concreta para un objetivo amplio. CIC Arquitectura y
Construcción 2011, 485, 54–57.

13. Salom, J.; Cubí, E.; Sartori, I. Edificio de energía cero: Definiciones e interacción con las redes energéticas.
In Libro de Comunicaciones I Congreso EECN; EECN: Madrid, Spain, 2012.

14. Llera-Sastresa, E.; Scarpellini, S.; Rivera-Torres, P.; Aranda, J.; Zabalza-Bribián, I.; Aranda-Usón, A.
Energy Vulnerability Composite Index in Social Housing, from a Household Energy Poverty Perspective.
Sustainability 2017, 9, 691. [CrossRef]

15. EeBGuide. The EeBGuide Project. Operational Guidance for Life Cycle Assessment Studies of the Energy Efficient
Buildings Initiative; Fraunhofer-Gesellschaft: Munich, Germany, 2013.

16. SUDOE. EnerBuiLCA. 2012. Available online: http://4.interreg-sudoe.eu/contenido-dinamico/libreria-
ficheros/8656A5AF-B808-1CEB-5C83-37836BB24FAA.pdf (accessed on 7 June 2017).

17. CEN/TC 350. Sustainability of Construction Works; European Committee for Standardization: Brussels,
Beguim, 2012.

http://www.icer-regulators.net/portal/page/portal/ICER_HOME/publications_press/ICER_Chronicle/Art2_10a.html
http://www.icer-regulators.net/portal/page/portal/ICER_HOME/publications_press/ICER_Chronicle/Art2_10a.html
http://www.bluehaired.com/corner/wp-content/uploads/2009/12/Cradle-to-Cradle-in-a-nutshell-Bram-van-der-Grinten-2008.pdf
http://www.bluehaired.com/corner/wp-content/uploads/2009/12/Cradle-to-Cradle-in-a-nutshell-Bram-van-der-Grinten-2008.pdf
http://dx.doi.org/10.1007/s11367-016-1065-1
http://dx.doi.org/10.1016/j.proeng.2015.08.517
http://dx.doi.org/10.1016/j.enbuild.2016.11.042
http://dx.doi.org/10.1016/j.rser.2016.09.058
http://dx.doi.org/10.1016/j.enbuild.2012.01.032
http://dx.doi.org/10.3390/su9050691
http://4.interreg-sudoe.eu/contenido-dinamico/libreria-ficheros/8656A5AF-B808-1CEB-5C83-37836BB24FAA.pdf
http://4.interreg-sudoe.eu/contenido-dinamico/libreria-ficheros/8656A5AF-B808-1CEB-5C83-37836BB24FAA.pdf

Sustainability 2017, 9, 1004 15 of 17

18. Laëtitia, A.; Olivier, B.; Pascal, R.; Daniel, Q.; Pascal, R. A simple method to consider energy balance
in the architectural design of residential buildings. In Proceedings of the Symposium on Simulation for
Architecture and Urban Design, Boston, MA, USA, 3–7 April 2011; pp. 115–122.

19. Sattrup, P.A.; Strømann-Andersen, J.B. A methodological study of environmental simulation in architecture
and engineering: Integrating daylight and thermal performance across the urban and building scales.
In Proceedings of the 2011 Symposium on Simulation for Architecture and Urban Design, Boston, MA, USA,
3–7 April 2011; Attar, R., Ed.; Society for Computer Simulation International: San Diego, CA, USA, 2011;
pp. 115–123.

20. Sodja, A.; Zupančič, B. Modelling thermal processes in buildings using an object-oriented approach and
Modelica. Simul. Model. Pract. Theory 2009, 17, 1143–1159. [CrossRef]

21. Counsell, J.M.; Khalid, Y.A.; Brindley, J. Controllability of buildings: A multi-input multi-output stability
assessment method for buildings with slow acting heating systems. Simul. Model. Pract. Theory 2011, 19,
1185–1200. [CrossRef]

22. Liu, B.; Duan, S. Energy efficiency evaluation of building integrated photovoltaic systems with different
power configurations. Simul. Model. Pract. Theory 2012, 29, 93–108. [CrossRef]

23. Bruno, M.; Henderson, K.; Kim, H. Multi-objective optimization in urban design. In Proceedings of the 2011
Symposium on Simulation for Architecture and Urban Design, Boston, MA, USA, 3–7 April 2011; Attar, R.,
Ed.; Society for Computer Simulation International: San Diego, CA, USA, 2011; pp. 102–109.

24. Zeigler, B.P.; Praehofer, H.; Kim, T.G. Theory of Modeling and Simulation Handbook of Simulator-Based Training
Creating Computer Simulation Systems: An Introduction to the High Level Architecture; Academic Press: Waltham,
MA, USA, 2000.

25. ITU-T. Specification and Description Language—Overview of SDL-2010; ITU: Geneva, Switzerland, 2011.
26. Doldi, L. SDL Illustrated—Visually Design Executable Models; TMSO Multimedia: Toulouse, France, 2001.
27. Cabasino, M.P.; Giua, A.; Seatzu, C. Introduction to Petri Nets. Lect. Notes Control Inf. Sci. 2013, 433, 191–211.
28. Ahmed, A.S.; Wainer, G.; Mahmoud, S. Integrating building information modeling & cell-DEVS simulation.

In Proceedings of the 2010 Spring Simululation Multiconference, Orlando, FL, USA, 11–15 April 2010; Society
for Computer Simulation International: San Diego, CA, USA, 2001. [CrossRef]

29. Trčka, M.; Hensen, J.L.M.; Wetter, M. Co-simulation for performance prediction of integrated building and
HVAC systems—An analysis of solution characteristics using a two-body system. Simul. Model. Pract. Theory
2010, 18, 957–970. [CrossRef]

30. Stahl, I.; Born, R.G.; Henriksen, J.O.; Herper, H. GPSS 50 years old, but still young. In Proceedings of the
2011 Winter Simulation Conference, Phoenix, AZ, USA, 11–14 December 2011; pp. 3947–3957.

31. O’Reilly, J.J. Optimization test problems with uniformly distributed coefficients. In Proceedings of the 1991
Winter Simulation Conference, Phoenix, AZ, USA, 8–11 December 1991.

32. Jones, J. SIMPROCESS III: Object-oriented business process simulation. In Proceedings of the 1995 Winter
Simulation Conference, Arlington, VA, USA, 3–6 December 1995.

33. Altiok, T.; Melamed, B. Simulation Modeling and Analysis with ARENA; Academic Press: Waltham, MA,
USA, 2007.

34. Pegden, C.D.; Sturrock, D.T. Introduction to Simio. In Proceedings of the 2011 Winter Simulation Conference,
Phoenix, AZ, USA, 11–14 December 2011; pp. 29–38.

35. Concepcion, A.I.; Zeigler, B.P. DEVS formalism: A framework for hierarchical model development.
IEEE Trans. Softw. Eng. 1988, 14, 228–241. [CrossRef]

36. Vangheluwe, H.L.M. DEVS as a common denominator for multi-formalism hybrid systems modelling.
In Proceedings of the IEEE International Symposium on Computer-Aided Control System Design (Cat.
No.00TH8537), Anchorage, AK, USA, 25–27 September 2000; IEEE: New York, NY, USA, 2000; pp. 129–134.

37. Shang, H.; Wainer, G. A Simulation Algorithm for Dynamic Structure DEVS Modeling. In Proceedings of the
2006 Winter Simulation Conference, Monterey, CA, USA, 3–6 December 2006; pp. 815–822.

38. Goldstein, R.; Khan, A.; East, K.S. Development of discrete event system specification (DEVS) building
performance models for building energy design. In Proceedings of the Symposium on Simulation for
Architecture & Urban Design, San Diego, CA, USA, 7–10 April 2013.

39. Gotzhein, R.; Krämer, M.; Litz, L.; Chamaken, A. Energy-aware system design with SDL. In Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer: Berlin, Germany, 2009; pp. 19–33.

http://dx.doi.org/10.1016/j.simpat.2009.04.003
http://dx.doi.org/10.1016/j.simpat.2010.08.006
http://dx.doi.org/10.1016/j.simpat.2012.07.014
http://dx.doi.org/10.1145/1878537.1878728
http://dx.doi.org/10.1016/j.simpat.2010.02.011
http://dx.doi.org/10.1109/32.4640

Sustainability 2017, 9, 1004 16 of 17

40. Fonseca i Casas, P.; Fonseca i Casas, A.; Garrido-Soriano, N.; Casanovas, J. Formal simulation model to
optimize building sustainability. Adv. Eng. Softw. 2014, 69, 62–74. [CrossRef]

41. Sargent, R. Verification and validation of simulation models. In Proceedings of the 2009 Winter Simulation
Conference, Austin, TX, USA, 13–16 December 2009; Rossetti, M.D., Hill, R.R., Johansson, B., Dunkin, A.,
Ingalls, R.G., Eds.; IEEE: New York, NY, USA, 2009; pp. 162–176.

42. Alfaro Garrido, L.; Lucas Masero, J.; Díez Bernabé, G. New tool to identify environmental impacts on the
construction. In Proceedings of the VII Congreso Europeo sobre Eficiencia Energética y Sostenibilidad en
Arquitectura y Urbanismo, San Sebastian, Spain, 4–6 July 2016.

43. AEN/CTN. Evaluación de la Sostenibilidad en los Edificios. Parte 4: Marco para la Evaluación del Comportamiento
Económico; UNE-EN 15643-4:2012; AENOR: Madrid, Spain, 2012.

44. Baayen, H. Eco-indicator 99 Manual for Designers; Ministry of Housing, Spatial Planning and the Environment:
The Hague, The Netherlands, 2000.

45. EnergyPlus. Input Output Reference the Encyclopedic Reference to EnergyPlus Input and Output; U.S. Department
of Energy: Washington, DC, USA, 2014.

46. Fonseca i Casas, P.; Fonseca i Casas, A.; Garrido-Soriano, N.; Ortiz, J.; Casanovas, J.; Salom, J. Optimal
Buildings’ Energy Consumption Calculus through a Distributed Experiment Execution. Math. Probl. Eng.
2015, 2015, 1–12. [CrossRef]

47. Fonseca i Casas, P. SDL distributed simulator. In Proceedings of the 2008 Winter Simulation Conference,
Miami, FL, USA, 7–10 December 2008.

48. Fonseca i Casas, P.; Pi Palomés, X.; Casanovas Garcia, J.; Jové, J. Definition of Virtual Reality Simulation Models
Using Specification and Description Language Diagrams; Khendek, F., Toeroe, M., Gherbi, A., Reed, R., Eds.;
Lecture Notes in Computer Science; Springer: Berlin, Germany, 2013.

49. Smith, M. BIM in Construction. Available online: http://www.thenbs.com/topics/BIM/articles/
bimInConstruction.asp (accessed on 7 June 2017).

50. Fonseca i Casas, A.; Fonseca i Casas, P.; Colls, M. In NZEB. Optimización mediante co-simulación. Estudio
de caso (e)Co, proyecto prototipo del concurso Solar Decathlon 2012. In Proceedings of the CONAMA 2012
Congreso Nacional de Medio Ambiente, Madrid, Spain, 26–30 November 2012.

51. KNX Association. KNX System Specifications—Architecture; KNX Association: Brussels, Belguim, 2013.
52. KNX Association. System Specifications; KNX Association: Brussels, Belguim, 2014.
53. ISO. Building Automation and Control Systems (BACS)—Part 1: Project Specification And Implementation; ISO:

Geneva, Switzerland, 2010.
54. Sherratt, E.; Ober, I.; Gaudin, E.; Fonseca i Casas, P.; Kristoffersen, F. SDL—The IoT language. In SDL

2015: Model-Driven Engineering for Smart Cities. Lecture Notes in Computer Science; Fischer, J., Scheidgen, M.,
Schieferdecker, I., Reed, R., Eds.; Springer: Cham, Switzerland, 2015.

55. ACCIONA. Japan-Spain Energy Efficient Development for Ultra-Low Energy Buildings. Available online:
https://www.acciona.com/sustainability/environment/environmental-innovation/systems-storing-
seasonal-heat-buildings/ (accessed on 7 June 2017).

56. Salom, J.; Ortiz, J. Russo, Method to develop cost-effective studies of energy efficiency measures for
Mediterranean residential existing buildings with multi-criteria optimization. In Proceedings of the World
Sustainable Buldings SB14, Barcelona, Spain, 28–30 October 2014.

57. Ortiz, J.; Fonseca i Casas, A.; Salom, J.; Garrido Soriano, N.; Fonseca i Casas, P. Cost-effective analysis for
selecting energy efficiency measures for refurbishment of residential buildings in Catalonia. Energy Build.
2016, 128, 442–457. [CrossRef]

58. Ortiz, J.; Fonseca, A.; Salom, J.; Garrido, N.; Fonseca, P.; Russo, V. Comfort and economic criteria for selecting
passive measures for the energy refurbishment of residential buildings in Catalonia. Energy Build. 2016, 110,
195–210. [CrossRef]

59. Fonseca i Casas, A.; Fonseca i Casas, P. Casanovas, Analysis of Applications to Improve the Energy Savings
in Residential Buildings Based on Systemic Quality Model. Sustainability 2016, 8, 1051–1069. [CrossRef]

60. Thermal Energy System Specialists. TRNSYS Transient System Simulation Tool. Available online: http:
//www.trnsys.com/ (accessed on 21 March 2015).

61. PragmaDev SARL. PragmaDev Studio. Available online: http://www.pragmadev.com/product/index.html
(accessed on 9 January 2016).

http://dx.doi.org/10.1016/j.advengsoft.2013.12.009
http://dx.doi.org/10.1155/2015/267974
http://www.thenbs.com/topics/BIM/articles/bimInConstruction.asp
http://www.thenbs.com/topics/BIM/articles/bimInConstruction.asp
https://www.acciona.com/sustainability/environment/environmental-innovation/systems-storing-seasonal-heat-buildings/
https://www.acciona.com/sustainability/environment/environmental-innovation/systems-storing-seasonal-heat-buildings/
http://dx.doi.org/10.1016/j.enbuild.2016.06.059
http://dx.doi.org/10.1016/j.enbuild.2015.10.022
http://dx.doi.org/10.3390/su8101051
http://www.trnsys.com/
http://www.trnsys.com/
http://www.pragmadev.com/product/index.html

Sustainability 2017, 9, 1004 17 of 17

62. Cinderella ApS. Cinderella. Available online: http://www.cinderella.dk/ (accessed on 9 January 2016).
63. IBM Co. Rational SDL Suite. Available online: http://www-03.ibm.com/software/products/en/ratisdlsuit

(accessed on 9 January 2016).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.cinderella.dk/
http://www-03.ibm.com/software/products/en/ratisdlsuit
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State of the Art
	Methodology
	Specification and Description Language
	The Model

	Results
	Executing on the Cloud: NECADA
	Description of the Current Platform
	A Smart House Connected through SDL and IoT

	Discussion
	Conclusions

