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Abstract: The definition of a Life Cycle Assesment (LCA) for a building or an urban area is a complex
task due to the inherent complexity of all the elements that must be considered. Furthermore,
a multidisciplinary approach is required due to the different sources of knowledge involved in this
project. This multidisciplinary approach makes it necessary to use formal language to fully represent
the complexity of the used models. In this paper, we explore the use of Specification and Description
Language (SDL) to represent the LCA of a building and residential area. We also introduce a tool
that uses this idea to implement an optimization and simulation mechanism to define the optimal
solution for the sustainability of a specific building or residential.
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1. Introduction

Currently, there is worldwide awareness of the global increase in energy consumption and the
limited amount of resources available to provide energy to citizens and enterprises. This creates a
huge energy demand and the need to define a new economy and transition methods to increase energy
savings [1]. Considering more effective methods to reduce energy consumption in residential and
commercial areas is strongly related to building efficiency, which has a great impact on electricity
consumption. Although electricity represents only a part of the total energy consumption, it clearly
reflects the importance of the building in the global impact.

In the USA, the residential sector represents approximately 38% of the electricity consumed and
in the commercial area, approximately 36% [2]. The Life Cycle Assesment (LCA) in a building or an
urban area helps to obtain a clear image of all processes involved in the planning, construction, use,
and deconstruction of a house. This holistic view can assist in the reduction of the impact, taking
care of the economic, social, and environmental aspects in a cradle to cradle approach [3]. From an
environmental point of view, reducing energy consumption would have a great impact in decreasing
the environmental impacts. In addition, the analysis of the LCA for houses has a great impact on
energy consumption in all sectors, not only in houses, but also shows a foreseeable greater impact
on the residential and commercial sectors that represent a huge part of the total. For example, all
materials that must be used in a building must be transported from several different origins to its final
destination of the building. By incorporating these parameters in the model, we can also reduce the
emissions from transportation, which are huge.
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2. State of the Art

Building or residential area LCA is complex, mainly because it needs to use powerful tools to
scope the complex dynamics of the environment and the energy. Several problems arise with this type
of analysis and includes the amount and the diversity of the data that must be used, and the fact that
this area utilizes different specialists working with different skills in multidisciplinary teams. Mainly,
these problems are related to the choice of unit of the analysis and the methodological and practical
approaches used [4]. In this context, some approaches have been undertaken to improve the LCA
application in architecture [5,6]. A complete review of the development of the LCA in the field of
architecture can be found in the studies presented by [7,8].

By 31 December 2020, EU directive 2010/31/EU requires that all new buildings must be nearly
zero-energy buildings (nZEB). The aim of this directive is to incorporate concepts for reducing their
impact on the environment [9]; thus, the member states must also complete the thresholds and policies
to update their building stock [10–13].

Member states have launched a series of projects, actions, and policy guidelines to specify the
optimal cost-performance actions to achieve the objectives proposed by the regulation on energy
rehabilitation (Royal Decree 235/2013). This allows researchers to check which urban areas are in the
greatest need of rehabilitation and/or that suffer from so-called “energy poverty” [14]. Furthermore,
several European and national projects have been proposed [15,16] to provide funding for initiatives
which, in addition to addressing the issue of energy efficiency either for new construction or
rehabilitation, also include the impact of construction on the environment; that is to say, be capable
of conducting a LCA (Life Cycle Assesment) of the building and thereby ascertain its associated
impacts. Such concepts must be addressed to complete the analysis, not solely in terms of energy and
economic cost.

To perform a comprehensive study of sustainability, one must include the proposed European
standards developed by the CEN TC 350 Working Group, and implemented nationally via Standard
UNE EN 15643 on the Sustainability of Construction Works [17]. This set of standards describes and
specifies the impacts that must be considered (environmental, economic and social impacts), details
indicators, and proposes methodologies.

If we consider the criteria and objectives that must be achieved based on the above-mentioned
standards, programs and applications must be employed to simulate energy consumption, calculate
economic and environmental impacts, and conduct a complete LCA.

No global proposals exist for analyzing certain parameters. Often the designer or engineer
has to invest a significant amount of time designing a virtual model just to study a few design
iterations to identify a good solution. The designer is not in a position to ensure that the best solution
is adopted, or at least one of the best solutions, without analyzing all, or an accurately selected
subset, of the possibilities. In addition, most commercial simulation software packages allow for a
building’s annual energy analysis to be calculated, but do not perform any kind of optimization for
the process. Hence, none of the results for the previous steps, such as the design, construction, or
demolition processes, are optimized. Efforts have been made to develop approaches and methods for
assessing buildings [18], methods for integrating daylight and thermal efficiency [19–21], photovoltaic
systems [22], and multi-objective optimization systems into urban design [23], which consider several
aspects when creating an energy optimization system.

Languages that are commonly used for programming simulators or optimization tools are C++, C#,
Fortran, Java and Delphi, among many others. The use of different languages may cause problems with
integration, model determination and understanding between researchers from different disciplines,
as not everyone understands the low-level code finally used. One of the proposals presented in this
work is the use of a formal language to simplify model definition and use.

The use of formal languages, such as Discrete Event System Specification (DEVS) [24],
Specification and Description Language (SDL) [25,26], or Petri nets [27], is without a doubt one of the
best solutions. These languages allow for an easy integration and communication of ideas related to
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the model with the other members of the team. Additionally, these tools improve interoperability with
other models (co-simulation) and promotes cooperation. Examples of recent works that explore the
use of official languages in this area are [28,29], which explore the use of the co-simulation approach
for calculating building HVAC systems (heating, ventilation, and air conditioning). To represent this
LCA, we used a discrete simulation model formalized using Specification and Description Language
(SDL). In this area, several approaches exist, mainly ruled by the tools used. Classical languages like
GPSS/H® [30], Slam II® [31], or others considered more modern like Simprocess® [32], Arena [33], or
SIMIO [34], among many others, can be used. These software packages allow a complete definition of
the model behavior, structure, time and representation; however, once the model is defined in one of
these simulation packages, it is often difficult to migrate to another. All specialists who interact with
the model must also understand how the tool works. In this context, the use of formal language to
represent the model and to later use a specific tool to implement the model is necessary, even more so
if the model is complex or the personnel working on the model own different forms or, do not know
how to implement the model in the specific tool selected to perform its implementation.

Programming libraries and infrastructures exist that allow for the definition of a simulation model
following a formal language. The tools related to DEVS [35–37] and PetriNets formalisms [27] often
represent an excellent alternative to define and implement a simulation model based on Petri nets
or DEVS. Specifically to model buildings and their related processes, several experiences exist using
DEVS as a language, based on the BIM (Building Information Modeling) philosophy, see [28,38], but
no experiences trying to model the entire LCA of a house or urban area have been found.

SDL is not new for modeling energy-related issues. [39] presented two complementary approaches
to specify energy aspects during the design phase of wireless networks, but like DEVS, no studies that
model the LCA of a building exist.

In this paper, we describe our experience of using SDL to describe the main processes that define
the LCA of a building and show how to take advantage of a formal representation to expand the
model implementation easily over different platforms. The paper is organized as follows: in Section 3,
we describe the SDL based model we use; in Section 4, we discuss how to implement this model; in
Section 5, we describe how to execute the model on the web using a cloud infrastructure. Finally,
Section 6 contains our conclusions.

3. Methodology

One of the aims of this research was to describe, as formally as possible, the structure and behavior
of the LCA of a building. This goal was crucial as the people involved are diverse and come from many
different backgrounds. To address this issue, we used SDL to formally define the model. The use of the
SDL language afforded maximum flexibility to integrate new processes and procedures to the system
in a co-simulation scenario [29]. Using a graphical formal language allowed nonspecialized technicians
access to the programming details of the model and definitively contributed to the validation and
verification processes. In addition, the explanation of the model itself was more intuitive, simple, and
direct than using a programming language such as C or Java. Thus, the group can share the model,
making it much easier to understand and detect errors, as well as propose improvements.

3.1. Specification and Description Language

In this section, we do not describe specifically how SDL behaves, more information on this
language can be found in [25,26]. However, we want to note that the graphical capabilities, the
completeness, and lack of language ambiguity makes it a great candidate to formally define any kind
of simulation model.

Specification and Description Language (SDL) is an object-oriented, formal language defined
by The International Telecommunications Union-Telecommunications Standardization Sector [25],
formerly Comité Consultatif International Telegraphique et Telephonique (CCITT), in recommendation
Z.100. The language is intended for the specification of complex, event-driven, real-time, and
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interactive applications involving many concurrent activities that communicate using discrete signals.
SDL uses four levels to describe model behaviors: system, blocks, processes, and procedures, see
Figure 1.
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With SDL, it is possible to generate unambiguous code from the specification; thus, the ideal to
avoid the implementation process and assure that the current implementation of the model represented,
as closely as possible, the model proposed. SDL has different advantages: it is a non-ambiguous
language, graphical, and standardized (the ITU-T), and as SDL allows the definition of distributed
systems, the resulting model can be executed over different computers without any modification of
the model representation. This allows a process where a model can be implemented and executed
in distributed, parallel, or sequential ways without any modification; the only issue is selecting the
proper tool to perform the execution or implementation. SDL is designed to assure its compatibility
with Unified Modeling Language (UML) and Message Sequence Chart (MSC) (see document Z.105 of
the ITU that describes how to use Message Sequence Charts in combination with SDL). SDL, like UML,
is a standard of the ITU, and one of the main concerns is assuring compatibility between the different
proposed standards. As SDL is compatible with some extensions that are proposed to UML, such as
SysML or AUML, that extends the language to represent intelligent agents.

The different model concepts that the SDL formalism describes are (i) Structure: system, blocks,
processes and processes hierarchy; (ii) Communication: signals, along with the parameters and
channels that the signals use to travel; (iii) Behavior: defined through the different processes; (iv) Data:
based on Abstract Data Types (ADT); and (v) Inheritances: to describe the relationships between, and
specialization of, the model elements.

System diagrams, i.e., block diagrams describing the model structure, represent hierarchical
decompositions of the different model elements; some good examples can be reviewed in [26].
A process diagram defines the behavior of the agents when a specific signal is received and uses
different graphical elements to represent its behavior.

Start.
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3.2. The Model

Here, the model is described with its main elements to understand the benefits of the approach.
For a detailed description of the model please refer to [40]. Figure 2 shows the first level of the building
simulation model. Four main blocks represent the environment, the building, the compensation and
the waste treatments.
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In this model, the structure and behavior of the building LCA are described as formally as possible.
The detailed description of the model helps in the validation process. The validation was done by a
team of specialists on the system, architects, and engineers who clearly understand the system. This
type of validation (for validation of the conceptual model, see [41]) is needed to depict the relationships



Sustainability 2017, 9, 1004 6 of 17

between all the components that the experts depict as important for system behavior. Once this has
been achieved, the structure of the model is complete, and one can start analyzing the model behavior.

Every building is connected to energy (isolated or in a network) and to social networking (the
residents), and these concepts must be modeled to complete the cycle, an idea already introduced in
Cradle to Cradle [3] where we face a new paradigm of design (see Figure 3).
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Figure 3. Cradle to Cradle, see [3]. Every house (and product) from the point of view of the complete life
cycle. The phases that are now included in the model are Transportation, defining a CO2 consumption
for the materials; Manufacturing and Distribution, defining a CO2 consumption for the constructing
solutions; and Use, detailed with the main processes of the model that represents the behavior of the
buildings during this phase.

This vision of the reality is characterized in the SDL model presented in Figure 2.
The B1_Environment block encapsulates all processes related to the environment. For example,
it represents the amount of radiation that the building receives, the hydrologic conditions, and
so on. All of the information calculated in this BLOCK is sent to the B1_building block through
data that represents all of the required weather information. B1_Building is the main BLOCK of
the model as it represents the main processes that rule the behavior and structure of the building.
B1_compensation encapsulates the processes necessary to deliver the energy consumed by the building
and to neutralize the environmental impacts (through the process of energy generation, for example,
with solar photovoltaic or CO2 gas absorption systems).

B1_WasteTreatment represents the processes related to waste disposal. Each of the different blocks
of the model is decomposed into a single process.

The main variables that the model uses are detailed in Table 1. The BIM model is represented
by the Energy+ format, idf files, and climatic information is represented on the andepw files. Several
other factors (variables) can be modified in the model to define the scenarios to be executed.

Table 1. Main input model variables.

Variable Description

*.epw file (climate file) This file contains the description of the climate that affects the building.
In this case, the building is located in Madrid, Spain.

*.idf file (model file) This file contains the structure of the building (geometry, materials, etc.).

Materials and constructing
solutions database

Needed for the calculations and is obtained using a dedicated database or
connected to external databases like the one provided by the ITeC [42].

The main output variables are shown in Table 2 and represent only a few subsets of the information
obtained from the model that is stored in a text file following an XML format.
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Table 2. Main output variables.

Variable Description

Energy Impact The energy demand of the model will be determined to minimize the
building’s energy (energy for heating and cooling).

Environmental Impact Analysis of the environmental impact of materials used (Global Warming,
Ozone Depletion, etc.) according to an LCA (Life Cycle Assesment).

Economic Impact
Analysis of the economic costs of the LCA process, the materials used in
construction, and the energy and material demand of the prototype
(described in the standard prEN 15643-4 [43]).

Social Impact Analysis of the social impacts of the building on its immediate environment
(impacts can be positive or negative)

An example of the SDL PROCESS that rules the model behavior (Figure 4) shows the behavior for
the DESIGNED state of the P1_Building PROCESS. This is the process responsible for the representation
of the entire life of the building, from the design phase to the destruction and recycling phases. In this
case, the building starts in the DESIGNED state, representing the fact that a specific design has been
selected for the building and the building process can begin. The BUILD state represents the fact that
the building has been constructed and can be used. The USED state represents the fact that the useful
life of the building is over and it needs to be demolished. Finally, the DESTROYED state represents
the fact that the building has been demolished. Every one of these states has its own calculations and
logistics; some of them using external calculus engines in a co-simulation scenario.
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The standard ISO 14040 was adopted for the LCA and impact method analysis. Specifically,
impact method ECO 99 [44] was used.

Auxiliary variables defined in DCL allowed us to represent the parametrizations for a house
in an experiment, which helps in defining the experimental design. The main model elements are
represented in PROCESS diagrams; PROCEDURES are used to calculate the building energy consumed
(this part of the model can analyze and optimize different HVAC systems based on the COP and
the performance of each active climate machine where we know the kWh/m2 energy consumption
required to reach the thermal comfort for each situation studied). Once the model is correct, the final
users can only modify the DCL’s of the model by using a cloud infrastructure.

We can analyze the behavior of the PROCEDURES (that use a database to calculate the
environmental, social, and economic aspects of the materials used), and the systems applied to
build the model. The S1_ACV-Materials PROCEDURE analyzes the environmental impacts and the
economic and social costs related to materials. The S1_ConstructionProcess PROCEDURE analyzes the
construction process, as seen in Figure 5.
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Figure 5. This figure details the S1_ACV_Materials and S1_ConstructionProcess.

One can connect, thanks to the SDL modularity, several buildings to define an urban area. In this
case, the model only needs to define the communication mechanisms to be used (on the model itself).
The execution of the model that contains several buildings provides information of an urban area,
instead of providing information of just a single isolated building.

Co-simulation techniques can be applied on PROCEDURES to calculate the energy impacts using
state-of-the-art calculus engines like Energy+ [45]. Heuristic optimization is used, based on Hill
Climbing, Simulated Annealing, or NSGAII algorithms. These optimization techniques allow the
dramatic reduction of the number of scenarios to be executed, whilst still obtaining a good answer.
The time needed to obtain an answer for an experimental design can be large, as suggested in [46] who
presented an example of an execution of a real experiment in a distributed scenario. The criteria used
was based on an expression that combined the different variables that were interesting in the definition
of the LCA. This expression was defined by the user in the software we used (see next section), which
defined the experimental design and how it was executed.

4. Results

The model was implemented using SDLPS software [47,48]. SDLPS was built using C++ and
C languages. The model code (written in C for the tasks and procedures of the SDL blocks) was
used through a Dynamic Link Library (DLL). The model was defined directly using Microsoft Visio®,
following the standard implemented on the 2013 version as SDLPS understands this format and
transforms it to an XML format that represents the SDL model. This coding implies that the model
can be validated and verified by reviewing the graphic diagrams in Microsoft Visio®. This property
dramatically simplifies the interaction between the different actors involved in the project. Figure 6
shows the SDLPS loaded with a model for a building.
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5. Executing on the Cloud: NECADA

The model was defined using SDL and all team members were aware of the hypotheses used
in it. However, in this type of model, parametrization is a key element that needs to be reviewed to
carefully assure that the data introduced are accurate and correct. Additionally, once the developing
team has agreed on the validity of the model (in some sense the model is accredited), no modification
is needed until the underlying hypotheses are modified. In that case, the parametrization proposed
on the SDL diagrams trough the DCL’s is the key element in defining the different scenarios to be
conducted. This parametrization can be done by third party teams who do not have to be directly
connected with the model development.

5.1. Description of the Current Platform

To simplify parametrization and error reduction, a Cloud service named NECADA® was
developed to allow model parametrization and execution. Figure 7 shows the login screen of the
NECADA cloud solution.
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NECADA manages the parametrization of the experimental design to be executed and sends it
to SDLPS, which executes the LCA building model. SDLPS acts as a simulation server executing the
experiments defined over the web; Figure 8 shows the public projects of the NECADA website.

Each one of these projects owns specific building models (the building geometry), based on
the BIM methodology [49], materials, constructing solution, weathers, and orientations that can be
permutated on the experiments. These permutations are the key elements that are defined by the
analyst since it defines the space to be explored by the model (Figure 9).
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projects. By using NECADA, the users do not interact directly with the SDL model, but with the factors
(declarations) used inside the model to parametrize the different experiments.
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With this information—and based on the SDL model that defines the LCA of a building—the LCA
could be calculated for the different scenarios. This allowed us to obtain the Pareto frontier, depending
on the selected variables (see Figure 10 to review the file that contained the indicators used in the
analysis). These indicators were defined formally on the SDL model and filled with the correct values
using the database the modeler used on the specific project.
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In Figure 11, the results obtained from NECADA for the e(CO) building are shown [50]. The Pareto
frontier represented in the upper left area of the figure, allowed us to determine the best fit among all
the possible alternatives in the model.
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the Pareto frontiers for the more than 4000 different parametrizations analyzed, on the bottom is a
sensitivity analysis obtained from a detailed analysis of all the obtained information. This helps in the
determination of optimal actions to save energy using the passive elements in the building.
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Detailed results obtained on the (e)CO project can be found in [40]. Thanks to this holistic solution,
the e(CO) building LCA can be improved in its design phase. NECADA simplified the interaction of
the non-specialists in the simulation user-group with an SDL model that only needed to parametrize
the different factors that must be introduced in each experiment.

Through the use of SDL, we could go further in our analysis. During the use of the building, we
could take advantage of the different sensors the houses currently had, from the real-time analysis
of energy consumption to the possibility of controlling the windows. Since a model that defines
the optimum solution for an LCA is mainly focused on the planning phase, some deviations and
corrections must be performed during the use phase of the building. Here, a Smart Home connected
through SDL can achieve its full potential.

5.2. A Smart House Connected through SDL and IoT

In the “use” phase (Figure 3), we focused on how people were using the houses and how
energy was managed. A Smart Home is usually seen as a house where almost everything can be
controlled, including the windows, doors, temperature, etc. The concept of smart home was connected
through the Cradle to Cradle metaphor to the sustainability concept. The interconnection of different
hardware and software used to control a house makes it difficult to easily extend and reuse the
solutions. Plenty of different alternatives currently exist, some of them based on standards like
KNX [51,52], standardized on EN 50090, ISO/IEC 14543, or BACnet [53], an ASHRAE, ANSI, and
ISO 16484-5 standard protocol, as well as others used as de facto standards like Modbus, a serial
communications protocol originally published by Modicon (now Schneider Electric) in 1979 for use
with its programmable logic controllers (PLCs). There are also many other alternatives like LonWorks,
Home automation, BACnet, DOLLx8, EnOcean INSTEON, Z-Wave, Intelligent building, Lighting
control system, OpenTherm, Room automation, Smart Environments, and Touch panel.

In this scenario, with several communication protocols interacting with several devices, the use
of an abstract layer that helps in the definition and formalization of the several processes that must
be considered in a smart home, or as an extension of this in a smart city, is necessary. Additionally,
as shown in this paper, SDL can be used to represent the LCA of a building, becoming an interesting
candidate to represent all the processes related to a building life from the planning phase to the
day to day use of the different devices interacting in a home; therefore, giving information to the
residents regarding the deviations detected from the original planning. For a detailed description of
the proposed use of SDL in the frame of IoT, [54] can be consulted.

6. Discussion

The proposed methodology has been successfully used in several projects. To design a double
active façade [55], we used the model (in combination with Computational Fluid Dynamics (CFD)
models) in a co-simulation approach. In the European project MARIE [56–58], we used the model to
perform a double analysis for the residential typologies in the Mediterranean area, first by optimizing
the comfort and economic criteria based on passive measures and, second, by a cost-effective analysis
selecting active energy efficiency measures. Other projects where this model has been used include
the ACE project described in [59], where the model was used to simulate the behavior of the different
typologies that were later implemented in the project.

The model, using different calculus engines, allowed the optimization of the analyzed system
following the European normative CEN/TC 350 (UNE-EN 15643-2, UNE-EN 15643-3, UNE-EN
15643-4). The co-simulation approach made it possible to change the calculus engine to be used,
for example, in the MARIE project, we used Trnsys® [60] while in others we used Energy+ [45].
Hence, the model could be used for normative purposes and to obtain green certification for new or
refurbished buildings.

The proposed methodology allowed us to define the model using a holistic approach and simplify
the interaction between the different specialists. By using an infrastructure that understood this formal
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language, no specific implementation was performed on the projects, thus simplifying the verification
process required for the simulation projects. The steps depicted in red in the simplified version of the
modeling process presented by [41], are those that are improved, see Figure 12.
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7. Conclusions

In this paper, the use of SDL to represent the LCA of a building holistically was introduced.
We presented how this methodology simplified the validation and verification problems related to
this type of complex model. It was also shown that the implementation of these models could be
achieved using a desktop program that implemented SDL models (in our case SDLPS) and a cloud
infrastructure that used SDLPS as a simulation server to offer a cloud solution. This cloud solution
simplified the parametrization process of a building. The use of a standard language, such as SDL,
simplified implementation; as several other tools understand SDL, as mentioned in [61–63], among
many others, this made the definition of the model and the final implementation independent of the
chosen infrastructure.

Model validation was performed with the SDL representation of the model, so that all project
members involved could participate in the validation process. Verification was assured as the tool
recognizes SDL diagrams; however, other validation techniques could also be applied (black box,
white box, Turing test, etc.).

From the perspective of the language proposed (one can select to follow this methodology with
other formal languages like DEVS or PetriNets among others), SDL could be used not only to model
the LCA of a building, but could naturally also represent the existing communications between the
different sensors available in a building [54]. This can complete the vision of the building allowing
models to be used not only at design phase, but also in the operative phase, thus becoming a virtual
advisor for a house or urban area.
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and adapted, designed, and implemented the methodology and the tools described here. The work was based
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Antoni’s Ph.D.
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Abbreviations

The following abbreviations are used in this manuscript:

ANSI American National Standards Institute
ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineer
BRGF Biblioteca Sector Gabriel Ferraté
(e)CO Equilibrium through Cooperation
ISO International Organization for Standardization
LCA Life Cycle Assesment
SDL Specification and Description Language
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20. Sodja, A.; Zupančič, B. Modelling thermal processes in buildings using an object-oriented approach and
Modelica. Simul. Model. Pract. Theory 2009, 17, 1143–1159. [CrossRef]

21. Counsell, J.M.; Khalid, Y.A.; Brindley, J. Controllability of buildings: A multi-input multi-output stability
assessment method for buildings with slow acting heating systems. Simul. Model. Pract. Theory 2011, 19,
1185–1200. [CrossRef]

22. Liu, B.; Duan, S. Energy efficiency evaluation of building integrated photovoltaic systems with different
power configurations. Simul. Model. Pract. Theory 2012, 29, 93–108. [CrossRef]

23. Bruno, M.; Henderson, K.; Kim, H. Multi-objective optimization in urban design. In Proceedings of the 2011
Symposium on Simulation for Architecture and Urban Design, Boston, MA, USA, 3–7 April 2011; Attar, R.,
Ed.; Society for Computer Simulation International: San Diego, CA, USA, 2011; pp. 102–109.

24. Zeigler, B.P.; Praehofer, H.; Kim, T.G. Theory of Modeling and Simulation Handbook of Simulator-Based Training
Creating Computer Simulation Systems: An Introduction to the High Level Architecture; Academic Press: Waltham,
MA, USA, 2000.

25. ITU-T. Specification and Description Language—Overview of SDL-2010; ITU: Geneva, Switzerland, 2011.
26. Doldi, L. SDL Illustrated—Visually Design Executable Models; TMSO Multimedia: Toulouse, France, 2001.
27. Cabasino, M.P.; Giua, A.; Seatzu, C. Introduction to Petri Nets. Lect. Notes Control Inf. Sci. 2013, 433, 191–211.
28. Ahmed, A.S.; Wainer, G.; Mahmoud, S. Integrating building information modeling & cell-DEVS simulation.

In Proceedings of the 2010 Spring Simululation Multiconference, Orlando, FL, USA, 11–15 April 2010; Society
for Computer Simulation International: San Diego, CA, USA, 2001. [CrossRef]
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