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Abstract: Fire occurrence, which is examined in terms of fire density (number of fire/km2) in this 
paper, has a close correlation with multiple spatiotemporal factors that include environmental, 
physical, and other socioeconomic predictors. Spatial autocorrelation exists widely and should be 
considered seriously for modeling the occurrence of fire in urban areas. Therefore, spatial 
econometric models (SE) were employed for modeling fire occurrence accordingly. Moreover, 
Random Forest (RF), which can manage the nonlinear correlation between predictors and shows 
steady predictive ability, was adopted. The performance of RF and SE models is discussed. Based 
on historical fire records of Hefei City as a case study in China, the results indicate that SE models 
have better predictive ability and among which the spatial autocorrelation model (SAC) is the best. 
Road density influences fire occurrence the most for SAC, while network distance to fire stations is 
the most important predictor for RF; they are selected in both models. Semivariograms are 
employed to explore their abilities to explain the spatial structure of fire occurrence, and the result 
shows that SAC works much better than RF. We give a further explanation for the generation of 
residuals between fire density and the common predictors in both models. Therefore, decision 
makers can make use of our conclusions to manage fire safety at the city scale.  
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1. Introduction 

Fire is a widespread phenomenon in modern life. In China in 2015, 1742 people were killed in 
fires, with an economic loss of nearly $0.6 billion [1]. The severe threats for human beings caused by 
fire make people aware of the necessity of predicting fire risk, and we should adopt efficient 
measures to prevent the occurrence of fire. However, how fire occurs and spreads is highly complex 
and it is still difficult to explain the reasons and predict future incidents. Fire is similar to other 
natural and human disasters that are imbued with uncertainty and occur in dynamic systems with 
biologically diverse and complicated structures [2]. Using temporal and spatial datasets, along with 
historical datasets of fire ignition, it is possible to build valid and meaningful models for explaining 
fire occurrence; therefore, we can adopt these results to benefit the management of fire safety, from 
which we could assess the conditions of fire occurrence from a quantitative viewpoint. 

According to previous studies, many of which were done in forest regions, human-related 
predictors are critical for explaining fire occurrence on the large scales, such as in Europe and  
China [2–6]. However, few studies were done at the city scale to explain and predict of the 
occurrence of infrastructure fire, which may lead to a lack of efficient management for the potential 
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fire risks hidden in a city. It has become exceptionally arduous for governments and policy makers 
due to the complexity of risk prediction based on the integrated correlations among multiple 
socioeconomic predictors. Therefore, a detailed exploration of the predictors, such as the relative 
importance and correlations with fire ignition, should be included in the modeling process. 
Moreover, many studies used integrated approaches such as geographic information systems (GIS), 
remote sensing (RS), and geostatistical methods for mapping fire occurrence [7–10]. Furthermore, 
machine learning (ML) and other regression techniques such as ordinary least squares (OLS), 
geographically and temporally weighted regression (GTWR), and geographically weighted 
regression (GWR) [6,9,11,12] have been employed widely in environmental and ecological fields 
because of their advantages. In our previous research, we successfully used GTWR to model the 
spatiotemporal distribution of fire occurrence at the city scale [12]; we try to make further 
explanations and predictions for the spatial distribution of fire occurrence by making a comparison 
between ML- and OLS-based models in this paper. ML has a relatively robust predictive 
performance, accounting for outliers, nonlinear trends, and interactions between the predictors, 
while GWR can properly explain the spatial heterogeneity [7,9,13,14].  

On the other hand, as spatial dependence is a common characteristic widely existing in 
predictors or response variables, this may cause biased or inefficient estimation for the coefficients of 
predictors in the model. Moreover, the residual term of the adopted models in this paper may still 
be spatially auto-correlative, which betrays the statistical assumption that the model could explain 
the spatial structure efficiently. In light of this reason, spatial econometric models (SE) including the 
spatial Durbin model (SDM), spatial autocorrelation model (SAC), spatial lagging model (SLM), and 
spatial error model (SEM) have the potential to offer new insights into the modeling of fire 
occurrence, considering spatial autocorrelation in the response variable, explanatory variables or 
random error terms [15]. However, few studies about fire occurrence at the city scale have been 
conducted using SE [16]. 

On the other hand, although most previous studies have offered several cases of fire occurrence 
modeling at the national scale using ML such as random forest (RF), whether ML can make robust 
and reliable predictions on fire occurrence at the city scale and whether there exist similar 
regularities about selected predictors at different space scales need to be examined further [2,10,17]. 
Therefore, we used RF as a comparison and discussion with SE models considering their advantages 
and excellent predictive ability.  

For both models, during the variable selection process, vegetation, topography, climate, and 
fire occurrence records are major components for assessing fire risk. In addition, normalized 
differential vegetation index (NDVI), elevation, slope, aspect, and land use are popular factors used 
to assess fire risk hazard [2]. The parameters and variables used to train a model have a strong 
influence on how successful the model may be according to its statistical performance. In this 
framework, better knowledge of the spatial patterns of fire occurrence and their relationships with 
underlying factors would enable researchers to predict fire occurrence more accurately and develop 
more effective prevention efforts [18]. 

This paper has three main objectives. Firstly, as the literature about the influence of humans and 
their activities on fire occurrence at the city scale is scarce and mainly site-specific, this paper 
explores different fire occurrence models by including several socioeconomic variables strongly 
associated with people’s activities (e.g., places of interests [POI] and the distance to fire stations) in 
addition to other physical variables that have been widely used in past research.  

Secondly, in order to identify the predictors that contributed most to fire occurrence, we 
calibrated several intermediate models by incorporating the ideas of cross-validation and thus could 
select important predictors according to statistical criteria for building the final models. The final 
model was fitted by using the selected predictors and the correlations between residuals and 
predictors were studied further in order to explore the potential rules among complex analysis. 

Thirdly, this study made an analysis of the explanatory ability for spatial structures by 
comparing SE and RF models using semivariograms. Moreover, the predictive abilities of each 
model, and the correlations between residuals and common predictors in both models, are presented 
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and discussed in detail. The graphs of the likelihood of fire occurrence predicted by each model are 
also a direct demonstration.  

2. Materials and Methods  

2.1. Study Area  

The study area for this paper is in Hefei City, which is located in the middle of Anhui Province, 
China. The city had a total area of around 7029 km2 in 2005. The land use map in Hefei in 2005 is 
shown in Figure 1. The dataset is provided by the Database of Global Change Parameters, Chinese 
Academy of Sciences (http://globalchange.nsdc.cn). 

 
Figure 1. Location of study area and land use distribution. 

Although the spatial scale of Hefei City is rather small relative to previous studies, there 
remains considerable diversity in its socioeconomic, climate, topographic, and other attributes. 
Previous studies paved the way for using complex socioeconomic factors for modeling fire 
occurrence and fire risk research [19–21]. These factors include population density, population 
structure, road density, slope, and other topographic or socioeconomic factors. They play important 
roles in the modeling process for explaining fire occurrence [12,14]. 

2.2. Dependent Variable 

Data on the number of fires and related fire records for the period of 2002 and 2005 were 
obtained from the Fire Bureau in Anhui Province, China. The dataset is contained with the time of 
fire occurrence, location, fire damage, and related fighting time. A total of 4611 historical ignition 
records were found and all of them are infrastructure fires. This can be further proven, as shown in 
Figure 1, when most of the land use in suburban areas is cropland but not forest. The spatial 
distribution of fire ignition points is shown in Figure 2a. Using these data, the dependent variable 
was derived from the spatial estimation of kernel density, which was called yearly average fire 
density and indicates the ignition frequency in one grid cell (number of fires per year per km2). 
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Figure 2. Ignition points and sample points from 2002 to 2005. (a) Ignition points from 2002 to 2005; 
(b) Sample points from 2002 to 2005. 

In order to obtain the fire density, we adopted the kernel density method, which turns discrete 
points in a study area into a continuous density surface in order to prevent uncertainty and mistakes 
in ignition records [10]. A grid spatial resolution of 1 km2, which considers the spatial scale and a 
fixed bandwidth of 5 km, are used as a rule of thumb after comparing several different bandwidth 
values (from 1 km to 10 km) [22]. The choice of bandwidth was further evidenced by the default 
calculation result of kernel density by ArcGis 10.2 (ESRI, Redlands, CA, USA), which was nearly 4.7 
km. Water bodies and other similar land cover types where fire cannot occur were excluded from 
the analysis afterwards. The resulting base grids have 6985 cells in total, covering the entire study 
area without water bodies; next, the centers of the pixels were used as the sample points (Figure 2b). 
During the initial analysis, fire was found to occur at only 752 locations at least one time after the 
initial statistical analysis. 

2.3. Explanatory Variables: Selection and Pre-Processing 

In total, 25 explanatory variables were extracted from several databases, including a variety of 
socioeconomic attributes according to the results in previous studies [21,23–27]. These variables not 
only consider the influence of socioeconomic conditions on fire occurrence but also consider the 
influence of climate and topographic conditions. These explanatory variables are shown in Table 1. 
In the analyses reported in this paper, values of these explanatory variables were standardized by 
subtracting the mean value and divided by the standard deviations of each variable. 

All the explanatory variables were resampled and mapped reasonably at a 1-km2 space 
resolution in view of the original resolution of each variable and the spatial extent of Hefei City [22]. The 
main explanatory variables related to fire occurrence are shown in Figure 3. Before further analysis, 
Box–Cox transformation was carried out for variables in order to satisfy the statistical assumption of 
linear regression. What is more, multicollinearity between explanatory variables was assessed. The 
variables that represent different types of land use were converted into dummy variables and 
LANDOTHER was treated as the control predictor. Correlation coefficients that were too high 
(more than 0.75) were used as the criterion to remove explanatory variables [10,12]. In addition, data 
standardization was done during the pre-processing for training RF models with the “center” and 
“scale” methods in RStudio (R Development Core Team, Boston, MA, USA) [28].  
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Table 1. Candidate explanatory variables.  

Variable Name Code Data Source Resolution

Elevation DEM 

Geospatial Data Cloud, 
Computer Network 
Information Center, 
Chinese Academy of 

Sciences 
(http://www.gscloud.cn) 

30 m 

Slope SLOPE The same as DEM 30 m 
Aspect index ASPECT The same as DEM 30 m 

Position POSITION The same as DEM 30 m 
Terrain ruggedness index TRI The same as DEM 30 m 

Shaded relief SHADE The same as DEM 30 m 
Normalized Difference Vegetation Index NDVI The same as DEM 500 m 

Yearly average maximum surface 
temperature 

TEMMAX The same as DEM 1 km 

Yearly average minimum surface 
temperature 

TEMMIN The same as DEM 1 km 

Yearly average mean surface 
temperature 

TEMAVE The same as DEM 1 km 

Population POPULATION 

GPWv4, NASA 
Socioeconomic Data and 

Applications Center 
(SEDAC) [29] 

1 km 

Line density of roads LINE 

Product Specification of 
EarthData Pacifica (Beijing) 

Co., Ltd. 
(http://www.geoknowledg

e.com.cn), line density 
calculated by ArcMap 10.2 

1 km 

Kernel density of residential points RESIDENT The same as LINE 1 km 
Kernel density of entertainment points ENTERTAINMENT The same as LINE 1 km 

Kernel density of hotel points HOTEL The same as LINE 1 km 
Kernel density of education points EDU The same as LINE 1 km 
Kernel density of enterprise points ENTERPRISE The same as LINE 1 km 

Value of 11 for land cover- Post-flooding 
or irrigated croplands 

LAND11 
Database of Global Change 

Parameters, Chinese 
Academy of Sciences 

300 m 

Value of 14 for land cover- Rainfed 
croplands 

LAND14 The same as LAND11 300 m 

Value of 20 and 30 for land cover-Mosaic 
cropland/vegetation 

LAND2030 The same as LAND11 300 m 

Value of 190 for land cover- Artificial 
surfaces and associated areas 

LAND190 The same as LAND11 300 m 

The other values of land cover LANDOTHER The same as LAND11 300 m 

Distance to water bodies DW 
ArcMap 10.2 spatial 

analysis toolbox 
m 

Distance to fire stations DF The same as DW m 
Distance to roads DR The same as DW m 
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Figure 3. Relevant main predictors including (a) nearest distance to water bodies (m); (b) fire stations 
and yearly average population between 2002 and 2005(people/km2); (c) density of roads (km/km2); 
(d) places of interests including entertainments, enterprises, education places, hotels, markets, and 
residential accommodations, with the background of average NDVI in 2002. 

2.4. Method 

Considering the characteristic of spatial data such as the dependence and heterogeneity, some 
indicators including Moran’s I and Geary’s C index were used in the analysis of global 
autocorrelation for natural complex phenomena. The global and local Moran’s I are shown in 
Equations (1) and (2), and the related Z score of local Moran’s I is shown in Equations (3) [15]: 
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where n  is the number of spatial units; iY  and jY  are the values of variable Y  in spatial unit 

i  and j ; Y
−

is the average over all spatial units of the variable. ijW  is the spatial weight matrix 

that measures the strength of the relationship between two spatial units. The index value of global 
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Moran’s I falls between −1.0 and 1.0. The global spatial autocorrelation tool is an inferential statistic, 
which means that the results of the analysis are always interpreted within the context of its null 
hypothesis. However, the global Moran’s I does not indicate where the clusters are located or what 
type of spatial autocorrelation is occurring. Therefore, the local Moran’s I was calculated and the 
significance test of local Moran’s I was applied with a local Z test as an indicator of local spatial 
association, as shown in Equation (3). In addition, the correlative value of significance level could 
be calculated from the local Z test at different significance levels including 0.01, 0.05, 0.1, etc. What 
is more, if the value of Zi is positive and the local Moran’s Ii is significant, then the result indicates 
that the spatial units with higher values are surrounded by neighboring units, which indicates 
positive local spatial autocorrelation. After detailed analysis for the existence of global and local 
spatial autocorrelation, SE models were used accordingly. Based on such early-stage preparation of 
cross-sectional data, SE models are being utilized more and more widely due to their advantages 
compared with traditional multiple linear regression [30]. Before making decisions about which of 
the SE models is best, Moran’s I was tested for the response variable and SE models would be 
trained first in each subsample in order to find the significant explanatory variables according to the 
Student’s t-test. Each significant variable should fulfill the criteria of p < 0.05 and the variables 
selected in the final SE model should be presented at least three times in the five initial SE  
training models.  

Firstly, we conducted the Moran’s I test in the 6985 sample points and the spatial 
autocorrelation of fire density was managed before we could adopt SE models in this research. The 
map of local Moran’ I index was extracted and calculated with the “localmoran” function in R studio 
and spatial weight matrix was obtained. We can find the local regions where spatial clustering of fire 
occurrence is significant or not, as well as the hot points where fire happens most. In this paper, we 
adopted ‘‘KNN (K-nearest-neighbor)’’ as the method for building a spatially weighted matrix and 8 
as the K value, which means the nearest eight neighbors around a single sample point were assigned 
a value of 1 in the spatially weighted matrix. Afterwards, we divided the whole sample dataset into 
five folds by using “createMultiFolds” function in R studio. Each sample fold was used as the testing 
set in turn and thus we could get five intermediate models by referring to the ideas of 
cross-validation. This means that 80 percent of samples were used as the training set and the other 20 
percent of samples were the testing set; both SE and RF models were trained five times, and thus 
five intermediate models for these two regression methods were obtained. Each training set has 
5588 sample points and each testing set has 1397 sample points.  

In addition, SE models have three basic patterns, SEM, SLM, and SAC, as shown in Equations 
(4)–(6). Moreover, SDM is developed with the extension of SAC, which considers spatial lagging 
between explanatory variables, as shown in Equation (7). All of the SE models are parametric 
models, whose coefficients can be obtained accordingly. After pre-processing for the explanatory 
models, SDM, SEM, SLM, and SAC were implemented in this study using the packages of “sp” and 
“spdep”; “train”, “lagsarlm”, “errorsarlm”, ”knearneigh” and “nb2listw” functions were employed 
in RStudio (R Development Core Team, Boston, MA, USA) [28]. R is an open-source software widely 
used in spatial analysis and prediction due to its advanced integration with GIS and other data 
formats [31]. The packages and functions mentioned above were all applied because of their 
excellent performance on spatial econometrics. The formulations of SE models are shown below [30]: 

SEM: 

   
   

Y X
W
β ε

ε λ ε μ
= +

 = +
, (4) 

where Y  means the vector of response variable, X means the matrix of n k×  independent 
predictors, β  reflects the coefficient matrix of X , ε  means the vector of random error term, λ  
means the coefficients of spatial random error terms for the vector of cross-sectional response 
variable, Wε  means the spatial lag of ε , μ  means the vector of random error term under normal 
distribution.  

SLM: 
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     Y WY Xρ β ε= + + , (5) 

where Y means the vector of response variable, X  means the matrix of n k× independent 
predictors, β  reflects the coefficient matrix of X , ε  means the vector of random error term, ρ  
means the coefficients of spatial regression terms, W  means the n n×  spatial weight matrix, 
WY means the spatial-lag response variable.  

SAC: 

1 2        Y WY X Wρ β λ ε μ= + + + , (6) 

where Y  means the vector of response variable, X  means the matrix of n k×  independent 
predictors, β  reflects the coefficient matrix of X , ε  means the vector of random disturbance 
term, ρ  means the coefficients of spatial regression terms, W  means the n n×  spatial weight 

matrix, 1WY  means the spatial-lag response variable, λ  means the coefficients of spatial random 

error terms for the vector of cross-sectional response variable, 2W ε  means the spatial lag of ε , and 

μ  means the vector of random error term under normal distribution. 
SDM: 

1 2Y WY X W Xρ β ε= + + + , (7) 

where Y  means the vector of response variable, X  means the matrix of n k×  independent 
predictors, β  reflects the coefficient matrix of X , ε  means the vector of random disturbance 
term, ρ  means the coefficients of spatial regression terms, W  means the n n×  spatial weight 

matrix, 1WY  means the spatial-lag response variable, λ  means the coefficients of spatial random 
error terms for the vector of cross-sectional response variable, 2W X  means the spatial lag of ε , and 

μ  means the vector of random error term under normal distribution. 
On the other hand, as other studies have depicted before, RF has become one of the most 

important machine learning methods based on ensemble learning [2,8,32–34]. It is developed as the 
extension of decision trees [35]. This algorithm applies random binary trees that use a subset of the 
observations through bootstrapping techniques. From the original dataset, a random choice of the 
training data is sampled and used to build the model accordingly, and the data not included are 
referred to as an “out-of-bag” (OOB) dataset [2,10]. This adds the element of randomness to 
bagging trees so as to make it less sensitive to variability in calibration such as outliers and data 
changes [6]. It is also an extension of bagging trees because it adds random sampling to predictors 
in each subset, not only in sample sets. However, this method behaves as a “black box” since the 
individual trees cannot be examined separately and it calculates neither regression coefficients nor 
confidence intervals [10]. Nevertheless, it allows for the computation of variable importance 
measures, which can be compared to other regression techniques. The studies before usually 
adopted %IncNodePurity and %IncMSE as the statistics for evaluating the importance of variables 
in the RF model [10,36,37].  

In addition, we used the technique called “recursive feature elimination (RFE)” in RStudio 
software in order to get the optimal number of predictors that should be included in the model. The 
detailed description of RFE algorithm is offered in the help section of the “caret” package in 
RStudio. What is more, by making use of such nonparametric techniques (formally called CART 
(classification and regression trees)), RF improves a lot on the level of accuracy and prediction and 
this advantage could offer technical support in the process of modeling fire occurrence. In this 
paper, we used “train”, ”rfFuncs”, “randomForest” and “rfeControl” function in “caret” package to 
select variables and get the initial five RF intermediate models. All of these operations were carried 
out on the RStudio software platform (R Development Core Team, Boston, MA, USA). 

As specified before, different SE and RF models were trained and compared in order to get the 
final SE and RF models. They were validated afterwards in the testing set to examine the predictive 
ability for fire occurrence. Statistical results such as log likelihood, Akaike information criterion 
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(AIC), coefficient of determination (R squared), root mean square error (RMSE), and correlation 
coefficient were obtained for the purpose of selecting the best model. Moreover, as a comparison in 
this paper, the RF model was also calibrated and optimized according to the criterion 
of %IncNodePurity, for which could assume that predictors with a greater value have higher 
importance [38,39]. %IncNodePurity relates to the loss function with which the best splits are 
chosen. The loss function is RMSE for regression and Gini impurity for classification. More useful 
variables achieve higher increases in node purities, through which we can find a split that has a high 
outer node “variance” and a small intra node “variance.” The final variables selected in the RF 
model can be chosen according to the average value of %IncNodePurity within five intermediate 
models. Finally, the SE and RF models were fitted in the whole dataset and the residuals of the two 
models were extracted from the prediction results. 

As presented in the research before, if no autocorrelation remained in the residuals of the 
regression models, then the spatial pattern observed in the dependent variable could be explained 
by the spatial pattern observed in the predictors [10]. Based on such prior knowledge, 
semivariograms of the residuals produced by different regression models were derived and these 
residuals were further visualized with different colors in order to examine the heterogeneity and 
unsteady performance. What is more, the correlations between the common predictors in both 
models and the residuals of each method were discussed in order to explore the factors that affected 
the generation of residuals. 

Lastly, the maps of likelihood of fire occurrence predicted using RF and SE models were 
obtained by normalization of the fire density. Maps of the likelihood of fire occurrence were plotted 
as a comparison for each model, making it easier for people to understand the probability of ignition 
from the perspective of fire science.  

3. Results 

3.1. Dependent Variable 

Figure 4 shows the yearly average fire density for the period 2002–2005, obtained using the 
kernel density method. A more detailed analysis revealed only 752 ignition points where fire 
occurred at least once, while the average value of fire density was nearly 0.15.  

 
Figure 4. Fire density calculated by using kernel density (bandwidth = 5 km). 

3.2. Explanatory Variables 

Box-Cox transformation was applied in variables and the natural logarithm transformation was 
finally adopted for the response variable. After the multicollinearity diagnostics, four explanatory 
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variables were excluded, including TEMMAX, TEMAVE, LANDOTHER, and ENTERTAINMENT, 
because of their high inter-correlations. Correlations among the explanatory variables were 
calculated through “corrgram” package in RStudio. The variance inflation factor (VIF) values of 
these explanatory variables except for the land use variables were obtained. There was no VIF value 
bigger than 10, as the largest one was 5.01, and this result indicated that there was no 
multicollinearity between predictors. The variables included in the initial training process were 
DEM, SLOPE, ASPECT, POSTION, TRI, SHADE, NDVI, TEMMIN, POPULATION, LINE, 
RESIDENT, HOTEL, EDU, MARKET, ENTERPRISE, DW, DF, DR, LAND11, LAND14, LAND2030, 
and LAND190. 

3.3. Results of Spatial Econometric Models 

The value of Moran’s I for the response variable was calculated and the results indicate that 
there is significant spatial autocorrelation. The value of global Moran’s I is 0.7108 and the value of P 
is less than 0.0000001, which means there are significant clustering patterns and the spatial 
distribution of feature values is not the result of random processes. Furthermore, the value of local 
Moran’s I, as well as the related P and Z value, is shown in Figure 5. The value of Moran’s I offers 
evidence for using the SE model accurately because of the existence of spatial autocorrelation. 

 
Figure 5. Local Moran’s I value and the related P and Z value.  

As shown in Figure 5, most of the sample points have a value of P larger than 0.05, especially 
outside the urban regions, whereas the urban regions are mostly at the level of p < 0.05, which 
means that fire usually clusters as “high–high” in the urban regions, demonstrated by the yellow 
and red sample points, called “hot points” as shown in Figure 5. The green points in Figure 5b 
indicate that they are not significant. From the results above, the local characteristics of fire 
occurrence were studied, paving the way for the following modeling process. 

In order to obtain the result of spatial econometric models, five intermediate SE models, SAC, 
SEM, SDM, and SLM, were initially built in each of the five training sets and the statistics of 
variables were calculated accordingly. After the preprocessing of data and statistical tests, SE 
models were obtained (summary shown in Table 2). The result shows that SAC is the best SE model 
considering its lowest value of AIC and highest log likelihood, which means SAC could explain 
most of the variance in the model and the fitness of SAC is higher than other SE models. We could 
also infer from the result that the spatial autocorrelation not only exists in response variable but 
also in the random error term. The values of related parameters in SAC including ρ  and λ  are 
−0.78 and 0.97, respectively.  
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Table 2. AIC/Log likelihood value of SE models with the OLS model as a comparison. 

Training set OLS SLM SEM SDM SAC
Training set 1 41,877/−20,916 36,923/−18,437 36,911/−18,431 36,912/−18,411 36,652/−18,301 
Training set 2 41,905/−20,930 36,979/−18,440 36,969/−18,442 36,870/−18,412 36,752/−18,311 
Training set 3 41,880/−20,917 36,917/−18,438 36,913/−18,430 36,934/−18,408 36,676/−18,297 
Training set 4 41,858/−20,906 37,046/−18,441 37,048/−18,421 36,916/−18,409 36,725/−18,285 
Training set 5 41,898/−20,926 36,936/−18,449 36,933/−18,433 36,897/−18,415 36,724/−18,304 

A summary of the five SAC intermediate models is shown below and a summary of predictors 
is also obtained (see Table 3). The results indicate that LINE, TEMMIN, DEM, and DF (with 
confidence level of 0.05) are selected in the final SAC model and the spatial distribution of LINE has 
a positive effect on fire occurrence for the SAC model while the other three selected predictors are 
the opposite. Meanwhile, according to the absolute value of predictors in Table 3, LINE influences 
the SAC model most, followed by TEMMIN, DEM, and DF.  

Table 3. Summary of SAC predictors in five intermediate models. 

Predictor P Value Min P Value Max The Number of Significance Direction
Intercept 0.000 0.000 5 + 

NDVI 0.191 0.808 0 + 
RESIDENT 0.541 0.737 0 + 

POPULATION 0.387 0.719 0 _ 
LINE 0.000 0.001 5 + 

MARKET 0.523 0.982 0 + 
EDU 0.285 0.623 0 _ 

ENTERPRISE 0.610 0.971 0 + 
TEMMIN 0.000 0.000 5 _ 
LAND11 0.252 0.861 0 _ 
LAND14 0.110 0.781 0 _ 

LAND2030 0.568 0.711 0 _ 
LAND190 0.568 0.945 0 _ 
ASPECT 0.033 0.665 1 + 
SLOPE 0.104 0.969 0 + 
SHADE 0.238 0.662 0 + 

TRI 0.547 0.951 0 + 
DEM 0.001 0.295 4 _ 

POSITION 0.315 0.963 0 _ 
DW 0.030 0.102 2 _ 
DF 0.000 0.001 5 _ 
DR 0.005 0.561 1 + 

The final SAC model was fitted using the above selected predictors and the summary of SAC is 
shown in Table 4. We could infer from the results that LINE plays the most important role in 
modeling fire occurrence for SAC; TEMMIN ranks the second, followed by DEM and DF. Although 
DEM and DF are significant in the model, their coefficients are so small that physical factors and the 
nearest distance from sample points to fire stations do not have a significant effect on infrastructure 
fire occurrence. This seems reasonable because DF does not affect fire occurrence directly with 
spatial econometric models but can only reflect to some extent whether the sample point is in an 
urban area or not. 
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Table 4. Summary of the final SAC model. 

Predictor Estimate Std. Error Z Value Pr (>|Z|) 
Intercept −0.255 0.175 −1.458 0.144 

LINE 0.210 0.052 4.009 0.000 
TEMMIN −0.045 0.007 −6.067 0.000 

DEM −0.043 0.016 −2.611 0.009 
DF −0.040 0.008 −4.826 0.000 

As for the validations among each training set and testing set, the correlations were calculated 
and shown in Table 5. The result shows that each SAC intermediate model has a good predictive 
ability among each training set but its robustness is not good according to the low value of 
correlation in each testing set. This may point to a dependence on the special structure of spatial 
weight matrix and the coefficients of predictors may not be the same at each location, which may 
lead to an error in the prediction for a new dataset. 

Table 5. Summary of SAC correlation value for the training set and testing set in each intermediate model. 

Correlation Training Set Testing Set
Inner-Model 1 0.867 0.324 
Inner-Model 2 0.864 0.325 
Inner-Model 3 0.866 0.330 
Inner-Model 4 0.868 0.328 
Inner-Model 5 0.864 0.327 

3.4. Results of Random Forest Model 

Just as for the SAC model, five intermediate RF models were calculated by using the same 
training sets and the importance of each predictor was obtained in order to select the final RF model. 
The predictors are ranked in descending order according to the value of average %IncNodePurity 
among five intermediate RF models, as shown in Table 6. The rank order for different predictors 
indicates that it is very different from what is shown in the SAC model. DF ranks first and 
POPULATION is second, and followed by LINE, ENTERPRISE, TEMMIN, and DEM. LINE, DF, 
DEM, and TEMMIN are common variables in both models, from which we could infer that the four 
predictors play an important role in modeling fire occurrence and are not sensitive to the different 
pattern of models. 

Table 6. Summary of the average importance of predictors in five intermediate RF models. 

Predictor Average Value of IncNodePurity
DF 126,237.014 

POPULATION 114,536.200 
LINE 72,765.650 

ENTERPRISE 70,646.550 
TEMMIN 54,866.200 

DEM 41,932.020 
NDVI 28,111.240 
DW 23,491.300 

POSITION 20,968.810 
SLOPE 19,643.120 

DR 18,995.570 
TRI 18,417.120 

ASPECT 17,501.270 
SHADE 14,339.59 
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MARKET 5844.180 
EDU 5389.423 

HOTEL 4763.623 
RESIDENT 4445.550 
LAND14 1913.884 
LAND11 1545.554 

LAND190 792.916 
LAND2030 730.403 

The importance of each predictor in five intermediate RF models was extracted and ranked in 
descending order, as shown in Figure 6. As shown in Figure 6, the order of different predictors is 
not the same and the importance of a predictor may vary between training sets. Moreover, Figure 6 
shows that among all the 22 variables, the rank order of the front six predictors, which have a large 
value of %InNodePurity, are not the same. What is more, if we delete the other 16 variables, the 
whole degree of fitting in RF is not changed much, which only decreases by less than 2%. Finally, 
we adopted DF, POPULATION, ENTERPRISE, LINE, TEMMIN, and DEM as the predictors in the 
final RF model. The selection criterion for the value of %InNodePurity is about 40,000 according to 
the calculation result of RFE, from which the optimal number of variables is obtained as 6. 

 
Figure 6. The rank order for the importance measure of different predictors among five intermediate 
RF models.  

As for the validations among each training set and testing set, the correlations were calculated 
and shown in Table 7. The result shows that the RF model has a good predictive ability both on 
each training set and testing set. This may point to the robustness of the non-parametric model and 
its excellent prediction for new data. 

Table 7. Correlations for each training set and testing set in five intermediate RF models. 

Correlation Training Set Testing Set
Inner-Model 1 0.752 0.740 
Inner-Model 2 0.752 0.760 
Inner-Model 3 0.750 0.748 
Inner-Model 4 0.732 0.771 
Inner-Model 5 0.757 0.744 

3.5. Results of the Correlations for Both Final Models 

The final SAC and RF model were fitted for the whole sample data using selected predictors 
and the correlations between the observed fire density and predicted value, as shown in Figure 7. 
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The red line means the correlation between the observed and the predicted is 1 and the blue is the 
linear fit curve. The figure shows that SAC has a higher value of correlation at 0.875 than RF, whose 
correlation value is 0.797, evidenced by the smaller included angle for SAC. What is more, the trend 
line of correlation has a decreasing tendency for both RF and SAC, which means these points below 
the red line are underestimated. What is interesting is that there exist some random dispersive 
points that have a very small value of fire density in the left area of the plots. This shows that the 
prediction result is mainly dominated by a high density of fires within the urban areas, while it is 
difficult to predict areas far from the city. The rural and suburban areas have a small probability of 
fire occurrence. This phenomenon indicates that RF and SAC cannot predict well on all points 
neither, especially for points seldom at risk of fire, but models are efficient for the points under high 
fire risk. 

 
Figure 7. The correlation plot for the final SAC and RF model in the whole dataset. 

3.6. Spatial Autocorrelation for Residuals among Different Models 

After the above analysis, a spatial autocorrelation test for residuals was performed and 
visualized for the whole study area. We divided the value of residuals into five quantiles as the 
minimum, 25%, 50%, 75%, and the maximum, and then each quantile was colored with light green, 
green, yellow, red, and black. In Figure 8, the light color points represent the sample points with 
underestimations, while the dark ones represent overestimations, as shown in Figure 8. Moreover, 
it is easy to find that regions covered with underestimated points (light color) for SAC are exactly 
where covered with overestimated points (dark color) for RF. 
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Figure 8. Visualization of the distribution of residuals for different models. 

The semivariograms are presented in Figure 9. They indicate that SAC performs better than RF 
when considering the ability to explain the spatial structure. In detail, the semivariogram plots of 
SAC show relatively stable trends and a lower value when compared with RF. Moreover, after the 
break point of nearly 20 km, the value of the semivariograms decreased for both models. This 
means the spatial autocorrelation of residuals increases to a distance of 20 km. The semivariogram 
plot of RF shows an increasing trend in general, while SAC is steady and the value of semi-variance 
decreases after about 110 km. The result shows that the SAC model is better at modeling the 
occurrence of infrastructure fires and also explaining the spatial structure of fires at the city scale. 

 
Figure 9. Semivariogram for residuals based on the function of distance (m). 
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3.7. Correlations between Common Variables and Residuals in RF and SAC 

As shown above, SAC is better than RF when concentrating on its good predictive 
performance. A deeper analysis of the correlations between the residuals and the common variables 
in both SAC and RF models will increase our understanding of the reasons why prediction errors 
are generated. Therefore, as shown in Figure 10, we could find some useful potential regularity by 
taking SAC as an example. As shown in Figure 10a, most of the residuals are skewed to the left, and 
the corresponding value of LINE is between 0 and 0.30. This shows that regions with low road 
density may be not as reliable as regions with high road density for predicting the probability of 
fire occurrence. The regions where people have limited access may be hard for models to make 
efficient predictions. On the other hand, the residuals are skewed to the right, as shown in Figure 
10b, which indicates that the residuals are generated when the value of TEMMIN is between 0.60 
and 0.90. The regions with high temperature may contribute to prediction residuals and could help 
explain the heat island effect in urban areas. We can also infer from Figure 10c that most residuals 
are skewed to the left because regions with low elevation may be easier for human beings to settle 
in and the clustering of humans and their activities will create the conditions necessary for fire to 
occur. However, the flatlands may be not beneficial for predicting fire occurrence at the city scale, 
which contribute significantly to the generation of residuals. The last predictor is DF, which means 
the nearest distance to fire stations and can indirectly reflect the efficiency of the fire prevention and 
emergency response, as shown in Figure 10d. Figure 10d shows that the residuals are evenly 
dispersed across almost the whole range of DF.  

 
Figure 10. Correlation plots between residuals and the predictors. The red line is the contrast line 
with slope = 1, intercept = 0. (a) Correlation between residuals and LINE; (b) Correlation between 
residuals and TEMMIN; (c) Correlation between residuals and DEM; (d): Correlation between 
residuals and DF. 



Sustainability 2017, 9, 819 17 of 21 

3.8. Maps of the Likelihood of Fire Occurrence  

The likelihood of fire occurrence was normalized by transforming fire density into a variable 
ranging from 0 to 1. Figure 11 shows, in the left panel, the actual fire density, the value predicted by 
SAC (middle panel), and the value predicted by RF (right panel). We can infer from the figure that 
SAC could describe the approximate shape of fire occurrence, while RF could not. Moreover, most 
of the sample points were underestimated for SAC, while RF could make good predictions of the 
points with high risk value but the spatial boundaries of the predicted fire density were not as clear 
as with SAC. This means that both SAC and RF have their strengths and shortcomings and the 
predictive performance of each model changes in different city areas. A deeper analysis shows that 
the values of correlation coefficient between observed and predicted are 0.875 and 0.797 for SAC 
and RF, respectively. This indicates that the spatial distribution characteristics of fire occurrence are 
better explained by SAC than by RF on the whole. 

 
Figure 11. Maps of the likelihood of fire occurrence. Fire density was normalized and divided into 
five intervals. The darker the color, the greater the probability of fire occurrence. 

3.9. Comparison with Other Fire Models  

Different spatiotemporal scales, approaches to spatial sampling, and study regions can affect 
which model to choose and the performance of models [40]. Wildfires have close correlation with 
physical factors, climate factors, and the activities of human beings. However, as to urban 
infrastructure fires, the important predictors are much different and, therefore, the measures for 
preventing infrastructure fires from happening will be very different too. We should not deny that 
the occurrence of fire often shows spatial and temporal clustering and lagging [41–43]. Moreover, 
many natural phenomena such as chemical toxicants and PM 2.5 are spatially auto-correlative and 
the SE model is a useful tool for explaining the structure of natural hazards [44–48]. Therefore, 
when analyzing natural phenomena and trying to find key predictors, we should be cautious and 
adopt a specific model only after sufficient investigation. 

3.10. Limitations 

This study has several limitations that may influence the results. First, because of the 
constrained access to a wider range of relevant variables, more explanatory variables need to be 
considered and explored in future studies. In particular, we should pay more attention to other 
socioeconomic predictors such as the spatial distribution of POIs, since these factors may have a 
significant influence on fire occurrence at the city scale. Second, as fire risk is always changing and 
its spatial distribution varies with the development of a city, fire risk in urban areas is considerably 
different from wildfires in forest regions. Therefore, the predictors should take into account these 
dynamic characteristics. Third, fire occurrence is an integrated process where time and space are 
integral dimensions. This means that the varying-coefficient models such as geographic temporally 
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weighted regression or geographic weighted regression should be contrasted with SAC or global 
models. Other limitations such as the parameter tuning process, running time, and feature selection 
should also be recognized in order to construct more suitable models. 

4. Conclusions 

This paper compares SE and RF models for studying fire occurrence at the city scale. As 
regards the applicability of models, we found that RF performed better than SAC in predicting a 
new dataset with more robustness. Cross-validation was employed and the relatively important 
predictors were included for both models. On the other hand, SAC showed an efficient ability for 
explaining the spatial structure of fire occurrence because of its functional equation, which could 
effectively eliminate the autocorrelation in the residual terms.  

Global and local spatial autocorrelation were tested using Moran’s I index; the results showed 
that there was significant global spatial autocorrelation for the average density of infrastructure 
fires. In addition, significant local autocorrelation mostly clusters in urban areas. Therefore, we 
could use SE models to perform further analysis of the distribution patterns and spatial structure of 
fire occurrence at the city scale. Afterwards, the statistics of each predictor among SE models was 
examined by using the ideas of five-fold cross-validation in terms of the accuracy of prediction in 
each training set. Five intermediate models for SEM, SLM, SDM, and SAC were obtained and SAC 
was selected because of its lowest AIC value and highest log likelihood. Afterwards, LINE, 
TEMMIN, DEM, and DF were selected in the final SAC model. The predictive performance in each 
training set and testing set for SAC was obtained and the results showed that SAC could predict 
well in the five training sets but rather poorly in the new datasets. This was caused by the special 
principle of spatial weight matrix based on the spatial structure of sample points as well as the 
spatial heterogeneity.  

As regards RF, we used the same procedure for SAC and five intermediate models were 
examined for selecting the predictors in the final RF model. The predictive performance in each 
training set and testing set was obtained and the results showed that RF performed well in both 
training sets and testing sets. In comparison with SAC, RF is not sensitive to the spatial structure of 
sample points and thus could make robust predictions for new datasets. However, RF lacks the 
ability to explain the spatial structure of fire occurrence and thus the correlation values in five 
training sets are smaller than with SAC. We adopted DF, POPULATION, ENTERPRISE, LINE, 
TEMMIN, and DEM as the predictors selected in the final RF model. 

We fitted the whole dataset by using the final RF and SAC model, and the correlation value 
between the observed and the predicted is 0.7965 and 0.8750, respectively. What is interesting is 
that there are some random dispersive points in plots whose value of fire density is small. This 
phenomenon indicates that RF and SAC cannot predict well on all sample points, especially for 
points seldom at risk of fire, but both models are efficient for points under high fire risk. 

With respect to the spatial autocorrelation of residuals, SAC is much better than RF. A 
comparison of model performance between RF and SAC showed that SAC is better at fitting fire 
risk and explaining the spatial structure in terms of the flat trend and a lower level of 
semivariogram function.  

The common variables selected in both models were analyzed for the correlation with the 
residuals predicted in SAC. The results showed that areas with low road density may be not as 
reliable as those with high road density for predicting fire occurrence. In areas where people have 
limited transportation access it may be hard for the models to make efficient predictions. High 
temperature may be one contributor to the residuals generated by prediction. We could also infer 
that most residuals are associated with regions of low elevation, where it may be easier for human 
beings to settle and the clustering of humans and their activities will create the necessary conditions 
for fire occurrence. However, flatlands may be not beneficial for predicting fire occurrence and are 
one of the contributors to residuals. The last predictor, DF, which represents the nearest distance to 
fire stations, may reflect the efficiency of the fire prevention and emergency response. The residuals 
are evenly dispersed across the whole range of DF.  
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Furthermore, at the city level, we should focus on the redistribution of POIs highly correlated 
with human abilities and make more discoveries about the estimation of the source of danger, 
especially for the purposes of fire prevention. RF could be an efficient tool for decision makers to 
make forecasts. Moreover, SAC could be applied after a sufficient exploration of predictors for a 
specific city when there is spatial autocorrelation or a hysteresis effect. 

In future, we should adopt dynamic approaches for predicting and estimating the quantitative 
fire risk within each grid cell. However, the ability to explain the spatial structure using spatial 
econometric models should not be ignored. In addition, other predictors associated with fire risk 
should be included in the study in order to find better ways to analyze fire risk from a 
spatiotemporal perspective. Lastly, predictors that have close correlation with humans should be 
carefully examined. 
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