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Abstract: Due to the intermittency of wind power generation, it is very hard to manage its system
operation and planning. In order to incorporate higher wind power penetrations into power systems
that maintain secure and economic power system operation, an accurate and efficient estimation
of wind power outputs is needed. In this paper, we propose the stochastic prediction of wind
generating resources using an enhanced ensemble model for Jeju Island’s wind farms in South Korea.
When selecting the potential sites of wind farms, wind speed data at points of interest are not always
available. We apply the Kriging method, which is one of spatial interpolation, to estimate wind speed
at potential sites. We also consider a wind profile power law to correct wind speed along the turbine
height and terrain characteristics. After that, we used estimated wind speed data to calculate wind
power output and select the best wind farm sites using a Weibull distribution. Probability density
function (PDF) or cumulative density function (CDF) is used to estimate the probability of wind
speed. The wind speed data is classified along the manufacturer’s power curve data. Therefore,
the probability of wind speed is also given in accordance with classified values. The average wind
power output is estimated in the form of a confidence interval. The empirical data of meteorological
towers from Jeju Island in Korea is used to interpolate the wind speed data spatially at potential sites.
Finally, we propose the best wind farm site among the four potential wind farm sites.

Keywords: wind generating resources; ensemble model; stochastic prediction

1. Introduction

The demand for wind energy is growing rapidly all over the world. According to the Global
Wind Energy Council (GWEC), there will be 350 GW of wind power capacity installed by 2020 [1].
The European Wind Energy Association (EWEA) expects an increase of 320 GW in European wind
power capacity by 2030 [2]. As wind generation capacity increases, various related technologies are
considered. The maximum power point tracking (MPPT) of wind turbines is a way to obtain maximum
output with certain wind resources using pitch control and dynamic operation [3–5]. The transient
stability analysis of the microgrid or power system integrated with large wind farms is also under
study [6,7]. In this paper, before considering stable operation and efficient control of the wind turbine,
we focus on predicting the wind resources efficiently and estimating the output of the wind turbine at
potential wind farm sites.

Before constructing new wind farms, it is essential to estimate the average wind power output
or capacity factor in potential sites [8–10]. Generally, researchers use the wind energy density of the
potential location or the turbine power curve provided by the manufacturer to estimate the wind
power outputs or capacity factor. This approach can be a deterministic method and may be difficult
to estimate the wind power output if there is no measured data at potential locations. In this paper,
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we propose a stochastic approach for wind power estimation using a spatial interpolation, terrain
characteristic, and Weibull distribution. First, we introduce a method of spatial interpolation, called the
Kriging method, and the wind profile power law to estimate the wind speed at a given point of interest.
This spatial approach differs from various time series or neural network-based wind speed forecasting
methods using historical data [11,12]. The spatial approach can predict the wind speed at different
points of interest spatially using only the current wind speed data. Second, we propose the method for
wind power estimation using a Weibull distribution. Finally, we apply our method based on empirical
data from the meteorological towers from Jeju Island in South Korea. The unknown wind speed
data for potential points can be estimated using spatial interpolation and empirical meteorological
data at various points in Jeju Island. Later, estimated wind speed data is used to model the Weibull
distribution. Any wind turbine power curve data can be used to estimate the average turbine output.
Based on the proposed method, we propose the best one among the four potential wind farm sites.

2. Enhanced Ensemble Model Based on Spatial Techniques

We propose the stochastic method to select the best wind farm among the potential wind farm sites
using the spatial method and Weibull distribution. When planning to build a wind farm, we consider
the wind speed resources at potential sites. In most cases, however, it is difficult to obtain wind speed
data for the sites. In this paper, we consider the case where we do not know the wind speed data of the
area of interest. We apply spatial interpolation called the Kriging method to obtain wind speed data
for specific sites, thereby reducing the estimation cost of selecting the proper wind farm. The flowchart
for proposed method is shown in Figure 1.
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2.1. Step 1: Establish the Wind Speed Database Using a Spatial Modeling

Spatial modeling is a modeling technique for analyzing spatially distributed physical phenomena
and data. It is widely used in various fields such as Geographic Information System (GIS), ecology,
energy, and engineering [13–16]. Spatial modeling can estimate the value of the specific site without
the accumulation of historical data. It is a useful technique for considering the proper wind farm site
in that it does not require time-consuming works to acquire wind resource data.
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The Kriging is one of the spatial interpolation methods based on regression against observed αi
values of neighbor data points, weighted according to spatial covariance values. The general formula
for the Ordinary Kriging method is shown in Equation (1) [17,18].

α∗ = ∑n
i=1 λiαi

s.t ∑n
i=1 λi = 1

(1)

where α∗ is the estimated value of the point of interest, n is a number of neighbor data points, λi is
a weight with regard to spatial distances between two points. All weights must sum to one to avoid
biased models in the ordinary Kriging method. This method can be expressed as shown in Figure 2
as below.
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The estimated wind speed is corrected according to the height of turbine and the characteristics
of the terrain. We use the wind profile power law in the proposed method. The wind profile power
law is a relationship between the elevation and wind speeds. The wind profile power law equation is
shown in Equation (2), where U0 is the wind speed at measured height h0, and U is the wind speed at
extrapolated height h [19].

U = U0

(
h
h0

)α

(2)

The wind speed shear exponent α relies on the terrain characteristic of the installed wind
turbine. The general wind speed shear exponents depending on the terrain characteristic are shown in
Table 1 [20].

Table 1. Influence of terrain characteristic on wind speed shear [20].

Wind Speed Shear Terrain Characteristic

0.95 Coastal waters of inland sea
0.121 Flat shore of ocean small islands

0.130–0.135 Open grasslands without trees
0.143 Open slightly rolling farm land

0.128–0.170 Open level agricultural land with isolated trees
0.200 Open fields divided by los stone walls
0.220 Rough coast
0.230 Gently rolling country with bushes and small trees

0.250–0.303 Level country uniformly covered with scrub oak and pine
0.357 Wooded and treed farm land
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2.2. Step 2: Estimate the Average Wind Turbine Output Using a Weibull Distribution

A Weibull distribution is a putative statistical tool for analyzing wind speed data [21–23].
The two-parameter Weibull distribution consists of scale and shape parameters. The probability
density function of a Weibull distribution is shown in Equation (3), where k is the shape parameter, c is
the scale parameter, and variable x is the wind speed.

f (x) =
(

k
c

)( x
c

)k−1
exp
[
−
( x

c

)k
]

. (3)

The cumulative density function of the Weibull distribution is represented by Equation (4),
where each variable is the same as Equation (3) [24].

F(x) = 1− exp
[
−
( x

c

)k
]

. (4)

There are various methods for estimating Weibull distribution parameters such as the linear least
square method (LLSM), the maximum likelihood estimator (MLE), and the moments method [25].
For large and complex datasets, both the LLSM and the MLE provide almost consistent results.
Extensive simulation shows that the MLE method is more accurate than the LLSM method for
relatively few samples [26]. As a result, we selected the MLE method to estimate the Weibull
distribution parameters. Simplified estimations of these parameters using the MLE method are
shown in Equations (5) and (6) [25].

L =
n

∏
i=1

f (xi|φ) (5)

L(x1, x2, . . . , k, c) =
n

∏
i=1

(
k
c

)( x
c

)k−1
exp
[
−
( xi

c

)k
]

(6)

where x is the wind speed and n is the number of wind speed data. The variable φ is an unknown
parameter that is estimated by maximizing the likelihood function, L. After estimating the Weibull
parameters, we can determine the confidence limits using the estimated variance-covariance matrix,
which is the inverse of the Fisher information matrix. The confidence limits for Weibull parameters are
calculated using Equations (7) and (8), where a matrix

{
vci,j

}
indicates the Fisher information matrix,

k̂ is the estimated shape parameter, ĉ is the estimated scale parameter, and α represents confidence
interval level [27]. Each confidence limit is determined by the standard errors of the MLE method,
and they are calculated as the square roots of the diagonal components from vc1,1 and vc2,2.

k̂lower,(1−α)/2 =
k̂

exp
[

z1−α/2
√vc1,1

k̂

] , k̂upper,(1−α)/2 = k̂ exp
[ z1−α/2√vc1,1

k̂

]
. (7)

ĉlower,(1−α)/2 =
ĉ

exp
[

z1−α/2
√vc2,2
ĉ

] , ĉupper,(1−α)/2 = ĉ exp
[ z1−α/2√vc2,2

ĉ

]
. (8)

2.3. Estimation of Average Wind Turbine Output Using a Weibull Distribution

The proposed stochastic algorithm for estimating the average output of a wind turbine is shown
in Figure 1. The two-parameter Weibull distribution is calculated from the wind speed data, which is
estimated by the Kriging method. At this point, the Weibull distribution parameters have a specific
confidence interval. The estimated wind speed can be classified according to wind speed values of
turbine output data that is provided by the manufacturer. The classifications of the measured wind
speed data are given probabilistically using the cumulative density function of the Weibull distribution.
The probability can be calculated using Equation (9) after solving Equation (4). The wind turbine output
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that corresponds to the classifications of wind speed can be identified through the manufacturer’s
power curve data. The average output of the turbine can be calculated using Equation (10).

Fc(xr) =

[
1− exp

{
−
( xr

c

)k
}]
−
[

1− exp
{
−
( xr−1

c

)k
}]

(s.t. (1 ≤ r ≤ m)). (9)

Pavg−es =
m

∑
r=1

Fc(xr)P(xr). (10)

Here, m is the number of classified wind speed dataset; xr is the upper limit of the rth wind speed
dataset; Fc(xr) is the probability value corresponding to the wind speed range [xr−1 < x ≤ xr];
and P(xr) signifies the wind power output that corresponds with xr. The variable Pavg−es is the mean
output of the wind turbine, and Fc(xr) will have a specific range along the upper or lower limit of the
Weibull distribution parameters.

3. Case Study: Stochastic Prediction of Wind Generating Resources in Jeju Island’s Wind Farms
in South Korea

3.1. Empirical Data and Estimated Wind Speed Using a Spatial Interpolation

In this case study, we select Jeju Island, which has many potential sites for wind power generation.
To apply the Kriging method, we use location information and wind speed data measured in the
10 meteorological (MET) towers in Jeju Island of South Korea. We consider the optimal wind farm
among four potential wind farm sites. Figure 3 shows four potential wind farm sites and 10 neighbor
meteorological towers in Jeju Island using Google Maps. Before applying the Kriging method,
we collect latitude, longitude, and elevation data for 10 meteorological towers and four potential wind
farm sites. This coordinate data used in this paper is shown in Table 2. The wind speed was measured
at the meteorological towers on 5–15 February 2016 in one-hour intervals, and its time series plot is
shown in Figure 4.
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Table 2. The coordinates data for Kriging method.

Name Longitude (Degree) Latitude (Degree) Elevation (Meter)

MET Tower A 126.7090 33.4824 252
MET Tower B 126.1628 33.2938 71.5
MET Tower C 126.5297 33.5140 20.45
MET Tower D 126.7794 33.5616 34
MET Tower E 126.8777 33.5198 18
MET Tower F 126.9542 33.5228 6.36
MET Tower G 126.8168 33.3535 77.2
MET Tower H 126.8802 33.3867 17.75
MET Tower I 126.7692 33.5281 110.5
MET Tower J 126.4224 33.2914 425

Potential Wind Farm A 126.7151 33.5352 61
Potential Wind Farm B 126.8208 33.5570 10
Potential Wind Farm C 126.1663 33.3387 9
Potential Wind Farm D 126.8211 33.3992 141
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We used wind turbine model HJWT-2000, which has been used in some wind farms in Jeju Island
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Table 3. Technical specifications of wind turbine.

Technical Specifications Values

Cut-in speed 3.5 m/s
Rated speed 12.5 m/s

Cut-out speed 20 m/s
Rated power 2000 kW
Hub height 85 m

Wind turbine generation type Doubly Fed Induction Generation (DFIG)
Pitch controller Individual Pitch Control

We correct the estimated wind speeds at four potential sites based on the elevation of potential
sites and hub height using Equation (2). We determine the wind shear exponent according to the
terrain characteristic of potential sites. The determined wind shear exponents are shown in Table 4.
The results of estimating the wind speeds at four potential sites using the Ordinary Kriging method
and the wind profile power law are shown in Figure 6. At that time, the estimated Kriging parameters,
which are the weights for each neighbor meteorological tower, are shown in Table 5.

Table 4. Wind shear exponent based on the terrain characteristic.

Potential Wind Farm Wind Shear Exponent ff

Site A 0.23
Site B 0.121
Site C 0.121
Site D 0.22
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Table 5. Ordinary Kriging parameter information for the potential sites.

Neighbor Site
Weights (λ) for
Potential Wind

Farm A

Weights (λ) for
Potential Wind

Farm B

Weights (λ) for
Potential Wind

Farm C

Weights (λ) for
Potential Wind

Farm D

MET Tower A 0.7219 0.0087 −0.7748 0.5461
MET Tower B −0.1026 0.1034 0.6325 −0.1165
MET Tower C 0.0977 0.0460 −0.0223 0.1281
MET Tower D 0.1735 0.1601 −0.0230 0.1263
MET Tower E 0.1218 0.2223 −0.1326 0.2505
MET Tower F 0.2174 0.0235 −0.2519 0.2429
MET Tower G −0.0841 0.0817 0.4461 −0.0330
MET Tower H 0.1588 0.0531 −0.1071 0.2632
MET Tower I −0.4763 0.2393 1.3864 −0.5911
MET Tower J 0.1667 0.0553 −0.0863 0.1674
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3.2. Estimate the Average Wind Turbine Output Using a Weibull Distribution

We estimate the Weibull distribution parameters based on the estimated wind speed data for four
potential wind farms using Equations (5)–(8). Each Weibull parameter has 97.5% confidence limits
according to Equations (7) and (8), and the results are shown in Table 6. In Table 6, we show the mean
value and 97.5% confidence limits of the estimated Weibull distribution parameters.

Table 6. Estimated Weibull distribution parameters.

Potential Wind Farm Value Shape Parameter Scale Parameter

Site A
Mean value 2.5073 6.8842

97.5% Confidence interval 2.3598 ≤ k ≤ 2.6548 6.6692 ≤ c ≤ 7.0991

Site B
Mean value 2.4589 7.7656

97.5% Confidence interval 2.3146 ≤ k ≤ 2.6031 7.5183 ≤ c ≤ 8.0129

Site C
Mean value 2.3920 9.3654

97.5% Confidence interval 2.2538 ≤ k ≤ 2.5303 9.0584 ≤ c ≤ 9.6724

Site D
Mean value 2.6308 6.1867

97.5% Confidence interval 2.4780 ≤ k ≤ 2.7835 6.0024 ≤ c ≤ 6.3709

The probability density function of estimated wind speed can be calculated based on the estimated
Weibull distribution parameters. Figure 7 shows the probability density function of estimated wind
speed for Potential Wind Farm C, where upper and lower bound represent values of the confidence
level 0.975.
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In this paper, the estimated wind speed data is divided into approximately intervals of 0.5,
from 1 to cut-out speed, with respect to the turbine output from the power curve data. In our selected
wind turbine, the wind speed can be divided into 39 datasets. 8 samples of simulation results for
Potential Wind Farm C using Equations (9) and (10) is shown in Tables 7 and 8, wherein the confidence
level of probability is 97.5%.
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Table 7. Samples of estimated probability of the wind speed and power curve data for simulations.

Set No. Wind Speed
(m/s)

Probability
(Lower)

Probability
(Mean)

Probability
(Upper)

Turbine
Output (kW)

9 5 0.039035 0.040732 0.042758 103.36
10 5.5 0.042055 0.044388 0.047103 164.52
11 6 0.044505 0.047403 0.050724 241.67
12 6.5 0.046346 0.049701 0.053495 325.1
13 7 0.047553 0.051231 0.055328 429.92
14 7.5 0.048124 0.05197 0.056176 549.42
15 8 0.048073 0.051924 0.056032 711.73
16 8.5 0.047433 0.051125 0.054935 846.29

Table 8. Estimation of expected turbine outputs based on Weibull distribution.

Set No. Wind Speed
(m/s)

Turbine Output
(Lower) (kW)

Turbine Output
(Mean) (kW)

Turbine Output
(Upper) (kW)

1 1 0.00 0.00 0.00
... ... ... ... ...
9 5 6.4220 6.7013 7.0345

10 5.5 10.1633 10.7273 11.3835
11 6 14.4687 15.4109 16.4903
12 6.5 19.9249 21.3676 22.9984
13 7 26.1265 28.1473 30.3983
14 7.5 34.2512 36.9885 39.9819
15 8 40.6840 43.9425 47.4197
16 8.5 47.3906 51.0800 54.8862
... ... . . . . . . . . .
39 20 0.0000 0.0000 0.0000

Expected turbine output 935.8888 985.9220 1,023.7511

In Table 8, the average turbine output represents one-hour electric generation. This simulation
procedure can be applied equally to the remaining three potential wind farms. As a result, we estimate
the average wind turbine outputs of four potential wind farms for February 2016 in Jeju Island.
In addition, the capacity factor can be calculated in Equation (11).

CF(Capacitor Factor) =
Mean turbine ouput
Turbine rated power

. (11)

The simulation results for the four potential wind farms are shown in Table 9. It is estimated that
Potential Wind Farm C has the highest efficiency in February.

Table 9. Turbine output estimation of four potential wind farms in February.

Value Potential Wind
Farm A

Potential Wind
Farm B

Potential Wind
Farm C

Potential Wind
Farm D

Average output 562.94 736.18 985.92 418.91

Confidence interval 512.82~611.47 684.95~782.32 935.88~1,023.75 375.62~463.55

Capacity Factor 0.281 0.368 0.493 0.209

We also simulate the turbine output in May, September, and December using the proposed method.
Each month represents different wind speeds, which can reveal the seasonal effects. The simulation
results for the four months are shown in Table 10 and Figure 8.



Sustainability 2017, 9, 817 10 of 12

Table 10. Turbine output estimation of four potential wind farms in season.

Potential
Wind Farm

February
(kWh)

May
(kWh)

September
(kWh)

December
(kWh)

Site A
(Confience interval)

562.94
(518.82~611.47)

178.94
(147.74~214.06)

65.56
(53.02~80.33)

388.90
(340.15~438.22)

Site B
(Confience interval)

736.18
(684.95~782.32)

261.67
(220.82~305.40)

114.53
(95.16~136.95)

521.60
(467.91~572.70)

Site C
(Confience interval)

985.92
(935.88~1,023.75)

404.61
(353.13~455.61)

186.61
(160.68~215.64)

787.75
(734.56~832.57)

Site D
(Confience interval)

418.91
(375.62~463.55)

127.84
(103.98~155.53)

51.56
(41.64~63.21)

290.52
(250.53~333.25)
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As a result, Potential Wind Farm C represents the highest efficiency of the turbine output.
Considering only the generation output, we can purpose the Site C among the four potential wind
farms as a new wind farm.

4. Conclusions

Wind energy is rapidly increasing globally due to its high economic efficiency and lack of carbon.
In terms of planning a new wind farm, a flexible and economical estimation of wind turbine output is
needed to select potential installation sites. In this paper, we use one of the spatial interpolation
methods called Kriging to estimate wind speed. When considering new potential wind farms,
wind speed data for most new spots do not exist. Using our proposed method, when estimating
the wind power, it has the economic advantages of not requiring the installation of additional
meteorological towers or the accumulation of historical data to evaluate wind resources at given
points of interests. The proposed method can estimate wind power when a desired turbine is installed
at any desired point based on the spatial approach. In this paper, we simulate the method to propose
the best wind farm in terms of electrical generation in Jeju Island in South Korea. We use wind
speed measured in 10 existing meteorological towers and coordinate data at potential wind farms
in Jeju Island. From the simulation results, Potential Wind Farm C is selected as the best wind farm.
Considering the seasonal and spatial characteristics of wind, Potential Wind Farm C is expected to
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generate higher outputs than other potential wind farms. This estimated output depends on the
general power characteristics of the wind resource and turbine only and can be improved using
pitch control and dynamic turbine operation. In our proposed method, the estimated wind power is
provided with deterministic and probabilistic outputs. Such a method benefits from the operational
aspects of the wind integrated power systems. Probabilistic outputs can indicate uncertainties in
estimated power generation to system planners and operators when properly selecting new wind farm
sites and operating the grid after the selected wind farm is installed. In the future, we will consider
laminar wind condition and turbulence in the calculation of the optimal probability function of wind
speed and perform a verification of the methodology based on the measured output data from the
selected wind farm site.
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