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Abstract: This study proposes a novel hybrid machine learning approach for modeling of 
rainfall-induced shallow landslides. The proposed approach is a combination of an instance-based 
learning algorithm (k-NN) and Rotation Forest (RF), state of the art machine techniques that have 
seldom explored for landslide modeling. The Lang Son city area (Vietnam) is selected as a case 
study. For this purpose, a spatial database for the study area was constructed, and then was used to 
build and evaluate the hybrid model. Performance of the model was assessed using Receiver 
Operating Characteristic (ROC), area under the ROC curve (AUC), success rate and prediction rate, 
and several statistical evaluation metrics. The results showed that the model has high performance 
with both the training data (AUC = 0.948) and the validation data (AUC = 0.848). The results were 
compared with those obtained from soft computing techniques, i.e. Random Forest, J48 Decision 
Trees, and Multilayer Perceptron Neural Networks. Overall, the performance of the proposed 
model is better than those obtained from the above methods. Therefore, the proposed model is a 
promising tool for landslide modeling. The research result can be highly useful for land use 
planning and management in landslide prone areas. 

Keywords: landslide; classifier ensemble; instance based learning; Rotation Forest; GIS; Vietnam 
 

1. Introduction 

Development of landslide mitigation strategy is considered to be the most effective and 
economical way to reduce landslide losses and minimize landslide risks [1]. Therefore, reliable 
landslide susceptibility and hazard maps is a key point for development, as is clearly stated by the 
United Nations [2]. However, producing these reliable maps is not a simple task because landslides 
are triggered by complex processes and relate to many causal factors. Although the recent 
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developments of Remote Sensing and GIS (Geographic Information Systems) have provided 
powerful tools for acquisition and processing of high quality data for landslide studies, the 
prediction power of landslide models is still a debated subject because the quality of susceptibility 
maps is clearly dependent on the method used [3–6]. Thus, the overall performance (the goodness of 
fit and the prediction power) of landslide models is not only dependent on the quality of input data 
but also on methods and techniques used. Therefore, various approaches have been proposed in the 
literature for landslide susceptibility mapping. These methods and techniques vary from simple 
expert knowledge to sophisticated mathematical procedures and in general, they could be divided 
into qualitative and quantitative groups [7]. The first group is clearly subjective because they depend 
heavily on expert knowledge whereas the second one is relatively objective [8].  

The second group could be further categorized into three main topics: deterministic methods, 
statistical methods, and data mining. In general, the deterministic methods have the most accurate 
results due to data dependency and site-specific nature and are most suitable for site-specific 
locations in localized scales [9]. For large areas, application of deterministic methods is almost 
impossible due to the difficulty of collecting detailed geo-engineering data, therefore the use of 
statistical and soft computing methods has increased [10]. The statistical methods are considered to 
be suitable for the mapping of landslide susceptibility over large areas and using the statistical 
hypothesis that future landslides will occur under the same geo-environmental conditions that 
produce them in the past. Therefore, large amounts of data need to be collected and processed and 
these tasks are time consuming and involve various complex processes [11]. More importantly, 
because the prediction capability of statistical models is still not sufficient, data mining has been 
considered. 

Being a branch of artificial intelligence, data mining can be defined as processes of analyzing 
observational data to find internal relationships and representing them in novel ways that are useful 
and easier understandable [12,13]. Data mining includes multiple steps, i.e., data selection, 
pre-processing and transformation, analysis with computational algorithms, interpretation and 
evaluation of the results [14]. The most common data mining methods used in landslide modeling are 
artificial neural networks [11,15,16], support vector machines [17–21], decision trees [10,20,22], and 
neuro-fuzzy [23,24]. Literature review shows that new data mining algorithms are suitable for 
landslide modeling for large and complex areas with good results [3,25–30], and, in general, data 
mining models outperform conventional methods [10,31–33]. However, recent studies on landslide 
modeling show that the overall performance of prediction models could be enhanced with the use of 
ensemble frameworks [31,34,35]. Therefore, investigation of these frameworks for landslide modeling 
should be carried out. 

Starting in the early 1990s, ensemble-based systems have become an important research area in 
machine learning with various techniques have been proposed. These systems can be established 
through combinations of two or more methods and techniques [36–42] or ensemble frameworks 
such as Stacking, Bagging, AdaBoost, Random Subspace, MultiBoost, Random Forests, Diverse 
DECORATE (Ensemble Creation by Oppositional Relabeling of Artificial Training Examples), and 
Rotation Forest [43,44]. Although these ensemble-based systems often improve performances of base 
classifiers, the Rotation Forest outperforms the others in term of accuracy and diversity in various 
datasets [43,45]. In addition, exploration of the Rotation Forest for landslide analysis has seldom 
been carried out.  

Based on such motivation, this paper explores a current state-of-the-art Rotation Forest 
ensemble with k-NN algorithm for landslide susceptibility mapping. The main objective of this 
study is therefore to create a novel methodological approach that is capable to solve the complex and 
high-dimensional data, for landslide susceptibility mapping. The proposed approach is a 
combination of an instance based learning algorithm (k-NN) and the Rotation Forest (RF) ensemble, 
where the Information Gain is used for feature selection. The Lang Son city area (Vietnam) is 
selected as a case study because it belongs to one of the most vulnerable areas with respect to 
landslides in the northeast region of Vietnam [46]. However, landslide studies in this area have 
seldom been carried out; therefore, assessment of landslide susceptibility is considered to be an 
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urgent task. The usability of the proposed model is assessed through comparisons with those 
obtained from various soft computing techniques using the same data such as Random Forest, J48 
Decision Trees, and Multilayer Perceptron Neural Networks, and finally, conclusions are given.  

2. Study Area and Data 

2.1. Study Area 

The study area is located in the Lang Son city area, near the Vietnam-China border, which 
belongs to the northeastern part of Vietnam (Figure 1). It covers an area of about 168 km2, between 
longitudes 106°41’34” E and 106°48’32” E, and latitudes 21°49’43” N and 21°57’13” N. The altitude 
varies from 194.5 m to 800 m above sea level with the mean of the altitude is 328 m and the standard 
deviation is 84.7 m. Slope angles in the study area are from 0° to 84°. Approximately 23.7% of the 
study area has ground slopes less than 8° and about 10.2% fall in slopes from 8° to 15°. Around 
21.1% of the study area falls in slopes 15°–25°, whereas areas with slope 25°–45° account 43.5% of the 
total study area. Only 1.5% of the study area has slopes larger than 45°. 

 
Figure 1. Location of the study area and landslide inventory. 

Forest land covers around 43.4% of the total study area, in which 35.7% of the land is 
productive forest and 7.7% of the land is protective forest. Settlement areas cover 6.9% of the total 
study area, whereas barren land and paddy land cover 20.4% and 21.5% of the total study area, 
respectively. The soil types are mostly ferralic acrisols, which accounts for 78.5% of the total study 
area, followed by dystric gleysols (6.1%), rhodic ferralsols (5.8%), eutric fluvisols (4.8%), plinthic 
acrisols (1.3%), and dystric fluvisols (1.2%) soils. 

Geologically, Quaternary deposits cover around 16% of the total study area that consists of 
granule, grit, breccia, boulder, sand, and clay. The other areas are covered by six lithological 
formations i.e., Na Khuat, Tam Lung, Khon Lang, Lang Son, Tam Danh, and Mau Son. The main 
lithologies are marl, siltstone, tuffaceous conglomerate, gritstone, sandstone, basalt, and clay shale. 

The study area is characterized by monsoonal climate with rainy or dry seasons. The rainy 
season is normally from May to September and the dry season is from October to April. The average 
rainfall is in the range from 1200–1600 mm annually [46]. 
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2.2. Data Used 

Historical landslide records are the first required data for the assessment of landslide 
susceptibility. In the study, the landslide inventory map with a total of 172 historical landslides 
prepared earlier by [46] was used. This map was constructed from several sources: (i) interpretation 
of orthorectified aerial photographs with spatial resolution of 1 m that were acquired by the Aerial 
Photo—Topography Company (Vietnam) in 2003; (ii) a landslide inventory map constructed by 
Tam, et al. [47]; (iii) a landslide inventory map compiled by Truong, et al. [48]; and (iv) landslide 
locations identified from field surveys in 2012. 

Among the historical landslides, 86 locations are rotational slides that account for 50% of the 
total landslides, whereas 52 locations are translational slides and account for 30.2% of the total 
landslides. The remaining inventories are debris slides with 34 locations, accounting for 19.8% of the 
total landslides. It is noted that rock falls are very few in this study and were excluded in this 
analysis. 

Landslides and flash floods are the main recurrent natural hazards in the Lang Son city area. An 
analysis of the historical landslides shows that rainfall is the main triggering factor [46]. Landslides 
usually occur during the torrential rainfalls especially in tropical rainstorms. For example, many 
landslides occurred in the study area during the tropical rainstorm Rammasun on 19 July 2014 
where the daily rainfall at the Mau Son was 504 mm. Landslides also occurred in Dong Dang town 
during heavy rainfalls of the tropical rainstorm Kalmaegi on 17 September 2014 that caused seven 
deaths and six injures. 

A digital elevation model (DEM) with spatial resolution of 5 m for this study area was 
constructed using the National Topographic Maps. Scales of these maps are 1:5000 for the Lang Son 
city and 1:10,000 for the other areas. The DEM was then used to extract morphometric properties for 
deriving landslide influencing factor maps i.e., slope (Figure 2a), slope length, aspect (Figure 2b), 
curvature, elevation (Figure 2c), and toposhade. These morphometric factors are selected because 
slope instability is influenced by the types of terrain [49] . They are the most commonly used factors 
for the assessment of landslide susceptibility in Vietnam [34,46] and in literature. In addition, valley 
depth (Figure 2d) was included because the increasing of upslope area could provide weight of 
material on the slope [50], and, thus, this is considered a key factor in slope failure assessment. 
Detailed explanations on valley depth for landslide susceptibility could be found in [50] and [28]. 
Furthermore, occurrences of rainfall-induced shallow landslides are also influenced by 
hydrogeological conditions [51,52], therefore topographic wetness index (TWI), stream power index 
(SPI), sediment transport index (STI) were used included in the analysis [28]. In this analysis, TWI, 
SPI, and STI were extracted from the DEM. Detailed descriptions on the calculation of these indices 
could be found in [53]. Detailed classes for these factors (Table 1) were determined based on a 
frequency ratio analysis of the landslide inventory versus factor classes [54]. 

Data mining techniques for the assessment of landslide susceptibility at a regional scale require 
the use of large amounts of non-morphometric factors for reliable analysis [10,55], therefore factors 
in the geographical and geological domains i.e., landuse, soil type, lithology and distance to faults 
were used [11]. The landuse map for the study area was extracted from the Land Use Status Map of 
the Lang Son province at a scale of 1:50,000, a result of the Status Land Use Project of the National 
Land Use Survey in Vietnam in 2010. For analysis, the landuse map was constructed with nine 
classes (Figure 2e). These classes were generalized from 21 original types in the Land Use Status 
Map. The soil type map for the study area was extracted from the National Pedology Maps at scale 
of 1.100,000. A total of eight layers were constructed (Figure 2f). 

The geological map that provides information on underlying bedrock is an important factor for 
landslide modeling [56]. For this research, the geological map was constructed based on four tiles of 
the Geological and Mineral Resources Map (GMRM) of Vietnam at 1:50,000 scale. This map is 
selected because no geological map with larger scales is available for the study area. These maps 
were constructed by Quoc, et al. [57] and then updated by Truong, Nghi, Phuc, Quyet and The [48]. 
Seven geologic units (Figure 2g) were distinguished for the analysis based on lithological similarities 
[56]: (i) quaternary (Granule, grit, breccia, boulder, sand, clay, and silt); (ii) conglomerate (Na Duong 
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and Khon Lang formations); (iii) basalt (Tam Danh formation); (iv) siltstone (Na Khuat và Dong 
Dang formations); (v) limestone (Diem He and Bac Son formations); (vi) sandstone (Lang Son, Mau 
Son, and Ha Coi formations); and (vii) tuff (Tam Lung formation). Distance to faults was included in 
this analysis because fracturing and shearing play critical roles in slope instability [58]. In this study, 
the distance to faults map (Figure 2h) was compiled by buffering the fault lines. Five fault buffer 
categories were constructed based on an analysis of the landslide inventory map: 0–100, 100–200, 
200–300, 300–400, and >400 m.  

Table 1. Landslide influencing factors and their classes used in this study. 

No Influencing Factors Classes 
1 Slope (°) (1) 0–8; (2) 8–15; (3)15–25; (4) 25–35; (5) 35–45; (6) >45 
2 Slope length (m) (1) 0–10; (2) 10–30; (3) 30–50; (4) 50–80; (5) 80–120; (6) >120 

3 Aspect 
(1) Flat; (2) North; (3) Northeast; (4) East; (5) Southeast; (6) South; (7) Southwest; (8) West; (9) 
Northwest 

4 Curvature (1) <−2; (2) −2 to −0.01; (3) −0.01 to 0.01; (4) 0.01 to 2; (5) >2 
5 Elevation (m) (1) <260; (2) 230–300; (3) 300–350; (4) 350–450; (5) 450–550; (6) >550 
6 Valley depth (m) (1) <10; (2) 10–30; (3) 30–50; (4) 50–70; (5) 70–100; (5) >100 

7 Toposhape 
(1) Ridge; (2) Saddle; (3) Flat; (4) Ravine; (5) Convex hillside; (6) Saddle hillside; (7) Slope 
hillside; (8) Concave hillside; (9) Inflection hillside; (10) Unknown hillside 

8 TWI (1) <5; (2) 5–6; (3) 6–7; (4) 7–8; (5) 8–9; (6) >9 
9 SPI (1) <30; (2) 30–100; (3) 100–200; (4) 200–300; (5) >300 
10 STI (1) <10; (2) 10–30; (3) 30–50; (4) 50–70; (5) >70 

11 Landuse 
(1) Annual crop land; (2) Populated area; (3) Protective forest land; (4) Productive forest land; 
(5) Paddy land; (6) Barren land; (7) Perennial crop land; (8) Water surface land ; (9) Grass land 

12 Soil type 
(1) Ferralic acrisols; (2) Dystric gleysols; (3) Plinthic acrisols; (4) Water area; (5) Dystric 
fluvisols; (6) Eutric fluvisols; (7) Rhodic ferralsols; (8) Rocky mountain 

13 Lithology (1) Conglomerate; (2) Basalt; (3) Quaternary deposit; (4) Siltstone; (5) Limestone; (6) 
Sandstone; (7) Tuff  

14 Distance to faults (m) (1) 0–100; (2) 100–200; (3) 200–300; (4) 300–400; (5) >400 
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Figure 2. Landslide influencing factors: (a) Slope map; (b) aspect; (c) elevation; (d) valley depth; (e) 
landuse; (f) soil type; (g) lithology; and (h) distance to faults. ACL: Annual Crop Land; PA: 
Populated Area; PTL: Protective Forest Land; PDL: Productive Forest Land; PL: Paddy Land; BL: 
Barren Land; PCL: Perennial Crop Land; WSL: Water Surface Land; GL: Grass Land; FA: Ferralic 
Acrisols; DG: Dystric Gleysols; PA: Plinthic Acrisols; WA: Water Area; DF: Dystric Fluvisols; EF: 
Eutric Fluvisols; RF: Rhodic Ferralsols; RM: Rocky mountain; CO: COnglomerate; and QD: 
Quaternary Deposit. 

3. Theoretical Background of the Methods Used 

3.1. Instance Based Learning Algorithm 

The k-nearest neighbor (k-NN) is an instance-based learning algorithm that use the nearest 
distance as a threshold to determine whether pixels will be added to existing clusters or a new 
cluster is created [59]. Despite the simplicity of its theoretical properties, this algorithm belongs to 
top ten methods in data mining and has been considered to be one of the most useful and effective 
algorithms for classification [60].  

Consider a training dataset (X, Y) with X = (X1, X2, …, Xn) and Y ϵ [1,0]. In the current context of 
landslide susceptibility analysis, Xi is an input vector that represents the 14 influencing factors 
(slope, slope length, aspect, curvature, elevation, valley depth, toposhade, TWI, SPI, STI, landuse, 
soil type, lithology, and distance to faults), and Yi is the two classes, landslide and non-landslide. In 
the training phase, the input dataset is mapped into feature space and then the feature space is 
partitioned into multiple regions where decision boundaries are based on the similarity in the 
content of the dataset [59]. In the prediction phase, distances between pixels in the new dataset and 
all the training pixels are calculated. Based on k thresholds, the determination of nearest neighbors is 
carried out by sorting these distances. Then landslide and non-landslide classes for each of the 
nearest neighbors are determined. Finally, the prediction value for each pixel is obtained using 
simple majority of the class of nearest neighbors. 

The decision rule of the k-NN model could be written as 

i

i i i i
kNN

( , ) sim( , ) Z( , )
X

f newdata Y newdata X X Y
∈

= ∑  
(1) 

where sim(newdata, Xi) is the similarity between new data and the training data Xi; and Z (Xi, Yi) is 
the category value of the training data Xi. 
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3.2. Rotation Forest Ensemble 

An ensemble-based system can be constructed by combining individual classifiers in which the 
individual classifiers could be trained using different: (i) subsets of features; (ii) training data sets; 
(ii) parameters of a given classifier; or (iv) classifier models [61]. The Rotation forest ensemble refers 
to the first case and is a technique formally introduced by Rodriguez, Kuncheva and Alonso [43]. 
This ensemble framework is a combination of the Random Subspace and Bagging techniques with 
Principal Component Analysis (PCA) to construct an ensemble classifier [44]. 

Using the training dataset (X, Y) with X = (X1, X2, …, Xn) and Y ϵ [1,0], the training phase of 
Rotation Forest ensemble is as follows: 

Step 1. Setup parameters: Choose k-NN algorithm as the base classifier, the ensemble size (L), the 
number of feature subsets (K). 
Step 2. Training the classifier ensemble model: For i = 1… L. 

(a) Split X into K subsets (each subset contains M features): Si, j for j = 1…K  

Generate S’i, j by eliminating randomly a subset of classes. 
Generate new set S”i, j by selecting a bootstrap sample with a size 75% from S’i, j. 
Perform Principle Component Analysis on S’i, j to obtain coefficients K(M )(1)

, j , ja ,..., ai i and then store 

in a matrix Ci, j. 
Arrange the matrix ,i jC  in a rotation matrix iR : 

[ ] [ ]
[ ] [ ]

[ ] [ ]

1

2

K

(M )(1)
,1 ,1

(M )(1)
,2 ,2

(M )(1)
,K ,K

a ,..., a 0 ... 0

0 a ,..., a ... 0
... ... ... ...
0 0 ... a ,..., a

=

 
 
 
 
 
  

i i

i i
i

i i

R  (2) 

Construct a
iR  by rearrange the rows of iR  to match the order of the influencing factors in the 

training dataset. 

(b) Construct base classifier Di using the training set a
iYR . 

Step 3. Calculating landslide susceptibility index. 

The operation of the rotation forest for new data NX  is as follows: (i) Build the transformed 

data = a
N N iY X R  run it through the L classifiers to get degree of support for the landslide and the 

non-landslide classes, ,i jd  with i = 1,…,L; j = 1, 2 for the landslide and the non-landslide classes, 

respectively. (ii) Landslide susceptibility index (LSI) is then estimated for each pixel of NX  using 
the average combination method as follows: 

1
1

1LSI
=

= ∑
L

i
i

d
L

 (3) 

4. Proposed Hybrid Modeling Approach Based on Instance Based Learning Algorithm and 
Rotation Forest Ensemble for Spatial Prediction of Rainfall-Induced Shallow Landslides 

This section presents the proposed hybrid modeling approach for spatial prediction of 
rainfall-induced shallow landslides. The hybrid model was established based on an instance based 
learning algorithm (k-NN) and Rotation Forest ensemble (RF). It is noted that data preparation and 
processing were carried out using ArcGIS@10.2 (ESRI Inc., Redlands, CA, USA, 2016), IDRISI Selva 
17.0 (Clark University, Worcester, MA, USA, 2012), and R programming [62]. The RF ensemble code 
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is available at Kuncheva [63], whereas the proposed hybrid model was programmed by the authors 
in Matlab environment. Overall concept of the proposed hybrid modeling approach is shown in 
Figure 3. 

 
Figure 3. Overall concept of the proposed hybrid modeling approach in this study. 

4.1. The GIS Database 

First, a GIS database for the study area was constructed. The database includes: (i) a landslide 
inventory map with 172 landslide locations; and (ii) 14 influencing factors (slope, slope length, 
aspect, curvature, elevation, valley depth, toposhade, topographic wetness index (TWI), stream 
power index (SPI), sediment transport index (STI), landuse, soil type, lithology, and distance to 
faults). These influencing factors were converted into a grid format with a resolution of 5 m.  

For building susceptibility models, 120 landslide locations (70%, 3973 landslide pixels) were 
randomly selected for training the models, while the remaining landslides (1664 landslide pixels) 
were used for the model validation. The same amount of non-landslide pixel cells were randomly 
generated in the landslide-free area of the study area, and then an extraction process was conducted 
to obtain values of the fourteen landslide influencing factors for the training and validation data [23]. 
Lastly, a coding process proposed by [11] was used to prepare the training data and validation data 
for the proposed hybrid model. 

4.2. Feature Selection 

The quality of models may be affected negatively with the use of some redundant input 
variables [3]. Therefore, predictive abilities of influencing factors should be assessed using feature 
selection. The results could be used for the determination of the best subset of influencing factors 
that not only have high predictive abilities to the output but are also uncorrelated with each other 
[3]. For this study, the Information Gain technique that has been successfully used recently for 
feature selection and predictive ability assessment was [64] used. 

The information Gain (IG) is estimated using Equation (4):  

j

1
IG ( )

S=

−∑
m

j

S
Info D= Info(D) ; 

( ) ( )2

2
i 1

i i, ,
log

=
∑Info(D)

n Y S n Y
=

S
S

S
 (4) 

where D is the landslide dataset that consists of n samples and m influencing factor; n (Yi, D) is the 
number of samples associated with the class Yi , landslide or non-landslide; and Sj is the class j of 
influencing factor S. 

4.3. The Hybrid Model: Configuration and Training 

With the k-NN selected as the based classifier, the configuration of the hybrid model includes 
determination of: (i) k value and the distance metric; and (ii) ensemble size (L) and the number of 
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feature subsets (K). Since no rule of thumb exists for finding the optimal value of k, we use a trial and 
error method as suggested by Pandya, et al. [65] for finding the best value of k. Accordingly, the best 
value of k for this study was determined using the ten folds cross-validation method [44] by varying 
values of k versus classification accuracy estimated on the training data and the validation data. For 
distance metrics, Euclidean, Chebyshev, and Minkowski distances are widely used [66], therefore a 
trial and error test was carried out on the three distance metrics to select the best one. 

Regarding the ensemble size, the size of 10 was used due to ability to obtain high prediction 
performance of classifier ensembles as suggested in Kuncheva and Rodríguez [67]. Thus, the 
training dataset were separated into 10 subsets, and each subset was used to build a k-NN classifier. 
Finally, a committee was established with 10 k-NN classifier members. The number of feature 
subsets (K) influences also to performance of the hybrid model. In this study, K is selected based on a 
trial and error method and K = 8 is the best for the data at hand. 

Finally, the model was trained and validated using the training dataset and the validation 
dataset using statistical criteria in Section 5.3. 

4.4. Performance Assessment and the Final Trained Hydrid Model 

Modeling of landslide susceptibility can be considered a two-class problem where the outputs 
are labeled as landslide (LS) and non-landslide (NLS) classes. Therefore, four possible outcomes, 
true positive (TP), false positive (FT), true negative (TN), and false negative (FN), are used to 
estimate performance evaluation metric such as sensitivity, specificity, positive and negative 
predictive values [3,44]. Accordingly, the performance of landslide susceptibility models was 
evaluated using classification accuracy, area under the Receiver Operating Characteristic (AUC), 
Kappa statistic, and several statistics evaluation measures [28,68–70]. 

Classification accuracy is considered a primary statistical metric that gives a proxy measure of 
overall performance of susceptibility models and is defined as the percentage of landslide and 
non-landslide pixels that are correctly classified. Goodness of fits and prediction capability of 
landslide models can be summarized with the use of AUC that is calculated from the area under the 
Receiver Operating Characteristic (ROC) curve. Interpretation of AUC values were defined as poor 
(<0.7), fair (0.7–0.8), good (0.8–0.9), and excellent (0.9–1.0) [71].  

For the case of Kappa statistic, since this metric is a percent reduction in estimation measure 
that takes the cost of error into account, Kappa statistic is a good statistical measure for the 
inspection of landslide models. Kappa statistic value of 0 means that the agreement between the 
landslide models and input data is the same as one found by chance, whereas Kappa statistic value 
larger than 0.9 indicates that it is more than 90% better than random. 

5. Results and Analysis 

5.1. Determination of the Best Distance Metric and k Value 

Figure 4 describes the change of the classification accuracies and AUC when the value of k is 
varied. The classification accuracy on the training data is generally decreased when the value of k is 
increased. The highest accuracy is 86.7% with k equal 1, decreased to 83.4% with k equal 21 and then 
the accuracy is generally stabilized. In contrast, the classification accuracy on the validation data is 
increased when we increase the k value. The accuracy increases from the lowest one (69.4%) with k 
equal 1 to the highest one (75.9%) with k is 21. The AUC of the validation data is also increased with 
the increasing of k, from the lowest value 0.698 with k equal 1 to 0.832 with k is 21, and at this point 
AUC is generally stabilized. Therefore, the nearest neighbor k equal 21 is selected for this analysis. 



Sustainability 2017, 9, 813 11 of 23 

 
Figure 4. Nearest neighbor (k) versus classification accuracy. 

Table 2 showed the test result on four distance metrics for this study. We see that the landslide 
model with Manhattan distance has the highest performance. The classification accuracy is 83.2% 
and 75.9% for the training dataset and the validation dataset, respectively; therefore, Manhattan 
distance is selected for this study. This finding agrees with Bours [72,73], who concluded that 
Manhattan distance yielded the best performance in various studies. 

Table 2. Classification accuracy of the k-NN model with different distance metrics. 

No Distance Metrics 
Classification Accuracy (%) 

Training Data Validation Data 
1 Euclidean 83.3 74.4 
2 Manhattan 83.4 75.9 
3 Chebyshev 79.6 73.4 
4 Minkowski 83.3 74.4 

5.2. Feature Selection and Predictive Ability of Landslide Influencing Factors 

To detect if the influencing factors are correlated, the Tolerance (TOL) and Variance Inflation 
Factors (VIF, VIF = 1/TOL) indices [74–76] that are widely used to measures of the degree 
of multicollinearity was used. If VIF exceeds 10 or TOL is less than 0.1 indicates multicollinearity 
[77]. The analysis result in this study shows that no multicollinearity existed between any of the 14 
influencing factors (Table 3). 

Table 3. Correlation assessment and Information Gain (IG) of influencing factors. 

No. Influencing Factor Tolerance VIF IG 
1 Aspect 0.88 1.14 0.20 
2 Slope  0.38 2.63 0.19 
3 Sediment transport index 0.16 6.15 0.11 
4 Stream power index 0.18 5.68 0.06 
5 Distance to faults 0.90 1.11 0.05 
6 Toposhade 0.68 1.46 0.05 
7 Topographic wetness index 0.59 1.69 0.05 
8 Curvature 0.68 1.47 0.05 
9 Lithology 0.88 1.14 0.04 
10 Landuse 0.91 1.10 0.03 
11 Slop length 0.46 2.19 0.03 
12 Soil type 0.94 1.07 0.03 
13 Valley depth 0.91 1.10 0.02 
14 Elevation 0.91 1.11 0.01 

The result of the feature selection analysis using the Information Gain techniques is shown in 
Table 3. We observe that the aspect (IG = 0.2) and the slope (IG = 0.19) have the highest predictive 
ability values. It is closely followed by Sediment transport index (IG = 0.11) and the stream power 
index (IG = 0.06). It is reasonable because the slope is considered as the most important factors in 
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landslide modeling [78–80]. The aspect reveals a high predictive ability because in this study 82.8% 
of the landslide pixels are occurred in south, southeast, and southwest facing slopes [46]. These 
slopes are the main facing directions of tropical rainstorms in the northeast of Vietnam [81,82].  

The distance to faults, the toposhade, the topographic wetness index, the curvature and the 
lithology have almost equal predictive ability. The lowest predictive ability is for the elevation factor 
where IC is of 0.01. Although IG value is varies among factors, none of them reveals null value; 
therefore all the factors were used for building the hybrid model.  

5.3. Model Training and Assessment 

The training result of the proposed hybrid model is shown in Table 4. We see that the hybrid 
model has a high degree of fit with the training data where the classification accuracy is 85.8% and 
AUC is of 0.948. The classification accuracy of the hybrid model is higher than 2.4% those obtained 
by the base classifier. The positive predictive value is 94.4% indicating that the probability the hybrid 
model classifies pixels correctly in the landslide class is 94.4%. The negative predictive value is 
77.3%, which means that the probability the hybrid model classifies pixels to the non-landslide class 
is 77.3%. The sensitivity is 80.6% indicating that 80.6% of the landslide pixels in this study are 
classified to the landslide class correctly. The specificity is 93.2% indicating 93.2% of non-landslide 
pixels are classified to the non-landslide class correctly. Kappa statistic is 0.716 demonstrating that it 
is 71.6% better than random, a substantial agreement between the models and the training data. 

Table 4. Model performance using the training data (PPV: Positive predictive value; NPV: Negative 
predictive value). 

No Parameter 
Proposed 

Hybrid Model 
Random 

Forest Model 
J48 Decision 
Trees Model 

Neural Nets Model 

1 True positive 3579 3637 3531 3528 
2 True negative 2931 3385 3296 2781 
3 False positive 214 156 262 265 
4 False negative 862 408 497 1012 
5 PPV (%) 94.4 95.9 93.1 93.0 
6 NPV (%) 77.3 89.2 86.9 73.3 
7 Sensitivity (%) 80.6 89.9 87.7 77.7 
8 Specificity (%) 93.2 95.6 92.6 91.3 
9 Accuracy (%) 85.8 92.6 90.0 83.2 
10 Kappa index 0.716 0.851 0.799 0.663 
11 AUC 0.948 0.981 0.942 0.905 

The prediction performances of the hybrid model are assessed using the validation data that 
were not used during the training phase. The detailed result is shown in Table 5. The result shows 
that the hybrid model performs well where the classification accuracy is 76.1% and AUC is of 0.848. 
The positive predictive value of 75.5% indicates that the probability the ensemble model classifies 
pixels correctly in the landslide class is 75.5%. The negative predictive value is 76.8%, indicating that 
the probability the hybrid model classifies pixels to the non-landslide class is 76.8%. The sensitivity 
of 76.5% indicates that 76.5% of the landslide pixels are classified correctly to the landslide class. The 
specificity is 76.1%, indicating 76.1% of non-landslide pixels are classified to the non-landslide class 
correctly. Kappa statistic is 0.523 indicating a moderate agreement between the models and the 
validation data. 

Table 5. Model validation using the validation data (PPV: Positive predictive value; NPV: Negative 
predictive value). 

No Parameter 
Proposed 

Hybrid Model 
Random 

Forest Model 
J48 Decision 
Trees Model 

Neural Nets Model 

1 True positive 1256 762 1017 1227 
2 True negative 1278 1528 1421 1176 
3 False positive 408 902 647 437 
4 False negative 386 135 242 488 
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5 PPV (%) 75.5 45.8 61.1 73.7 
6 NPV (%) 76.8 91.9 85.5 70.7 
7 Sensitivity (%) 76.5 85.0 80.78 71.6 
8 Specificity (%) 75.8 62.9 68.71 72.9 
9 Accuracy (%) 76.1 68.8 73.3 72.2 
10 Kappa index 0.523 0.376 0.466 0.444 

The performance and prediction power of the hybrid model is further verified using the 
success-rate and prediction-rate method [83] as suggested in [35]. The success-rate curve was 
obtained by comparing the landslide susceptibility indices with the landslide pixels in the training 
data (3793 landslide pixels). In the same way, the prediction-rate curve was constructed using the 
landslide pixels in the validation data (1164 landslide pixels). Then, the areas under the two curves 
(AUC) were estimated (Figure 5). It could be observed that the AUC of the success-rate is 0.944, 
indicating a high degree of fit of the ensemble model with the training pixels. The AUC of the 
prediction rate is 0.846, indicating that the prediction power of the model is high. 

 
Figure 5. Success rate and prediction rate curves, and their areas under the curve (AUC) for the 
landslide susceptibility map in this study. 

5.4. Cartographic Presentation of the Landslide Susceptibility Map 

Once the ensemble model was successfully constructed, it was used to calculate the landslide 
susceptibility index for each of all the pixels of the study area and then, the result is converted to a 
GIS format to open in the ArcGIS 10.1 software using an application developed in C++ 
programming. One of critical concerns in landslide susceptibility modeling is to interpret the classes 
of the resulting landslide susceptibility map. For this purpose, a graphical curve was constructed 
based on the cumulative percentage of landslide pixels versus landslide susceptibility map (Figure 
6). First, the landslide inventory map was overlaid with the landslide susceptibility map to extract a 
landslide pixel value table. Then the landslide pixel values were descending sorted corresponding to 
landslide susceptibility indices and cumulative percentages of landslide pixels and the susceptibility 
maps were estimated. 

According to Chung, et al. [84], the study area should be classified into five classes based on the 
susceptibility index values and five percent of pixels with the highest values can be classified into 
the “very high” susceptibility class. Therefore, the landslide susceptibility map in this study is 
classified as follows: (i) very low (40%); (ii) low (20%); (iii) moderate (20%); (iv) high (15%); and (iv) 
very high (5%). Finally, thresholds that are used to separate these five susceptibility degrees are 
determined. The landslide susceptibility map result is shown in Figure 7. 
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Landslide density analysis was carried out for these susceptibility classes by overlaying all the 
landslide pixels on the landslide susceptibility map, and then density values were calculated. 
Theoretically, these values should increase from the very low to the very high class [23]. The result is 
shown in Figure 8. We see that landslide density increases smoothly and gradually from the very 
low to the very high classes in this study area. 

 
Figure 6. Cumulative percentage of landslide pixels versus landslide susceptibility map. 
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Figure 7. Landslide susceptibility map using the proposed hybrid model for the study area. 

 
Figure 8. Landslide density plots of susceptibility classes for the study area (VH: Very high). 

5.5. Usability Assessment of the Proposed Hybrid Model  
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Since this study aims to propose a new approach for landslide susceptibility mapping, therefore 
the usability of the proposed hybrid model should be assessed. Accordingly, the performance of the 
hybrid model was compared with those produced by several state-of-the art methods such as 
Random Forest, J48 Decision Trees, and Multi-layer Perceptron Neural Networks (Neural Nets). 
Random Forest is selected because this is an innovative technique and has just recently used for 
landslide susceptibility but proven great performance [85,86]. To build the Random Forest model for 
this study, 500 trees were used, as suggested in Stevens, et al. [87]. For the case of J48 Decision Trees, 
this method has successfully applied in many fields with high accuracy, including landslide 
susceptibility [31,34]. To construct the J48 Decision Trees model in this study, 10 pixels per leaf and 
the confident factor of 0.15 were used. These are the best parameter values that were determined 
based on a test in Tien Bui, Pradhan, Revhaug and Trung Tran [34]. Neural Net is considered to be 
one of the best methods for modeling of complex problems such as landslides [3]. For building the 
Neural Nets model, the logistic sigmoid is used as the activation function. Training iteration, 
learning rate, momentum were used as 500, 0.3, and 0.2, respectively, as suggested in [88,89]. The 
best structure of the Neural Nets model with 14 input layers, one hidden layer (six neurons), and an 
output layer was determined using the method in Tien Bui, Tuan, Klempe, Pradhan and Revhaug 
[3]. 

The results of the training landslide susceptibility models Random Forest, J48 Decision Trees, 
and Neural Net are shown in Table 4. The results show that all the three models have high 
performances with the training data. The highest degree of fit is for the Random Forest model (AUC 
= 0.981 and Accuracy is 92.57%). The performances of the hybrid model and J48 Decision Trees 
models are almost the same. In contrast the Neural Net model performed worst. The prediction 
performances of the three models were assessed using the validation data and the results are shown 
in Table 5. It could be observed that the overall prediction performances of the three susceptibility 
models are lower than those obtained from the proposed hybrid model, in terms of accuracy, kappa 
index, and PPV. Although AUC of the Random forest model (0.857) in Figure 9 is almost equal that 
of the proposed model (0.848), the PPV of the landslide class is only 45.8% (Table 5) indicating that 
the AUC of the Random forest model is strongly influenced by the non-landslide pixels. Therefore, 
the prediction capability of landslides and AUC of the Random Forest model did not correspond 
strictly. This finding is in agreement with [35,90]. In addition, the Random forest model presents an 
overfitting problem (Tables 4 and 5). This is because the prediction is made based on the weighted 
average [91,92] of the training dataset, therefore it was difficult to extrapolate values in the 
validation dataset that were somewhat outside its known values [93]. 
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Figure 9. ROC curves and AUC analysis using the validation data for: (a) the proposed hybrid 
model; (b) the Random Forest model; (c) the J48 Decision Trees model; and (d) the Neural Net model. 

In order to confirm the prediction performances of the proposed hybrid model better than the 
three susceptibility models in this study, McNemar’s test at the 95% significant level is used. The 
null hypothesis is that there is no difference of the prediction performances between the classifier 
ensemble model and each of the three landslide susceptibility models. The Chi-square ( 2χ ) is then 
calculated (using Equation (5)) and then Chi-square comparisons with the critical table values at the 
significant level α = 5% are employed to assess the significance of differences between the 
susceptibility models. If the Chi-square value exceeds the critical table values of 3.841, the null 
hypothesis is rejected and the prediction power of the two susceptibility models is said to be 
significantly different [63]. 
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=
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where ijPI is the number of pixels misclassified by the susceptibility model i; and jiPI  is the 

number of pixels misclassified by the susceptibility model j. 
The result is shown in Table 6. We see that the lowest Chi-square (10.081) is for the proposed 

hybrid model vs. the Neural Net model that exceeds the critical table values of 3.841, whereas the 
p-value (0.0015) is less than 0.05. The other Chi-square values are far larger than the critical table 
values and the p-values are also far smaller than 0.05, therefore we conclude that the prediction 
performance of the proposed hybrid model is significantly higher than the other landslide models 
in this study. 

Table 6. Statistical comparison of the prediction power of the landslide susceptibility models in this 
study using McNemar’s test. 

No Pairwise Comparison Chi-Square ( 2χ ) p-value Significance 

1 The hybrid model vs. Random Forest 687.077 <0.0001 Yes 
2 The hybrid model vs. J48 Decision Trees 181.845 <0.0001 Yes 
3 The hybrid model vs. Neural Net 10.081 0.0015 Yes 

6. Discussion and Conclusion 

The most effective way to prevent casualties and economic losses due to landslides is to avoid 
constructions in the vicinity of steep terrains [94]. However, it is not possible in many areas due to 
limitation of land and the rapid growth of human population [95], therefore high quality of landslide 
susceptibility and hazards maps is an important tool for reducing landslide risk through landuse 
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planning and management. However, the prediction performances of landslide susceptibility 
models is still one of the most debated subjects in recent decades [96]. Literature review shows that a 
perfect landslide model that makes no error is almost impossible; therefore, a highly accurate model 
for particular area requires assessment studies to find an algorithm with the highest overall 
performances. For this purpose, classifier ensemble approaches have been considered to be 
important strategies to enhance model performances [63]. Only several of the increment of 
percentage of the prediction accuracy could influence the resulting landslide susceptibility [3,97]. 
We address this issue in this study by proposing a novel hybrid machine learning approach for 
mapping of rainfall-induced shallow landslides using GIS. 

The proposed model is a combination of an instance base learning algorithm (k-NN) and the 
Rotation Forest ensemble that has seldom been used for modeling of landslide. The k-NN is one of 
the most well-known nonparametric algorithm and belong to the top 10 algorithms in data mining 
[60]. Although the k-NN algorithm is considered to be a lazy learner due to its simplicity, the 
algorithm has been demonstrated to be one of the most useful and effective algorithms in data 
mining applications [98]. The result of this study shows that the base k-NN model has a high 
performance (classification is 83.4%). For the case of the Rotation Forest, this is current state-of-the 
art ensemble that outperforms other frameworks i.e., Bagging, AdaBoost, and Random Forest [99]. 
The performance of the based classifier (k-NN, classification is 83.4%, Figure 4) was increased 2.4% 
with the used of the Rotation Forest ensemble (classification is 85.8%, Table 4). The result in this 
study confirmed that the proposed model performs well in both the training and validation data in 
terms of classification accuracy, AUC, and other statistical evaluation metrics (Table 3). This result 
agrees with Althuwaynee, et al. [100] and Tien Bui et al. [31,34] who conclude that the ensemble 
frameworks increase accuracy of based classifiers significantly.  

The overall performance of the proposed model was further compared with those produced by 
J48 Decision Trees, and Neural Net. They are state-of-the art methods that are widely used in data 
mining [63]. Although the models in this study fit the training data well, their prediction capabilities 
are clearly lower than the proposed model (Tables 3–5). To confirm the difference of the prediction 
performances of the classifier ensemble model and the other susceptibility assessment models, 
McNamar’s test should further used. The test result shows that, statistically, the prediction 
performance of the proposed model is significantly higher (Table 6).  

The determination of landslide influencing factors is a crucial point and has been discussed 
[101] and 14 factors have been selected for this analysis based on analysis of the landslide types as 
well as the failure mechanisms, however, the influence of specific factor on the classification 
performance should be quantified with the use of feature selection procedures [3]. Redundant 
factors where predictive ability values are null or negative should be removed from the original 
dataset. This will help to improve overall performances of resulting models [3,64]. In this study, the 
predictive abilities of the fourteen influencing factors are quantified with the use of the Information 
Gain technique. The result shows that aspect and slope have the highest predictive ability value 
whereas the lowest value is for elevation (Table 2). The result is reasonable because most of the 
landslides in this study occurred in south, southeast, and southwest facing slopes [46] and they are 
the main facing directions of tropical rainstorms in the northeast of Vietnam [81]. For slope, this 
factor is considered to be the most important factor that influences occurrences of landslides in many 
areas (i.e., [79]). For the case of elevation factor, the elevation in this study area varies from 194.5 m 
to 800 m and the distribution of landslide pixels are quite even with regard to altitude. 

Overall, the results of this study have demonstrated the effectiveness of a classifier ensemble 
strategy with the use of the k-NN algorithm and the Rotation Forest framework for the assessment of 
landslide susceptibility. The classifier ensemble model outperforms the three susceptibility models 
in this study; therefore, the proposed model is promising, and could considered as an alternative for 
the susceptibility mapping of rainfall-induced shallow landslides. Finally, the results in this study 
may useful for land use planning and management in landslide prone areas. 
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