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Abstract: Temperature and its variants, such as polynomials and lags, have been the most
frequently-used weather variables in load forecasting models. Some of the well-known secondary
driving factors of electricity demand include wind speed and cloud cover. Due to the increasing
penetration of distributed energy resources, the net load is more and more affected by these
non-temperature weather factors. This paper fills a gap and need in the load forecasting literature
by presenting a formal study on the role of wind variables in load forecasting models. We propose
a systematic approach to include wind variables in a regression analysis framework. In addition
to the Wind Chill Index (WCI), which is a predefined function of wind speed and temperature,
we also investigate other combinations of wind speed and temperature variables. The case study is
conducted for the eight load zones and the total load of ISO New England. The proposed models
with the recommended wind speed variables outperform Tao’s Vanilla Benchmark model and three
recency effect models on four forecast horizons, namely, day-ahead, week-ahead, month-ahead,
and year-ahead. They also outperform two WCI-based models for most cases.

Keywords: load forecasting; wind chill index; wind speed

1. Introduction

During the past decades, researchers have tried many statistical and artificial intelligence
techniques to improve load forecasting accuracy [1–4]. Various load forecasting competitions have also
helped recognize some effective techniques and methodologies [5–10]. Recently, the load forecasting
community has expanded the investigation into some new problems, such as hierarchical load
forecasting [7], retail load forecasting [11], and probabilistic load forecasting [2,8,10,12]. No matter
which branch of the load forecasting problem, weather variables are included in most models.

Among the various weather variables, the temperature variable is the most entrenched one in the
load forecasting literature. In the summer, load increases as temperature increases due to cooling needs.
In the winter, load increases as temperature decreases to meet the heating needs. Commonly-used
temperature variables are the various forms of dry bulb temperature, such as the piecewise form [13],
polynomial [9–12], and high-order regression splines [14]. The computing power today also allows the
inclusion of many lagged and moving average temperature variables, as recently proposed in [15].

Several other adjusted temperature variables, such as wet bulb temperature, dew point
temperature, and Temperature-Humidity Index (THI), are also of great interest to the load forecasting
community. These variables have the temperature adjusted with humidity information. A formal study
on humidity variables for load forecasting models was recently reported in [16], showing that splitting
relative humidity and temperature results in more accurate load forecasts than using the predefined
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THI formula. That sets an example for systematically investigating those secondary weather variables
for load forecasting.

Following a similar analytical framework as in [16], this paper fills a gap and need in the load
forecasting literature by presenting a formal study on the role of wind variables in load forecasting
models. The motivation mainly comes from the fact that the net load is more and more affected by
the increased penetration of wind power resources. It gradually becomes a necessity to understand
the effect of wind variables in electricity demand to accurately forecast the load. Although wind
speed information has been used for load forecasting models [17,18], it is usually embedded in the
Wind Chill Index (WCI) or wind speed adjusted temperature [4,17–20]. Overall, the load forecasting
literature on wind speed variables is far less common and thorough than the ones on temperature and
relative humidity. The research question we try to answer in this paper is “will splitting wind speed
and temperature result in more accurate load forecasts than using the predefined and well-established WCI
formula?” If the answer is yes, the follow-up question is “what wind speed variables shall we include in
a load forecasting model?”

The rest of this paper is organized as follows: Section 2 introduces the background of this
study, including the base models, WCI, and the forecast evaluation techniques; Section 3 presents the
exploratory analysis on the case study data; Section 4 discusses the proposed models and the models
for comparison; Section 5 presents the results and discussions. The paper is then concluded in Section 6
with a brief discussion of future research.

2. Background

2.1. Multiple Linear Regression Models for Load Forecasting

Multiple linear regression (MLR) is a widely-deployed load forecasting technique in the field
due to its transparency, interpretability, and simplicity. In this paper, we will use MLR models for the
analysis due to the same reasons. Tao’s Vanilla Benchmark model is a frequently-cited regression model
for load forecasting. It was used in GEFCom2012 as the benchmark model [7], and then reproduced by
other scholars [21,22]. The model is specified as in Equation (1):

yt = β0 + β1Trendt + β2Mt + β3Wt + β4Ht + β5WtHt + f (Tt) (1)

where yt is the expected load; Trendt is a chronological trend at time t; Mt, Wt and Ht are class variables
for month, day of a week, and hour of a day at time t; and Tt is the coincidence temperature. Let f (Tt)

be defined as in Equation (2):

f (Tt) = α1Tt + α2T2
t + α3T3

t + α4Tt Mt + α5T2
t Mt + α6T3

t Mt + α7TtHt + α8T2
t Ht + α9T3

t Ht (2)

Furthermore, considering the impact of lagged temperature on load, we can add the various
forms of lagged temperature variables to the benchmark model as in Equation (3):

yt = β0 + β1Trend + β2Mt + β3Wt + β4Ht + β5WtHt + ∑
h

f (Tt−h) + ∑
d

f (T̃t,d) (3)

where Tt−h is the temperature of previous hth hours (h = 0, 1, 2, . . . ); T̃t,d = 1
24 ∑24d

h=24d−23 Tt−h is
the 24-h moving average temperature of the previous dth day (d = 0, 1, 2, . . . ). These models are
also known as recency effect models [15]. In this paper, we consider the benchmark model and three
variations of the recency effect models to show the effectiveness of including the wind variables in load
forecasting models with different levels of sophistication. Specifically, h ranges from 0 to 2; d is up to 1.

2.2. Wind Chill Index

WCI is defined by the National Oceanic and Atmospheric Administration (NOAA) National
Weather Service (NWS) to measure how cold people feel in cold and windy weather. It is a predefined
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function of temperature and wind speed variables describing how the body feels on exposed skin due
to the flow of air. The parameters are estimated based on the tests conducted with human subjects [23].
WCI is only defined when the temperature is lower than 50 ◦F with the wind speed greater than 3 mph.
As shown in Equation (4), for cold and windy weather, we follow the WCI defined by NWS. Otherwise,
we set it to be equal to the temperature.

WCIt =

{
35.74 + 0.6125× Tt − 35.75×WS0.16

t + 0.4275× Tt ×WS0.16
t , i f Tt < 50 ◦F and WSt > 3 mph

Tt, else
(4)

2.3. Cross-Validation

Cross-validation is a commonly used forecast evaluation technique to avoid potential overfitting
issues of a forecasting model [24]. In this paper, we adopt the V-fold cross-validation (VFCV) technique
for variable selection, where V is the number of the validation periods. Specifically, the data is first
dissected into V pieces with approximately equal size. Every time, we use one of them for validation
and the other (V – 1) pieces for model training. This process is repeated V times, one for each validation
period. The performance of the model is evaluated based on the average performance of the model on
the V validation periods. In Section 4, we will use the three-fold cross-validation to select the wind
variables for load forecasting models.

2.4. Out-of-Sample Test

In this paper, we use a sliding simulation with a fixed-length of history to test the forecast accuracy
of the models [25]. Sliding simulation keeps rolling the forecast origin forward by the size of the
predefined forecast horizon and uses the predefined-length of history prior to the forecast origin
for parameter estimation. For example, when we forecast the load one day ahead, we estimate the
parameters of the model using a predefined length of the history (e.g., three years) prior to the forecast
origin to forecast the next day. This process is repeated by moving the forecast origin one day at a time
until we provide the day-ahead forecast for every day of the test year. Alternatively, when the forecast
horizon is one month, we repeat the process by moving the forecast origin one-month ahead at a time
until we provide the month-ahead forecast for every month of the test year. In Section 5, we will
present the performance of the models for day-ahead (e.g., 24-h-ahead, to be specific), week-ahead,
month-ahead, and year-ahead forecasting. We test the performance of the models for different forecast
horizons to show that the proposed model is not restricted to short- or long-term load forecasting.

3. Data

3.1. Data Description

ISO New England (ISONE) is an independent regional transmission organization, serving
the six states in the Northeastern United States, including Connecticut (CT), most of Maine (ME),
Massachusetts (MA), New Hampshire (NH), Rhode Island (RI), and Vermont (VT). The state of
Massachusetts is further dissected into three load zones, namely NEMASS, SEMASS, and WCMASS.
Each of the other five states forms its own load zone. ISONE publishes the zonal level hourly load
on its website [26]. In this paper, the weather variables, including temperature and wind speed,
were provided by a weather service vendor AccuWeather, Inc, State College, PA, USA.

In this paper, we use the system total data of ISONE for demonstration purposes. We present the
results of the eight load zones and the system total in Section 5. For each zone, we use the weather data
from the closest major airport. For ISONE, we use the average of the weather data from all eight zones.
The data being used in this study ranges from 2012 to 2015. The first three years (2012–2014) are used
for variable selection based on the three-fold cross-validation, while 2015 is used for out-of-sample
tests. Table 1 presents the summary statistics of the load and weather data for these four years. There
is no pre-processing of data other than the adjustment of the load data for daylight savings time (DST).
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At the beginning of the DST, we take the average of the adjacent two readings as the load. At the end
of the DST, we divide the load by two.

Table 1. Summary statistics of ISONE load zones and system total (2012–2015).

Zone Weather
Station

Load (MW) Temperature (◦F) WCI (◦F) Wind Speed (MPH)

Mean STD. Mean STD. Mean STD. Mean STD.

CT KBDL 3516.14 766.52 51.61 19.44 49.17 22.31 7.32 5.20
ME KPWM 1320.56 202.01 47.80 18.57 44.86 21.81 7.40 5.21

NEMASS KBOS 2914.24 571.68 52.08 17.95 48.79 21.86 10.47 2.33
NH KCON 1331.56 265.15 47.45 20.35 45.21 22.86 5.45 5.24
RI KPVD 934.15 202.94 52.17 18.20 49.62 21.30 8.41 5.23
VT KBTV 653.32 106.66 47.95 21.28 44.91 24.62 7.55 5.55

SEMASS KPVD 1711.79 387.60 52.17 18.20 49.62 21.30 8.41 5.23
WCMASS KORH 1980.58 379.29 48.69 18.99 44.81 23.30 9.92 5.06
ISONE N/A 14,362.35 2825.33 50.05 18.85 46.96 22.39 8.18 4.11

3.2. Exploratory Data Analysis

Figure 1 shows the time series plots of hourly load, temperature, WCI, and wind speed at the
system level from 2012 to 2015. Temperature and WCI share a similar seasonal pattern: high in the
summer and low in the winter. When WCI is defined (usually in winter months), it is always lower
than the temperature and has a wider range. Wind speed varies from 0 to 30 mph during winter
months, while the range is much narrower during summer months.

Figure 2 shows the scatterplot between load and temperature, while Figure 3 shows the scatterplot
between load and WCI, both in 2014. In this paper, we use the data from the year 2014 for demonstration
purposes to avoid verbose presentation, noting that data from other years present similar patterns.
When the temperature is higher than 50 ◦F, WCI is equal to the temperature. In other words, the right
arms of the two scatterplots in Figures 2 and 3 are identical. Other than the right arms, the load-WCI
scatter is sparser than the load-temperature scatter.

Figure 4 shows the scatterplots between load and wind speed by month during 2014.
The correlation between the two variables in June to August is stronger than that in the other months.
During these three summer months, load tends to increase when wind speed increases. In the other
nine months, the relationship between the two is weak. This appears to be opposite to our common
sense that under the same temperature in the summer, the wind makes us feel cooler. For a further
investigation, we draw the scatterplots between temperature and wind speed in Figure 5, which
suggests a positive correlation between these two variables for most of the months during a year,
with the correlation in the summer months being strongest of all. In other words, the counterintuitive
observation mentioned above is due to the fact that the load-temperature relationship is much stronger
than the load-wind relationship.

To sum up, the four time series plots in Figure 1 depict the seasonal features of load, temperature,
WCI, and wind speed. Scatterplots in Figures 2 and 3 show the similar impact of temperature and WCI
have on load. Scatterplots of load and wind speed by month in Figure 4 suggest that there is a strong
correlation between load and wind speed during the summer months June to August, though some
of the correlation is due to the load-temperature relationship and the positive correlation between
temperature and wind speed as shown in Figure 5. For the rest of the paper, these three months are
defined as summer months. The relationship between wind speed and load for these summer months
will be further investigated.
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Figure 1. Time series plot of the hourly load, temperature, wind chill index, and wind speed (2012–
2015). 
Figure 1. Time series plot of the hourly load, temperature, wind chill index, and wind speed (2012–2015).
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Figure 2. Scatterplot of the hourly load and temperature (year = 2014).  

 

Figure 3. Scatterplot of the hourly load and wind chill index (year = 2014).  
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4. Models

4.1. Wind Speed-Related Variables

Due to the strong relationship between load and wind speed during the summer months (i.e.,
June to August), we introduce the dummy variable S as in (5):

S =

{
1, June, July, or August
0, else

(5)

This dummy variable S is equal to 1 if the month is June, July, or August, and 0 otherwise. We use
WSSt to denote the coincidence wind speed in summer.

For each of the four base models defined in Section 2, we introduce the wind speed variables in the
following sequence: (1) WSS0.16

t ; (2) Tt ×WSS0.16
t ; and (3) Ht ×WSS0.16

t . Note that we keep the power
of 0.16 for wind speed to be consistent with the NWS definition. We then calculate the mean absolute
percentage error (MAPE) values as defined in Equation (6) in the three-fold cross-validation setting:

MAPE = ∑n
i=1 |

Actuali − Predicti
Actuali

| (6)

where n is the total number of observations.
The simple average MAPE of the three validation years for all base models and the models with

additional wind speed variables are listed in Table 2. The None column corresponds to the MAPEs
of the models without the wind speed variables. The other three columns present the MAPEs of the
models with different sets of wind speed variables. The cooler the background color of the cell is,
the better the forecasts are. We can observe that for all four base models, the best results are obtained
by using all three recommended effects.

Table 2. MAPE (%) of base models with additional wind speed terms.

Base Model (h,d) None WSS0.16
t

WSS0.16
t

Tt ×WSS0.16
t

WSS0.16
t

Tt ×WSS0.16
t

Ht ×WSS0.16
t

B1(h = 0, d = 0) 3.669 3.666 3.671 3.639
B2(h = 0, d = 1) 3.066 3.061 3.055 3.028
B3(h = 1, d = 1) 2.977 2.971 2.962 2.941
B4(h = 2, d = 1) 2.959 2.953 2.941 2.924

Let G(Tt) represents a base model depending upon temperature variables; we define the proposed
model family as in Equation (7):

yt = G(Tt) + g(WSt) (7)

where:
g(WSt) = γ1WSS0.16

t + γ2Tt ×WSS0.16
t + γ3Ht ×WSS0.16

t (8)

Comparing with the NWS’s formula for WCI (Equation (4)), the proposed Equation (8) extends the
WCI (Equation (4)) by adding interactions between wind speed and dummy variable S, and between
wind speed and hour. Furthermore, the proposed model allows the parameters to be estimated based
on the dataset, while the parameters in Equation (4) are predefined.

4.2. Two WCI-Based Models

Since WCI can be seen as an adjustment to the temperature, we can obtain the first WCI-based
model as in Equation (9) by replacing temperature with WCI in Equation (3):

yt = G(WCIt) (9)
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Another way to include WCI variables is to treat them as the wind speed and replace the wind
speed with WCI in Equation (7), which gives us the second WCI-based model (Equation (10)). However,
when WCI is less than zero, the WCI terms being used in g(WCIt) become undefined. In such cases,
we leave the WCI as-is without taking the root of 0.16:

yt = G(Tt) + g(WCIt) (10)

5. Results and Discussion

5.1. Out-of-Sample Test

The out-of-sample test is conducted using the data from the year 2015 for all the eight zones and
the system. Four forecasting horizons are tested for forecast evaluation: one-day (i.e., 24-h), one-week,
one-month, and one-year. For one-week-ahead forecasting, the first seven days of the test year are
considered as the first week, the second seven days are considered as the second week, and so on.

The tested model groups are listed in Table 3. They are the base models (TM1), the base models
plus the proposed wind speed terms (TM2), the base models with WCI replacing the temperature
variables (TM3), and the base models plus the WCI terms (TM4).

Table 3. List of tested model groups.

Tested Model Groups Model Equation

TM1 G(Tt)
TM2 G(Tt) + g(WSt)
TM3 G(WCIt)
TM4 G(Tt) + g(WCIt)

Figures 6–9 show the corresponding out-of-sample performance for one-day-ahead,
one-week-ahead, one-month-ahead, and one-year-ahead forecasts for all zones across four base models,
respectively. Across all of the base models and zones, the proposed TM2 models outperform the TM1

models with the relative improvement on MAPE(s) ranging from 0.08% to 1.99%. That confirms the
effectiveness of the proposed wind speed variables. On the other hand, TM3 models are not as accurate
as the TM1 models. In other words, simply replacing temperature with the predefined WCI does not
improve the forecast accuracy. Although the TM4 models also outperform the TM1 models, the TM2

models have the lowest MAPE in most cases. The percentage values listed beside the base model label
indicates the percentage of the number of zones where TM2 returns better results than TM4. In sum,
adding the proposed wind speed related variables brings more improvement to the base models on
average than using the predefined WCI.
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5.2. Ex Ante Forecasting

In this paper, all of the tests have been conducted in the ex post forecasting settings, where the actual
weather information is provided through the forecast horizon. In practice, actual weather information
is unknown, so the predicted values have to be used to forecast the load. While temperature forecasts
nowadays for the short-run are quite accurate, other weather variables, such as wind speed and relative
humidity, are not as predictable. Although our empirical case study shows that using the proposed wind
speed terms for short-term load forecasting could improve the forecast accuracy, it may or may not help
with the ex ante forecast accuracy depending on how accurate the wind speed forecast is. Considering
the trade-off between the improvement brought in by using the wind speed variables and the error
introduced by the wind speed forecasts, additional empirical studies would be beneficial to tell whether
using wind speed variables could benefit the ex ante forecast.
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Beyond a few weeks ahead, all weather variables are unpredictable. In recent practices, simulated
temperature scenarios have been fed into point load forecasting models to generate probabilistic
load forecasts [10,12]. Adding wind speed variables should improve the efficacy of the probabilistic
forecast by expanding the range of the scenarios considered. Furthermore, Xie and Hong [27] also
demonstrated the effectiveness of relying on point forecast accuracy to select the underlying model for
temperature scenario-based probabilistic load forecasts. While this paper offers empirical evidence
that the inclusion of the proposed wind variable terms helps reduce point forecast error, additional
empirical case studies can be conducted to test the effectiveness of adding wind speed scenarios for
probabilistic load forecasting.

5.3. Future Research Directions

In this paper, we formally and systematically study the wind speed variables for load forecasting
using models with different comprehensive levels. One future research topic on wind speed variables
can follow the similar direction as what was done for the temperature variables in [15] to include
lagged and moving-average wind speed variables into the model. Once these wind speed variables
are thoroughly studied, the investigation can be extended to net load forecasting with significant
wind penetration.

The climate of a relatively small area may differ from that of the surrounding areas, especially
when we are looking at weather variables, such as wind speed and cloud cover. Incorporating
additional weather variables could potentially help better forecasting the load of a small area.
This will require precisely selecting weather stations for the small area. The weather station selection
methodology proposed in [28] can be extended with the inclusion of other weather variables.
The research conducted in this paper also lays the groundwork for hierarchical load forecasting.

6. Conclusions

In this paper, we investigated the effect of wind on electricity demand using the data from
ISONE. Three wind speed-related terms were proposed by looking at the cross-validation MAPE.
The out-of-sample tests showed that the proposed wind speed-related variables help improve the
temperature-only models and performs better than the WCI defined by NWS in most cases. Researchers
can follow the same evaluation process to introduce wind speed variables to load forecasting models
for other regions or datasets. The findings in this study also lay the groundwork for several future
studies, such as net load forecasting, weather station selection, ex ante short-term load forecasting,
probabilistic load forecasting, and hierarchical load forecasting.
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