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Abstract: This paper presents new valuable field data and a comprehensive approach to the
determination of the rock mass classification and tunnel support systems for tunnels in unconsolidated
sedimentary rocks as a special soil condition. The main objective of this study is to investigate and
present the characteristics of the unconsolidated sedimentary rock by using the point load tests and
slake durability tests. In addition, the appropriate rock mass classification and tunnel support system
for the unconsolidated sedimentary rock tunnel are proposed, based on the results of experimental
tests. The proposed rock mass classification and tunnel support system are validated through
comparison against results from measuring the convergence of a tunnel under the construction.
The proposed tunnel support system is appropriate for the unconsolidated sedimentary rocks,
since the convergence factors, such as the maximum displacement and velocity of displacement,
satisfy the criteria.

Keywords: rock mass classifications; unconsolidated sedimentary rock; point load test; slake
durability test; tunnel support system

1. Introduction

Recently, a number of countries have seriously lacked land space because of the increase
of population density and industrialization; thus, a number of constructions such as the tunnel,
high-speed railway, housing complex, airport, and harbor are progressing in special soil areas.
Especially, to expand the traffic network, the various routes of roads have been constructed recently.
There was a desire to avoid construction of the tunnel in poor soil conditions, however, the tunnel has
been recently constructed in special soil conditions, such as in unconsolidated sedimentary rock.

For the safe and economical design of tunnels, it is necessary to consider the engineering
characteristics such as the strength and joint of rock mass, and the excavation and support system
for tunnels should be designed based on those. For the section of general rock mass, there are a lot
of standardized rock mass classifications and case histories. However, there are no criteria in the
rock mass classification for an unconsolidated sedimentary rock in South Korea. There are cases for
unconsolidated sedimentary rocks in other countries. Table 1 illustrates the cases for unconsolidated
sedimentary rocks in other countries. However, it is difficult for these criteria to apply to the
classification method, due to local differences; also, real design cases are not opened, making it
hard to obtain the information of rock mass classifications in other countries. Therefore, this study is
focused on investigating characteristics of the unconsolidated sedimentary rocks in South Korea and
proposing the design method of a tunnel located in unconsolidated sedimentary rocks.
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Table 1. Rock mass classification of unconsolidated sedimentary rock in other counties.

Cases Geotechnical Characteristics Methodology for Rock
Mass Classification Remark

A tunnel in Chile Volcanic rock including matrix
and weak joints Large triaxial teting -

Railway in Taiwan
Unconsolidated sandstone,
mudstone, and conglomerate in
the Tertiary Period

Surface mapping according
to Eurocode -

Akashi-Kaikyo
Bridge in Japan

Unconsolidated sandstone and
mudstone in the Tertiary Period

Characteristics of strength
and profile -

Seikan tunnel
in Japan

Volanic rock and conglomerate
in the Tertiary Period
(weak joints)

Characteristics of strength
and soil strength ratio

Validate the tunnel
support system using
numerical analyses

B tunnel in Japan
Unconsolidated sandstone
and conglomerate in
Quaternary Period

Characteristics of strength,
profile and results of elastic
wave exploration

Validate the tunnel
support system using
numerical analyses

The large displacement and decrease of rock strength in the matrix occur as the unconsolidated
sedimentary rock is composed of breccia and matrix. The unconsolidated sedimentary rock has
different characteristics in comparison with the general rock mass, thus an appropriate tunnel support
system for the unconsolidated sedimentary rock should be required.

There can hardly be any application to tunnel sites in unconsolidated sedimentary rock,
because there are no criteria for rock mass classification for unconsolidated sedimentary rock in
South Korea. Jeong et al. [1] reported that the application and rock mass classifications for the tunnel in
unconsolidated conglomerate deposits were studied. They classified the types of rock mass into four
categories according to the soil condition, strength, and hydraulic characteristics. However, when the
practical construction of a tunnel had been going through, the tunnel construction in unconsolidated
conglomerate deposits was not actually applied, due to the design change.

Kim and Lee [2] reported that the unconsolidated sedimentary rock formed in the Tertiary Period
are mainly distributed along the eastern coast of South Korea. They stated that there are differences
between the behavior of weathered rock and that of unconsolidated sedimentary rock; it is therefore
necessary to apply the proper rock mass classification by considering the behavior of unconsolidated
sedimentary rocks for the tunnel design.

In this study, we studied the tunnel site in the unconsolidated sedimentary rock which was
constructed firstly in South Korea. The overall objective of this study is to investigate and present
the characteristics of the unconsolidated sedimentary rock by using the point load tests and slake
durability tests. In addition, the appropriate rock mass classification and tunnel support system for
the unconsolidated sedimentary rock tunnel are proposed based on the results of experimental tests.
The proposed rock mass classification and tunnel support system are validated through comparison
against results from measuring the convergence of a tunnel under the construction.

2. Characteristics of Unconsolidated Sedimentary Rock

The Bukpyeong area, containing the first tunnel of the case study, is located in Tertiary
conglomerate deposits which are composed of unconsolidated or semi-consolidated sediments and
strong rocks. Especially, this area can be representatively divided into two sections such as the section
of limestone and the section of unconsolidated sedimentary rock. The unconsolidated sedimentary
rock composed of the breccia and matrix is as shown in Figure 1. The breccia is composed of fragments
averaging greater than 2 mm in size. The behavior of matrix depends on the compositions, strength,
and deformation characteristics, and the repeating drying and wetting of rock mass leads to the slaking
effect, expansion, and deterioration effects. In addition, these deposits have geotechnical disadvantages,
such as the nonhomogeneous deposits due to the matrix. Therefore, when the understanding of the
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geotechnical characteristics is not enough, it leads to the increase of risk under the construction. Hence,
it is necessary to classify the types of rock mass into the typical rock mass and especial rock mass.
However, there is no case history of a tunnel in unconsolidated sedimentary rocks in South Korea,
because of the absence of proper criteria for unconsolidated sedimentary rocks.
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For the Cenozoic strata in South Korea, the terrace deposits or basin deposits are distributed
along the eastern coast, and the lava rock such as basalt is distributed in Jeju Island or Jeongok-eup.
The Tertiary system is mainly distributed in the Yangnam basin and Pohang basin, including the dacite
lava, dacite tuff, tuffaceous mudstone, tuffaceous sandstone, and conglomerate, etc.

Especially, there are various case histories for tunnels in unconsolidated sedimentary rocks in
Japan, because the Tertiary and Quaternary deposits are widely distributed. The elastic wave velocity
of soil (Vp) and the ratio of soil strength are important factors in the rock mass classification of
Japanese railway. The soil grades in this criterion are divided into I~V grades, and the unconsolidated
sedimentary rocks belong to the IL or ‘Special L’ grades [3]. The criterion proposed by the Japanese
Road Association [3] could be available for the classification of the grades for rock. However, it is
difficult for this criteria to apply to the classification method, due to the local differences between
Japan and South Korea. Also, these local differences may lead to an uneconomic design. Therefore,
it is necessary to establish the proper rock mass classification by considering the rock characteristics in
South Korea.

The empirical approach to design the tunnel support system is typically used for tunnel design
in South Korea. It means that case histories in similar rock conditions or the tunnel support system
proposed by RMR and Q-system must be referred to, in order to decide the tunnel support system. Also,
the safety of chosen tunnel support systems must be validated using numerical analyses [4]. For typical
sections in this tunnel site, the tunnel support systems were empirically designed to consider rock mass
types and effects of rock blasting. However, for the unconsolidated sedimentary rock, the displacement
and heave of tunnel may occur, because the strength is low and the overburden loading caused by
the high heights of a cover is large. The decrease of the unconsolidated matrix caused by the seepage
water may also lead to the instability of the tunnel face. In Japan, the unconsolidated sedimentary rock
belongs to the sedimentary soft rock, and if the tunnel support systems are not enough, those belong
to the ‘Special L’ grade. In case of ‘Special L’, the additional support should be considered [3]. In other
words, the unconsolidated sedimentary rocks should be designed according to the tunnel support
system of IL or ‘Special L’ grades representatively.

Because it is hard to determine the unconsolidated sedimentary rocks according to the formation
of rock mass and geotechnical characteristics, the tunnel support system should be simplified for the
constructability, as in the case of Japan.
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3. Classification Methodologies for Characterization of Unconsolidated Sedimentary Rock

3.1. Rock Quality Designation (RQD) and Total Core Recovery (TCR)

Deere et al. [5] proposed the Rock Quality Designation (RQD) index as the quantitative evaluating
methods for the rock mass, developing the Total Core Recovery (TCR) methods. The definition of RQD
is the sum of lengths of core pieces that are 10 cm or more. The RQD and TCR are defined as follows:

Rock Quality Designation (RQD) =
(

∑ Lc≥10cm

Lt

)
× 100% (1)

where ∑Lc≥10cm is the sum of length of core pieces that are 10 cm or more, Lt is the total core length.

Total Core Recovery (TCR) =
(

∑ Lc

Lt

)
× 100% (2)

where ∑Lc is the sum of length of core pieces, Lt is the total core length.
As RQD index increases, the rock has improved quality. On the other hand, RQD = 0 represents

severe weathered rocks. The advantage of the RQD index is easily applied to the design of tunnel
support systems using that. Table 2 shows the relationship between the RQD index and Terzaghi’s
rock load factor [6].

Table 2. Relationship between the RQD index and Terzaghi’s rock load factor [6].

RQD (%) Rock Quality Terzaghi’s Rock Load Factor

0~25 Very poor 1~3
25~50 Poor 3~4
50~75 Fair 5
75~90 Good 5~6

90~100 Excellent 6~7

3.2. Point Load Test

To measure the strength of rock mass using uniaxial compressive tests, accurate specimens are
needed and the specimens should have above a certain level of strength. Therefore, it is hard to use the
uniaxial compressive tests in order to measure the strength of the unconsolidated sedimentary rocks
having low strength.

The point load tests were developed to measure the strength of the rock without manufacturing
specimens. The testing device for the point load test is composed of a pressure device, load measuring
device, and distance measuring device. Figure 2 illustrates the schematic testing devices for point load
tests. The failure load (P) can be obtained by point loading using the pointed devices as shown in
Figure 3. In this study, the testing cores were near 50 mm in diameter, similar to NX core size. The point
load tests can determine the corrected point load strength index (Is(50)). The point load strength index
(Is(50)) is determined as follows:

Is(50) =
P

De
2 (3)

where Is(50) is the point load strength index, P is the failure load (=pressure × piston area), De is the
equivalent core diameter.
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Bieniawsky [8] and Broch and Franklin [7] proposed the relationship between the uniaxial
compressive strength (UCS) and the point load strength. The uniaxial compressive strength can
be calculated using the point load strength as follows:

σc = KIs(50) = 24Is(50) (4)

where σc is the uniaxial compressive strength (MPa), and K is the conversion factor (K = 24 for NX size).

3.3. Slake Durability Tests

The slaking effect is defined as a failure due to the decrease of bonding force among the particles
caused by the repeating dryness and wetness of rock mass. When the clayey sedimentary rock or
volcanic rock are exposed to the environment, the slaking effect of rock mass may occur frequently.
In this study, the slake durability test is conducted according to ISRM [9], intending to evaluate the
resistance offered by a rock sample to weakness and deterioration after being subjected to drying
and wetting. Figure 4 illustrates the front and side view of testing devices for slake durability tests.
As shown in Figure 4, the testing device for the slake durability test is composed of drums, a water
tank, and rotating systems. The drum should be clean and dried for the sample to have a constant
weight at a temperature of 105 ◦C. Also, the oven should have a capacity of maintaining a temperature
of 105 ◦C for at least 12 h. The detailed procedures of the slake durability test are as follows.

(1) Ten rock masses which have a mass of 40~60 g are placed in the drums, and weight (A) of the
drum and sample is measured.

(2) The lid is fitted with the drum and the drum is fixed in the trough and the motor. The trough is
filled with slaking fluid, which usually has a temperature of 20 ◦C.

(3) The drums are rotated in a velocity of 20 rpm for 10 min, indicating that one cycle takes 10 min.
The drum is removed from the trough and the lid is removed from the drum.
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(4) The drum plus remaining sample is dried at a temperature of 105 ◦C. The weight (B) of the drum
plus remaining sample is measured.

(5) Steps (2)–(4) are repeated and the weight (C) of the drum plus remaining sample is measured.
(6) The drum is cleaned and its weight (D) is measured.
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The slaking durability index can be defined as the ratio of the weight of remaining rock to the
weight of original rock. The 1st and 2nd cycle slake durability index can be obtained as follows:

Id1 =
B − D
A − D

× 100% (5)

Id2 =
C − D
A − D

× 100% (6)

Franklin and Chandra [10] and Gamble [11] reported that the 2nd slake durability index is usually
used, as shown in Tables 3 and 4. On the other hand, Taylor [12] stated that the 3rd slake durability
index could clearly distinguish between durable rock and nondurable rock. Therefore, the slake
durability tests are performed by 4 cycles in this study, to investigate the dramatic change of weight of
rock mass due to slake effects.

Table 3. Slake durability index by Franklin and Chandra [10].

2nd Slake Durability Index, Id2 (%) Durability

0~25 Very low
25~50 Low
50~75 Medium
75~90 High
90~95 Very high

95~100 Extremely high

Table 4. Slake durability index by Gamble [11].

Durability 1st Slake Durability Index, Id1 (%) 2nd Slake Durability Index, Id2 (%)

Very high durability >99 >98
High durability 98~99 95~98

Medium high durability 95~98 85~95
Medium durability 85~95 60~85

ow durability 60~85 30~60
Very low durability <60 <30
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4. Proposed Rock Mass Classifications and Tunnel Support System in Unconsolidated
Sedimentary Rock

4.1. Characterizations of Unconsolidated Sedimentary Rock

4.1.1. Results of TCR and RQD Tests

The core drillings in all sections, including the section of limestone and unconsolidated
sedimentary rocks, were conducted to mainly investigate the characteristics of unconsolidated
sedimentary rocks. TCR and RQD were measured on 10 cases for unconsolidated sedimentary
rocks and 11 cases for limestone using the sample, respectively. Table 5 summarizes the results of
TCR and RQD. Based on the results of the core drilling, the average TCR and RQD of the limestone
were 83.2% and 14.2%, respectively. The average TCR and RQD were 65.1% and 3.5%, respectively, for
unconsolidated sedimentary rocks. The TCR of 65.1% means that the cementation of rock was good,
because the rock joints for unconsolidated sedimentary rocks are not relatively developed due to the
characteristics of matrix. However, RQD of 3.5% indicated ‘very poor’ rock quality according to Table 2.
Therefore, the RQD systems are meaningful approaches to classify typical rock mass having rock joints,
whereas the RQD systems are unsuitable to the application of unconsolidated sedimentary rocks.

Table 5. Results of total core recovery (TCR) and rock quality designation (RQD).

Rock Types Sample No. TCR (%) RQD (%)

Unconsolidated
sedimentary rocks

1 13 0
2 58 22
3 28 0
4 90 0
5 80 0
6 65 0
7 90 13
8 71 0
9 70 0

10 86 0

Average for unconsolidated sedimentary rocks 65.1 3.5

Limestone

11 90 13
12 100 27
13 100 28
14 63 25
15 56 13
16 54 0
17 100 8
18 96 13
19 90 13
20 66 0
21 100 16

Average for limestone 83.2 14.2

4.1.2. Results of Point Load Tests

For the unconsolidated sedimentary rocks, it is hard to create the specimen for uniaxial compressive
tests. Thus, the point load tests were performed to predict UCS. The core sizes for tests were NX sizes
(core diameter = 54 mm).

The point load tests were performed on 15 cases for unconsolidated sedimentary rocks and 8 cases
for limestone. The average UCSs for unconsolidated sedimentary rocks and limestone were 10.8 MPa
and 22.6 MPa, respectively. The test results in this study compared with the various rock classifications
based on the UCS, which was reported by Bieniawski [13]. Figure 5 shows the comparison of rock
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classification based on the UCS. In Figure 5, the unconsolidated sedimentary rock could be classified
into ‘very weak rock’ ~ ‘moderately weak’, excepting the rock classification by Jennings. For the
limestone, it could be classified into ‘very weak rock’ ~ ‘very hard rock’. Based on test results, it is
found that the measured UCS for unconsolidated sedimentary rocks were larger than the predicted
UCS, whereas UCS for limestone were smaller than UCS for typical limestone. The results of the point
load tests are summarized in Table 6.
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Figure 5. Comparison of rock classification based on the uniaxial compressive strength (UCS) (modified
from Bieniawski [13]).

Table 6. Results of point load tests.

Rock Types Sample No. Is(50) (MPa) UCS (MPa)

Unconsolidated
sedimentary rocks

1 0.46 11.1
2 0.32 7.6
3 0.60 14.4
4 0.62 14.8
5 0.61 14.7
6 0.65 15.7
7 0.44 10.5
8 0.35 8.3
9 0.23 5.6

10 0.39 9.3
11 0.76 18.3
12 0.19 4.6
13 0.21 5.1
14 0.43 10.3
15 0.52 12.4

Average for unconsolidated sedimentary rocks 0.45 10.8
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Table 6. Cont.

Rock Types Sample No. Is(50) (MPa) UCS (MPa)

Limestone

16 0.81 19.5
17 0.83 19.8
18 0.58 13.8
19 0.72 17.3
20 1.21 29.0
21 1.50 36.0
22 0.92 22.0
23 0.96 23.0

Average for limestone 0.94 22.6

4.1.3. Results of Slake Durability Tests

The slake durability tests were performed to measure the slake durability index (Id). The 22 cases
for unconsolidated sedimentary rocks and 16 cases for lime stones were conducted. Figure 6 shows
the sample of rock samples from different cycles. The results of slake durability tests are summarized
in Table 7. For the unconsolidated sedimentary rocks, the average slake durability indexes with cycles
Id1, Id2, Id3 and Id4, were 88.5, 78.2, 71.8 and 67.9, respectively. For the limestone, the average slake
durability indexes with cycles Id1, Id2, Id3 and Id4, were 92.1, 87.2, 84.2 and 81.9, respectively. It is found
that the slake durability indexes for unconsolidated sedimentary rocks are smaller than those for the
limestone. Hence, this means that the limestones have more resistance to deterioration after being
subjected to drying and wetting, than unconsolidated sedimentary rocks. Thus, rock classifications for
unconsolidated sedimentary rocks should take into account the slake durability index. Also, Figure 7
illustrates the average slake durability index with cycles. In Figure 7, it is shown the resistance against
weakness and deterioration for unconsolidated sedimentary rocks was weaker than that for limestone.
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Table 7. Results of slake durability tests.

Rock Types Sample No.
Slake Durability Index (%)

Id1 Id2 Id3 Id4

Unconsolidated
sedimentary

rocks

1 87.8 74.1 68.1 61.4
2 88.3 76.8 65.5 59.6
3 90.6 74.5 69.1 67.6
4 89.4 81.8 70.7 67.1
5 90.6 76.7 72.5 70.3
6 87.2 77.5 70.8 64.9
7 89.4 78.1 67.9 61.8
8 71.9 59.8 52.7 47.7
9 89.2 72.8 65.0 60.1
10 79.4 66.6 60.0 56.2
11 90.3 75.6 68.8 64.2
12 90.4 79.5 72.1 66.6
13 87.6 70.5 63.0 57.9
14 88.3 69.6 61.2 56.6
15 99.6 98.3 97.6 97.2
16 89.0 82.9 74.1 67.8
17 89.3 80.3 73.2 69.2
18 85.2 80.8 70.9 67.5
19 93.8 92.1 89.9 88.1
20 95.1 94.9 93.1 91.8
21 97.1 96.9 95.8 95.2
22 76.7 61.2 57.6 55.7

Average for unconsolidated
sedimentary rocks 88.5 78.2 71.8 67.9

Limestone

23 96.6 95.9 95.2 95.0
24 95.5 92.5 87.9 86.6
25 95.5 93.0 91.5 90.8
26 88.7 77.4 70.4 66.5
27 86.6 78.9 68.7 65.4
28 88.1 78.2 75.1 65.7
29 86.2 82.7 80.8 78.9
30 95.3 94.4 93.9 92.9
31 95.0 93.9 93.3 92.6
32 97.5 96.7 95.4 94.8
33 88.5 75.1 67.9 63.4
34 84.9 76.9 74.3 70.1
35 99.9 99.5 98.9 98.8
36 92.9 90.4 89.1 88.1
37 93.3 92.7 92.4 92.2

Average for limestone 92.1 87.2 84.2 81.9

To investigate the convergence of the slake durability index with cycles, the differences between
cycles are summarized in Table 8. In addition, Figure 8 shows the cumulative percentage of slake
durability index with cycles. As shown in Figure 8, as the number of cycles increased, the relative
differences decreased. As mentioned above, Franklin and Chandra [10] and Gamble [11] reported that
the 2nd slake durability index is generally used. Especially, Franklin and Chandra [10] reported that
2nd cycle slake durability index should be from 0 to 10 times greater than the 1st cycle slake durability
index. In Table 8, in case of unconsolidated sedimentary rocks, the average values of ‘Initial − Id1’ and
‘Id1 − Id2’ are 11.5 and 10.2, respectively. However, the average value of ‘Id2 − Id3’ is 6.4. It means that
the 2nd slake durability index for unconsolidated sedimentary rocks may not be converged, because
the value of ‘Id1 − Id2’ is greater than 10. Therefore, as shown by measured results, it is reasonable
for the 3rd slake durability index to be applied to the rock mass classification for unconsolidated
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sedimentary rocks, because the value of ‘Id2 − Id3’ is between 0 and 10 according to Franklin and
Chandra [10], demonstrating the 3rd slake durability index reaches the convergence.
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Table 8. Results of the differences with cycles.

Rcok Types Sample No. Initial − Id1 Id1 − Id2 Id2 − Id3 Id3 − Id4

Unconsolidated
sedimentary

rocks

1 12.2 13.7 6.0 6.7
2 11.7 11.5 11.3 5.9
3 9.4 16.1 5.4 1.5
4 10.6 7.6 11.1 3.6
5 9.4 13.9 4.2 2.2
6 12.8 9.7 6.7 5.9
7 10.6 11.3 10.2 6.1
8 28.1 12.1 7.1 5.0
9 10.8 16.4 7.8 4.9

10 20.6 12.8 6.6 3.8
11 9.7 14.7 6.8 4.6
12 9.6 10.9 7.4 5.5
13 12.4 17.1 7.5 5.1
14 11.7 18.7 8.4 4.6
15 0.4 1.3 0.7 0.4
16 11.0 6.1 8.8 6.3
17 10.7 9.0 7.1 4.0
18 14.8 4.4 9.9 3.4
19 6.2 1.7 2.2 1.8
20 4.9 0.2 1.8 1.3
21 2.9 0.2 1.1 0.6
22 23.3 15.5 3.6 1.9

Average for unconsolidated
sedimentary rocks 11.5 10.2 6.4 3.9
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Table 8. Cont.

Rcok Types Sample No. Initial − Id1 Id1 − Id2 Id2 − Id3 Id3 − Id4

Limestone

23 13.4 7.7 10.2 3.3
24 3.4 0.7 0.7 0.2
25 4.5 3.0 4.6 1.3
26 4.5 2.5 1.5 0.7
27 11.3 11.3 7.0 3.9
28 11.9 9.9 3.1 9.4
29 13.8 3.5 1.9 1.9
30 4.7 0.9 0.5 1.0
31 5.0 1.1 0.6 0.7
32 2.5 0.8 1.3 0.6
33 11.5 13.4 7.2 4.5
34 15.1 8.0 2.6 4.2
35 0.1 0.4 0.6 0.1
36 7.1 2.5 1.3 1.0
37 6.7 0.6 0.3 0.2

Average for limestone 7.7 4.4 2.9 2.2

Total average 10.0 7.9 5.0 3.2

4.2. Proposed Rock Mass Classifications

The Rock Mass Rating (RMR) and the Q-system are commonly used for rock mass classifications
for typical tunnels [4]. However, these systems have 70% more evaluation criteria, considering the
rock joints. RQD, which is a part of RMR and Q-system, is also meaningful for rock joints. Based
on the results of TCR and RQD, the cementation of unconsolidated sedimentary rocks was good,
because of the average TCR of 65.1%; however, the rock quality for that was ‘very poor’ due to RQD
of 3.5%. The rock joints for unconsolidated sedimentary rocks are not relatively developed due to
the characteristics of matrix. Thus, the RQD system cannot be applied to the rock classification for
unconsolidated sedimentary rocks because of the weakness of rock joints.

In this study, the UCS—which can be quantitatively obtained by point load tests—and the slake
durability index are chosen to be the important factors in evaluating rock mass classification for
evaluation of unconsolidated sedimentary rocks. Additionally, the factors which can be detected
at tunnel surfaces under constructions are selected. Based on the results of various tests, the rock
mass classifications for unconsolidated sedimentary rocks are proposed. The proposed rock mass
classifications can be classified into three classes from P-1 to P-3.

In the case of UCS, the average UCS of unconsolidated sedimentary rock was 10.8 MPa. Based on
the results of point load tests, it is found that the measured UCS for unconsolidated sedimentary rocks
were larger than the predicted UCS. According to ISRM, the UCS of ‘low strength rock (weak rock)’
was 5 MPa or more; thus, the measured UCS for unconsolidated sedimentary rocks could be classified
into ‘low strength rock (weak rock)’. Therefore, the boundary strength between ‘cementation-good
(P-1)’ and ‘cementation-fair (P-2)’ grade are chosen as 5 MPa, indicating the boundary of weak rock.
Also, the UCS of ‘very low strength’ was between 1 and 5 MPa according to ISRM, therefore the
boundary strength between ‘cementation-fair (P-2)’ and ‘cementation-poor (P-3)’ grade was chosen
as 1 MPa, indicating the boundary of weathered soil and rocks. In addition, the wetting conditions
caused by water are selected as factors which can be detected at tunnel surface under constructions.
The wetting conditions are classified into three conditions, such as ‘complete drying or with moisture’,
‘wetting’, and ‘water drops fall’.

For the slake durability index, it is reasonable that the 3rd slake durability index is applied
to the rock mass classification for unconsolidated sedimentary rocks, as mentioned above.
The measured average Id2 and Id3 of unconsolidated sedimentary rock was 61.2 and 57.6%, respectively.
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Therefore, the slake durability index at 3rd cycle of approximately 60% is selected as the factor of
evaluating cementation.

In this study, the rock mass classifications for unconsolidated sedimentary rocks are proposed
through the comprehensive analyses of various experimental tests, and summarized in Table 9.

Table 9. Proposed rock mass classifications for unconsolidated sedimentary rocks.

Factor
P-1 P-2 P-3

Cementation-Good Cementation-Fair Cementation-Poor

UCS
(in matrix, MPa) >5 1~5 0~1

Cementation Combination between
breccia and matix

Combination between
breccia and matrix

Separation between
breccia and matrix

Condition of tunnel
surface

Scratched due to a hit of
rock hammer, and no

peeling off with a knife

Crushed by a hit of
rock hammer, and

peeling off with a knife
Pressed with a nail

Wet condition Complete drying or
with moisture Wetting Water drops fall

Slake durability
index (Id3) >60 <60 <60

4.3. Proposed Reinforcment Types

If the rock mass classification and tunnel support system for unconsolidated sedimentary rocks
are divided into many grades in design stages, it is hard to determine the rock quality and to choose
the appropriate tunnel support system for unconsolidated sedimentary rocks. Thus, in this study,
the tunnel support system for unconsolidated sedimentary rocks is proposed according to the rock mass
classifications. The proposed tunnel support system can be classified into three grades considering
the safety and constructability of the tunnel. Table 10 and Figure 9 show the proposed tunnel support
system for unconsolidated sedimentary rocks. For rock of good quality—having a UCS of 5 MPa or
more and a slake durability index at 3rd cycle (Id3) of 60% or more; the P-1 pattern—it is proposed that
reinforcement is added to the pattern of a typical section. In particular, the umbrella arch reinforcement
method is applied instead of the rock bolt, because it is expected that the pullout capacity of rock bolt
installed in unconsolidated sedimentary rocks may not satisfy the criteria. In addition, the P-2 and P-3
patterns for the rock of fair and poor quality are proposed, respectively.

Table 10. Proposed tunnel support system for unconsolidated sedimentary rocks.

Types P-1 P-2 P-3

Round length (m) Upper: 1.2 m/1.2 m
Lower: 1.2 m/1.2 m

Upper: 1.0 m/1.0 m
Lower: 1.0 m/1.0 m

Upper: 0.8 m/0.8 m
Lower: 0.8 m/0.8 m

Excavation method Half section Ring cut, Temporal invert Ring cut, Temporal invert

Shotcrete 20 cm (steel fiber) 20 cm (steel fiber) 30 cm (steel fiber)

Rock bolt - - -

Invert - Lower invert Lower invert

Reinforcement method Umbrella arch using
steel pipe

Umbrella arch using
large-diameter steel pipe,
Elephant Foot, Foot Pile
(c.t.c. 1.0 m, L = 5.0 m)

Umbrella arch using
large-diameter steel pipe,
Elephant Foot, Foot Pile
(c.t.c. 0.8 m, L = 5.0 m)

UCS (in matrix, MPa) >5 1~5 0~1

Slake durability index (Id3) >60 <60 <60
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To verify the adequacy of the proposed tunnel support system for unconsolidated sedimentary
rocks, two-dimensional finite element analyses are performed for the proposed pattern of the tunnel
support system. The MIDAS-GTS [14] commercial program was employed to simulate the behavior
of the tunnel. The overall dimensions comprised a width of 4 times the tunnel width (D) and a
height of 6 times the tunnel height (H). The unconsolidated sedimentary rocks were modeled as
linearly elastic/perfectly plastic materials with the Mohr-Coulomb failure criterion. Tables 11 and 12
summarize the load distribution and rock properties for numerical analyses, respectively.

Table 11. Load distribution ratio for numerical analyses.

Step Construction Sequence Load Distribution Ratio (%)

0 Initial ground condition -
1 Umbrella arch method -
2 Excavation of upper half section 40
3 Soft shotcrete 30
4 Hard shotcrete 30
5 Excavation of lower half section 40
6 Soft shotcrete 30
7 Hard shotcrete 30

Table 12. Rock properties for numerical analyses.

Category Unit Weight
(kN/m3)

Cohesion
(MPa)

Internal Friction
Angle (◦)

Deformation
Modulus (MPa)

Poisson’s
Ratio

Unconsolidated
sedimentary rock 20 0.2 33 1000 0.3

Unconsolidated
sedimentary rock

(good quaility)
20 0.3 33 2000 0.3

The results of numerical analyses with proposed tunnel support systems are summarized in
Table 13. From the present analyses, the maximum displacement and bending stress of shotcrete—when
the P-3 for tunnel support system is applied—were the largest among the analysis cases. However,
the displacement and bending stress of Case 1 cannot influence the safety of the tunnel. Hence, it is
found that the proposed tunnel support systems can ensure the safety of the tunnel.
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Table 13. Results of numerical analyses with the proposed tunnel support system.

Rock Class
Case 1 Case 2 Case 3

Unconsolidated
Sedimentary Rock

Unconsolidated Sedimentary Rock
(Good Quality)

Tunnel support system P-3 P-3 P-1

Maximum
displacement (mm)

(Crown) 13.4 7.9 8.8

(Side) 5.2 3.4 4.4

Maximum bending stress of
shotcrete (MPa) 7.5 5.2 6.8

5. Deformation Behavior of Unconsolidated Sedimentary Rocks

The objective of tunnel convergence measurement is to investigate the mechanical behavior of
tunnel support and surrounding soil due to excavation; the safety of the tunnel should also be checked.
In this study, the tunnel convergence measurement is conducted to verify the adequacy of the proposed
tunnel support system and to investigate the long-term deformation behavior of the tunnel.

After the excavation, the tunnel convergence measurements from 52 cases and 21 cases in sections
of unconsolidated sedimentary rocks and limestones are analyzed, respectively. Tables 14 and 15
summarize the convergence in unconsolidated sedimentary rocks and limestones, respectively.

Table 14. Convergence in unconsolidated sedimentary rocks.

Site No.
Duration for
Convergence

(day)

Maximum
Displacement

(mm)
Site No.

Duration for
Convergence

(day)

Maximum
Displacement

(mm)

1 95 3.94 27 190 8.76
2 70 4.27 28 197 13.35
3 71 7.39 29 191 9.22
4 77 4.48 30 185 10.38
5 135 11.62 31 175 8.43
6 127 2.48 32 194 8.29
7 117 5.75 33 182 8.73
8 82 6.87 34 182 8.73
9 74 6.85 35 172 11.58

10 129 7.36 36 165 11.30
11 91 6.14 37 158 9.18
12 68 7.35 38 152 7.09
13 76 6.86 39 145 7.06
14 78 12.76 40 139 5.00
15 96 10.57 41 129 4.05
16 89 8.99 42 120 3.81
17 83 10.80 43 115 7.17
18 81 10.42 44 107 5.87
19 80 12.59 45 95 8.25
20 90 2.56 46 85 7.73
21 82 5.99 47 86 7.75
22 85 7.21 48 80 8.86
23 91 8.09 49 70 8.05
24 102 8.51 50 133 6.50
25 71 9.14 51 207 15.92
26 102 7.21 52 195 16.72
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Table 15. Convergence in limestones.

Site No. Duration for Convergence (day) Maximum Displacment (mm)

1 30 1.70
2 24 2.86
3 43 3.90
4 83 3.03
5 40 2.22
6 37 2.49
7 38 1.98
8 39 1.97
9 41 1.38
10 29 1.40
11 37 2.22
12 37 1.40
13 86 3.31
14 82 4.66
15 87 3.34
16 87 2.77
17 51 2.43
18 37 1.39
19 55 2.21
20 45 2.22
21 26 0.80

The maintenance criteria for convergence of tunnels are summarized in Table 16. According
to these criteria, there are no cases in which the measured maximum convergence exceeds the
criteria. In addition, the measured convergence for unconsolidated sedimentary rocks and limestones
are summarized in Table 17. As shown in this table, the average velocity of displacement for
unconsolidated sedimentary rocks and limestones are 0.068 mm/day and 0.048 mm/day, respectively.
It is shown that the average velocity of displacement for unconsolidated sedimentary rocks is about
40% faster than that for limestones, and satisfy the criteria according to Table 16.

Table 16. Maintenance criteria for convergence of tunnel [15].

Warning Level I Warning Level II

Displacement (mm) Velocity of Displacement
(mm/day) Displacement (mm)

Strong rock 20~30 5 mm/day for 3 days 30~50
Talus 20~30 5 mm/day for 3 days 50~70
Sand 20~30 5 mm/day for 3 days 30~50
Clay 30~50 10 mm/day for 3 days 50~70

Expacive soil 100 30 mm/day for 3 days 200~300

Table 17. Measured convergence for unconsolidated sedimentary rocks and limestones.

Type Average Maximum
Displacement (mm)

Average Velocity of
Displacement (mm/day)

Average Duration for
Convergence (day)

Unconsolidated sedimentary rocks 8.15 0.068 119
Limestones 2.37 0.048 49

The duration for convergence is based on the moment when the displacement does not increase
any more (7 days). The duration for convergence for unconsolidated sedimentary rocks and limestones
were 119 days and 49 days, respectively, and it was confirmed that the duration for convergence
for unconsolidated sedimentary rocks requires more than 2 times that of limestones. The average
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maximum displacement was also measured as 8.15 mm for the unconsolidated sedimentary rock and
2.37 mm for the limestone.

As a result, the velocity of displacement for unconsolidated sedimentary rocks is similar to that of
limestones, whereas the duration for convergence of unconsolidated sedimentary rocks is larger than
that of limestones. However, the proposed tunnel support system is appropriate for the unconsolidated
sedimentary rocks, since the convergence factors, such as the maximum displacement and velocity of
displacement, satisfy the criteria.

6. Conclusions

The main objective of this study is to investigate and present the characteristics of unconsolidated
sedimentary rock using the point load tests and slake durability tests. In addition, the appropriate
rock mass classification and tunnel support system for the unconsolidated sedimentary rock tunnel are
proposed based on the results of experimental tests. The proposed rock mass classification and tunnel
support system are validated through comparison against results from measuring the convergence of
a tunnel under the construction. The following conclusions could be drawn from the present study:

• This paper provides new valuable field data and a comprehensive approach to the determination
of rock mass classification and tunnel support systems for tunnels in unconsolidated
sedimentary rocks.

• The 2nd slake durability index is generally used for the rock mass classification [10,11]. However,
based on the results of slake durability tests, it is reasonable that the 3rd slake durability
index is applied to the rock mass classification for unconsolidated sedimentary rocks, since the
increment between 2nd cycle and 3rd cycle was larger than that between 3rd cycle and 4th cycle,
demonstrating that the 3rd slake durability index reaches the convergence.

• The UCS, which can be quantitatively obtained by the point load tests, and the slake durability
index are chosen to be important factors in evaluating rock mass classification for unconsolidated
sedimentary rocks. Based on the results of various tests, the rock mass classifications for
unconsolidated sedimentary rocks are proposed. The proposed rock mass classifications can be
classified into three classes, from P-1 to P-3.

• The tunnel support system for unconsolidated sedimentary rocks is proposed according to the
proposed rock mass classification. To verify the adequacy of the proposed tunnel support system
for unconsolidated sedimentary rocks, two-dimensional finite element analyses are performed for
the proposed pattern of the tunnel support system. Based on the numerical analysis, it is found
that the proposed tunnel support systems are ensured to the safety of tunnel.

• The tunnel convergence from 52 cases and 21 cases in sections of unconsolidated sedimentary
rocks and limestones are measured, respectively. As a result, the velocity of displacement for
unconsolidated sedimentary rocks is similar to that of limestones, whereas the duration for
convergence of unconsolidated sedimentary rocks is larger than that of limestones. However, the
proposed tunnel support system is appropriate for unconsolidated sedimentary rocks, since the
convergence factors, such as the maximum displacement and velocity of displacement, satisfy
the criteria.
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