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Abstract: Invasion by free-floating species, such as Eichhornia crassipes, is one of the most critical 
threats to the biodiversity and sustainability of wetland ecosystems, where all plants experience 
spatial heterogeneity in substrate nutrients. However, few studies have focused on the effects of 
free-floating invaders on the capacity of submerged plants to utilize substrate nutrients. A 10-week 
greenhouse experiment was conducted to test the effects of free-floating invasive E. crassipes 
(presence or absence) on the growth of Ceratophyllum demersum and Myriophyllum spicatum, and their 
capacity to use heterogeneous and homogeneous substrate nutrients. We found that the invasion of 
E. crassipes could significantly decrease the growth of both submerged C. demersum and M. spicatum 
and that substrate nutrient heterogeneity increased the growth of C. demersum (approximately 30% 
in total biomass and 40% in the number of nodes) but not of M. spicatum. The two submerged species 
have different strategies to address invasion by E. crassipes. These results indicate that E. crassipes 
can prevent the growth of submerged plants even if the submerged plants can effectively use 
heterogeneous nutrients. For the effective conservation of submerged macrophytes in wetlands, 
measures should be taken to restrict the spread of invasive free-floating species. 

Keywords: biodiversity; sustainability; biological invasion; wetland ecology; resource 
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1. Introduction 

Biological invasions have seriously threatened the stability and sustainability of both terrestrial 
and aquatic ecosystems on a global scale [1–3]. Invasive free-floating plants, such as Eichhornia 
crassipes, are known to cause significant ecological damage by altering water quality [4,5], reducing 
the abundance and richness of wetland plant communities [6], and even affecting bacteria and algae 
[7]. Moreover, dense mats of free-floating invaders can reduce submerged macrophyte biomass and 
diversity [8,9], mostly because they generate dark conditions, secrete allelochemicals and compete 
fiercely with other species for nutrients and space [10,11].  

Free-floating species can only acquire essential nutrients from the water column, whereas rooted 
macrophytes obtain most of their required nutrients from the sediment and a small amount of 
nutrients from the water column, even in eutrophic ecosystems [12,13]. Therefore, rooted submerged 
plants are expected to be limited by the availability of substrate nutrients. Some studies found that 
increased levels of sediment nutrients (e.g., nitrogen, phosphorus and organic matter) can increase 
the accumulation of submerged macrophyte biomass at both the individual [14] and community 
scales [15]. High nutrient levels could be related to anoxic sediment conditions, a greater proportion 
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of clay with more organic matter and greater pore water nutrient concentrations [16], which may 
contribute to submerged species gaining advantages in interspecific competition with their free-
floating invasive neighbours. 

All natural environments are characterized by patchy distributions of both competitors, such as 
invaders [13,17], and essential resources, such as nutrients, light and water [18]. Wetland substrates 
are always affected by human activities, elevation and tidal flooding, which results in a 
heterogeneous distribution of substrate nutrients. In response to substrate nutrient heterogeneity, 
many species show variation in how their roots are arranged in the substrate where nutrient levels 
are relatively high. Many studies have found that the effects of substrate nutrient heterogeneity may 
increase plant performance across all growth parameters [19–22]. Substrate nutrient heterogeneity 
may work as a modulator by changing plant growth at the individual and community levels. 
Moreover, one species with easy access to nutrients may obtain a competitive advantage over others 
for which nutrients are less accessible [18,23]. As a consequence, increased substrate nutrient levels 
may shift dominance from free-floating invaders to submerged species. However, few studies have 
focused on the effects of free-floating plants, particularly invasive species, on the capacity of 
submerged macrophytes to use heterogeneous substrate nutrients. 

To better understand the effects of substrate nutrient heterogeneity on interspecific interactions 
between submerged macrophytes and free-floating plants, we addressed the following question: 
Could invasive floating E. crassipes affect the capacity of submerged macrophytes to utilize 
heterogeneous substrate nutrients? We conducted a greenhouse experiment testing the effects of 
substrate nutrient heterogeneity (heterogeneous or homogeneous substrate) and floating invasive E. 
crassipes (presence or absence) on two common submerged macrophytes, Ceratophyllum demersum and 
Myriophyllum spicatum. 

2. Materials and Methods  

2.1. Species and Sampling 

The experiment was constructed using three co-occurring wetland species widely distributed in 
China. Eichhornia crassipes (Mart.) Solms, which is native to South America and commonly known as 
water hyacinth, is one of the world’s most prevalent invasive free-floating perennial vascular species 
[1,24]. The invasiveness of E. crassipes is related to its ability to clone itself, and large patches are likely 
to all be part of the same genetic form [25]. Both Ceratophyllum demersum L. (Ceratophyllaceae) and 
Myriophyllum spicatum L. (Haloragaceae) are submerged macrophytes that grow in static or slow-
moving water, such as that found in wetlands [26]. 

All the plants used in the experiment were collected from Luoma Lake (34°05’05.64”N, 
118°11’16.29”E), located in Suqian, Jiangsu Province, China. The area of the freshwater lake is 375 
km2, in which both C. demersum and M. spicatum are regionally dominant species, and invaded by the 
E. crassipes. All the plants were then preincubated in a greenhouse at the Wildlife Rescue and 
Rehabilitation Center, Beijing, China, in early March of 2016. 

2.2. Experimental Design 

For each submerged species, the mesocosm experiment took a factorial design and had two 
factors: substrate nutrient heterogeneity (homogeneous or heterogeneous substrate nutrients) and 
interspecific interaction (with or without Eichhornia crassipes); see Figure 1 for the experimental 
design. Each treatment had eight replicates. 

Before the experiment, we selected 32 apical shoots (20 cm length, without lateral shoots, initial 
dry biomass of 0.20 ± 0.01 g for C. demersum and 0.24 ± 0.02 g for M. spicatum, N = 5) of each submerged 
macrophyte and planted them in individual plastic pots (10 cm diameter and 11 cm high), which 
were filled with 10 cm of heterogeneous or homogeneous substrate. For the heterogeneous substrate 
treatment, the pots were half filled with sand that had been collected from the bank of an artificial 
lake located at the Wildlife Rescue and Rehabilitation Center, Beijing, China, and was low in total N, 
total P and organic matter [0.183 (0.022) mg total N (mean [SE]; N = 3), 0.643 (0.064) mg total P and 
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1.401 (0.069) mg organic matter g−1 dry mass of substrate] and half with commercial potting soil 
purchased from Heroda Fertilizer Technology Co. Ltd, which was high in total N, total P and organic 
matter [4.311 (0.112) mg total N, 5.253 (0.631) mg total P and 38.663 (2.708) mg organic matter g−1 dry 
mass of substrate]; we have two patches of each kind of substrate, and a total of four patches in the 
heterogeneous substrate treatment, see Figure 1. For the homogeneous substrate treatment, each pot 
was filled with a 1:1 (v/v) mixture of the sand and commercial potting soil described above. The total 
amounts of substrate nutrients were thus the same in both the heterogeneous and homogeneous 
treatments. The four pots (two heterogeneity treatments × two species) were then placed in a glass 
tank (50 cm long × 50 cm wide × 40 cm high) with the sides covered by black shade cloth to prevent 
light penetration. A total of 16 tanks (eight with E. crassipes and eight without E. crassipes) were 
established and filled to a level of 40 cm with tap water. 

After allowing the submerged plants to become established for one week, we randomly placed 
E. crassipes on the water surface of eight tanks (four similar ramets in each tank). During the 
experiment, we (1) added tap water to the tanks each week to compensate for loss via evaporation 
and maintained the water level at 40 cm; and we (2) sprayed insecticide to reduce the damage caused 
by insects every two weeks. The mean temperature was 20.1 °C in the greenhouse during the 
experiment. 

2.3. Measurements and Data Analysis 

After 10 weeks, both C. demersum and M. spicatum were harvested, measured for the total 
number of nodes and total shoot length, dried at 70 °C for 72 h, and weighed. Before analysis, we 
calculated two growth indices to better describe the effects of invasion on the growth of the 
submerged plants: (1) the internode length (IL), which was calculated as 

IL = SL/NN (1)

where SL is the total shoot length and NN is the total number of nodes; and (2) the relative growth 
rate (RGR) of submerged plants during the 10 weeks, which was calculated based on the total dry 
biomass and initial biomass [12] using the following formula: 

RGR = (lnDBt – lnDB0)/t (2)

where DBt is the dry biomass at time t, DW0 is the initial dry biomass, and t is the experimental 
duration, which was 70 days (10 weeks, from 7 April to 16 June 2016) in our study.  

To better measure the intensity of interspecific interactions between the invasive species and 
native submerged plants, we calculated a log response ratio (LnRR) [27,28], which is widely used to 
quantify plant–plant interactions. This is partly because it can compare the performance of each 
species when grown in mixed culture to its performance in monoculture and often meets the 
assumptions for statistical analysis better than other interaction models [27,29]. The formula is 

LnRR = ln (Bwith/Bwithout) (3)

where Bwith is the biomass of the plants in the presence of invasive neighbours and Bwithout is the mean 
biomass of the plants in the absence of E. crassipes across eight replicates. LnRR = 0 indicates that there 
is no significant effect of the presence of E. crassipes on submerged plant growth; higher positive 
values indicate that the interaction is more facilitative, while lower negative values indicate stronger 
negative effects of competition. 

All analyses were conducted using SPSS 20.0 (version 20.0; SPSS Inc., Chicago, IL, USA). We 
conducted a two-way ANOVA to test the effects of substrate nutrient heterogeneity (heterogeneous 
or homogeneous) and interspecific interaction (with or without E. crassipes) on total biomass, number 
of nodes, total shoot length, IL and RGR. Substrate nutrient heterogeneity and interspecific 
interaction were treated as fixed effects in the ANOVA models. Data on the total biomass and number 
of nodes of C. demersum and the number of nodes and shoot length of M. spicatum were natural log 
transformed before analysis to meet the requirements of homoscedasticity and normality. Differences 
between the heterogeneous and homogeneous substrates within each treatment were tested via 
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paired t-tests. Then, we used a one-way ANOVA to test the effects of substrate nutrient heterogeneity 
on the LnRR. Effects were considered significant at P < 0.05. 

3. Results 

3.1. Growth of Two Submerged Species 

As predicted, the invasion of E. crassipes significantly reduced the total biomass, number of 
nodes and RGR, but not the IL, of both C. demersum and M. spicatum (Table 1; Figures 2 and 3). This 
interspecific interaction also reduced the total shoot length by 50% for C. demersum but not for M. 
spicatum (P = 0.528 in Table 1). 

 
(a) (b)

Figure 1. Experimental design. (a) 2D schematic showing the two submerged species crossed with 
two substrate treatments (homogeneous and heterogeneous), treated with Eichhornia crassipes; (b) 
Photograph of the experiment taken in the fourth week (5 May 2016). 

Table 1. Effects of Eichhornia crassipes and nutrient heterogeneity on growth and morphological data 
for C. demersum and M. spicatum. 

Trait 
Eichhornia crassipes (E) Heterogeneity (H) I × H 

F1,28 P F1,28 P F1,28 P 

Ceratophyllum demersum       

Total biomass 108.61 <0.001 7.34 0.011 6.63 0.016 

No. of nodes 1 68.73 <0.001 5.03 0.033 0.56 0.460 

Shoot length 1 132.23 <0.001 3.36 0.078 2.27 0.143 

IL 2.37 0.135 1.14 0.295 0.03 0.865 

RGR 113.05 <0.001 3.29 0.081 3.74 0.063 

Myriophyllum spicatum       

Total biomass 1 7.89 0.009 2.31 0.140 0.01 0.941 

No. of nodes 1 13.65 0.001 0.13 0.718 0.10 0.757 

Shoot length 0.41 0.528 0.85 0.364 0.27 0.609 

IL 1.77 0.194 0.30 0.588 0.02 0.900 

RGR 16.41 <0.001 0.78 0.386 0.50 0.484 
1 indicates that these data were natural logarithm-transformed to meet the requirements of 
homoscedasticity and normality. Bold text indicates a significant difference (P < 0.05), and italics 
indicate 0.05 < P < 0.1. 

Across the E. crassipes treatment, the heterogeneous substrate nutrient treatment obviously 
increased the total biomass, number of nodes, total shoot length and RGR (0.05 < P < 0.1), but not the 
IL (P = 0.295 in Table 1), of C. demersum (Figure 2). The substrate treatment did not affect the growth 
of M. spicatum (Table 1; Figure 3). 
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Figure 2. Effects of heterogeneous substrate nutrients and interspecific competition (with and without 
E. crassipes) on the (A) total biomass; (B) number of nodes; (C) total shoot length; (D) average 
internode length (IL); and (E) relative growth rate (RGR) of C. demersum. Symbols (*): indicates 
difference between the two substrate treatments (paired t-tests, P < 0.05); no symbol: P > 0.05. Means 
± SE are given. See Table 1 for ANOVA results. 

The interaction between substrate heterogeneity and the presence of E. crassipes was statistically 
significant for the total biomass of C. demersum (F1,28 = 6.63, P = 0.016 in Table 1), but the interaction 
term was never statistically significant for M. spicatum. C. demersum accumulated approximately 30% 
more biomass in the heterogeneous treatment than in the homogenous treatment, but only when E. 
crassipes was not present (Figure 2A). 
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Figure 3. Effects of heterogeneous substrate nutrients and interspecific competition (with and without 
E. crassipes) on the (A) total biomass; (B) number of nodes; (C) total shoot length; (D) average 
internode length (IL); and (E) relative growth rate (RGR) of M. spicatum. Means ± SE are given. See 
Table 1 for ANOVA results. 

3.2. Results of LnRR 

The LnRRs of both species were all negative. More negative values of LnRR indicate greater 
competitive intensity between species. Heterogeneous substrate nutrients increased the interspecific 
interaction between C. demersum and E. crassipes (P = 0.073, Figure 4A) as measured by the LnRR. 
LnRRs for M. spicatum were not significantly different between the two substrate treatments (P = 
0.539, Figure 4B). 

 

Figure 4. Log response ratio (LnRR) of (A) C. demersum and (B) M. spicatum with or without E. crassipes 
under heterogeneous and homogeneous treatments. Means ± SE are given. One-way ANOVA 
followed by Dunnett’s test. 

4. Discussion 

Nutrient uptake and light availability are two major environmental factors determining the 
growth of submerged macrophytes [30,31]. The results show that the floating invader, such as E. 
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crassipes significantly reduced the growth of both species, suggesting that invasion by free-floating 
species has significant effects in aquatic ecosystems. These effects occur mainly because the free-
floating invader has primacy in competition for light and can attenuate most of the incoming light, 
secretes allelochemicals and immobilizes water-borne nutrients [8,32]. In nature, water hyacinth often 
establishes in areas where there is a lack of significant aquatic phytoplankton and vegetation, but it 
is also able to out-compete submersed species, especially in eutrophic water [1,9]. 

Our research found that the heterogeneous substrate significantly increased the total biomass, 
number of nodes, shoot length and RGR of C. demersum under the no-invasion treatment, but it had 
no significant effects on M. spicatum (Table 1). Moreover, our study also found that these two 
submerged species showed different GRG when faced with with the invasion of E. crassipes (Figures 
2 and 3). Recent studies found that increased substrate nutrients could significantly increase the 
accumulation of submerged macrophyte biomass [30,33]. Compared with the homogeneous 
substrate, patches of pure commercial potting soil in the heterogeneous substrate provided a high 
level of nutrients, which resulted in better growth of C. demersum. You et al. [34] also found that clonal 
integration significantly increased the photosynthetic performance of daughter ramets of submerged 
macrophytes, which increases plant performance in heterogeneous habitats. Therefore, another 
possible explanation may be that the clonal integration of C. demersum allowed it to accumulate more 
biomass in our study, because clonal integration can facilitate the colonization and growth of ramets 
under both eutrophic and stressful conditions. 

Some studies found that there may be a nutrient level threshold at which significant effects on 
the growth of individual submerged macrophytes occurs [10,15], which means that high levels of 
substrate nutrients may not increase or may even restrict growth. The nutrient level in the substrate 
may be higher than the necessary nutrient demand threshold for M. spicatum. In addition, M. spicatum 
may be insensitive to the effects of the heterogeneous substrate at this mesoscale. Previous studies 
illustrated that inappropriate sizes of heterogeneous patches may not affect the growth of plants [35–
37], because inappropriate patch sizes cause plants to meet only one type of patch and the effects will 
thus be small. The positive effect of environmental heterogeneity on submerged macrophytes may 
be transitory; a previous study reported that nutrient heterogeneity could increase the growth of an 
annual herb species only at the early stage of growth (first month), but not in the long run (second 
month) [23]. Due to the 10-week experimental cycle, the nutrient-rich patches might gradually decline 
to the same low level as the nutrient-poor patches. These effects may limit the growth of M. spicatum 
in this study.  

In the case of E. crassipes invasion, none of the measured growth data showed a difference 
between the heterogeneous and homogeneous substrate treatments for either species (Figures 2 and 
3). This result indicates that the invasive free-floating E. crassipes reduced the capacity of C. demersum 
to utilize heterogeneous nutrients. Free-floating plants can monopolize light, which prevents the 
submerged vegetation from obtaining sufficient resources for photosynthesis [1,38]. In this case, light 
resources become more important than the substrate nutrients in limiting the growth of submerged 
macrophytes. 

The LnRR of C. demersum in the heterogeneous substrate was much more negative than that for 
plants in the homogeneous substrate (P = 0.073, Figure 4), indicating that the intensity of the 
interspecific interaction between C. demersum and E. crassipes was much greater in the heterogeneous 
treatment than in the homogeneous treatment, but it had no significant effects on the interaction 
between M. spicatum and invasive E. crassipes. These results indicate that aquatic environmental 
factors can change the interaction between submerged and free-floating species, and these effects are 
determined by species, which is consistent with previous studies in terrestrial ecosystems [39–41]. 
Because floating and submerged plants have different positions in the water column, the competition 
for both light and nutrients in the substrate becomes asymmetric [13]. Van Gerven et al. [42] found 
that floating plants always outcompete submerged plants when there is an adequate supply of light 
and nutrients. Moreover, an increasing nutrient level leads to an advance of free-floating species in 
competition with submerged macrophytes; this effect is also found in both field and mesocosm 
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studies [43,44]. Therefore, the presence of sufficient light and nutrients may explain why the floating 
E. crassipes dominates the micro-ecosystem in this study. 

5. Conclusions 

Our study demonstrated that (1) the invasion of E. crassipes could significantly decrease the 
growth of both submerged C. demersum and M. spicatum; (2) substrate nutrient heterogeneity 
increased the growth of C. demersum but not of M. spicatum; and (3) invasive E. crassipes reduces the 
capacity of C. demersum to utilize heterogeneous nutrients. These results indicate that water hyacinth 
can prevent the growth of submerged plants even if the submerged plants can effectively use 
heterogeneous nutrients. Submerged macrophytes provide food and habitat for other biotas. 
Changes in the primary-production base of the wetland can resonate throughout the whole 
ecosystem, affecting multiple trophic levels directly through changes in habitat availability. 

Although our results are short-term, they may have important implications considering that 
controlling the growth of invasive free-floating plants is key to the restoration of submerged 
macrophytes and the sustainable conservation of aquatic ecosystems and that increasing substrate 
nutrient heterogeneity may not be effective. 
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