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Abstract: Motorization and increased levels of car ownership have partly contributed to traffic 
congestion and air pollution, which is a prime concern in the era of climate change. Therefore, 
vehicle ownership-related topics have been extensively explored by transportation scholars, 
economists, and planning researchers. However, relatively fewer scientists have investigated the 
spatial patterns and socioeconomic factors of car ownership simultaneously within a large 
geographic scale. Thus, the goal of this article is to illuminate how high levels of auto ownership 
may cluster spatially and what factors relate to such phenomena by developing an integrative 
framework and applying it in three counties in South Florida (US). Specifically, this study first 
evaluated whether vehicle ownership is spatially autocorrelated using Global and Local Moran’s I 
statistics. It then justified significant factors associated with car ownership by employing Poisson 
and Corrected Poisson regression models. The findings, using raw data, show that there exist 
locally spatial clusters of the households with high levels of automobile ownership, while globally 
the patterns of auto ownership are statistically random. Furthermore, the results suggest that the 
number of drivers, the number of workers, household income level, housing tenure, the proximity 
to schools, and net house density significantly influence car ownership levels. The results can assist 
urban planners and local governments in developing planning schemes that aim at transit, cycling, 
walking, and other non-motorized travel modes, thereby furthering environmentally friendly 
communities. 

Keywords: number of cars; autocorrelation; spatial distribution; regression; automobile; 
metropolitan region; elderly 

 

1. Introduction 

Both academic and non-academic worlds are increasingly concerned about the rising 
popularity of private cars, a known cause of exacerbated air pollution [1–3], greenhouse gas 
emissions [4], traffic congestion [5,6], and risks to public health [7,8]. Admittedly, a growing level of 
private-car dependence is beneficial to the auto industry and its deriving businesses [9]. The 
prosperity of the auto industry considerably benefits local governments and communities by 
boosting employment rates and overall economic conditions. It is evident that an excessive number 
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of vehicles on roads results in enormous environmental and social issues such as traffic congestion 
[10] and air pollution [11]. The positive correlation between higher levels of auto ownership and 
aggravating traffic congestion has been justified by numerous studies [2,12–14]. For instance, based 
on the travel survey conducted in King County in the US, Frank et al. [15] (2006) found a 
significantly positive relationship between vehicles per household and environmental indicators, 
including traffic-related pollutants and volatile organic compounds. 

Given the evident relationship between auto ownership and its detrimental impacts on the 
whole society, studies have focused on the understanding of key factors, including household 
attributes, built-environment characteristics, and life style indicators, on levels of automobile 
ownership. This line of inquiry corresponds to the lasting interest in the land use-transportation 
connection, which is “motivated by the possibility that design policies associated with the built 
environment can be used to control, manage, and shape individual traveler behavior and aggregate 
travel demand” [16]. 

Additionally, it is also crucial to understand the spatial layout, including global and local 
spatial clustering, of automobile ownership. The spatial patterns of car ownership are indispensable 
midpoints of the pathways to investigate the travel behaviors of a person or a group of individuals 
[17,18], city-level policies [19], regional-level travel demand [20], land use allocation [21], and many 
other interrelated research themes. As mentioned above, high levels of car ownership are negatively 
associated with societal well-being in terms of energy conservation, public health, and other social 
benefits, though it may be also beneficial in some aspects (for example, cancer screening and job 
accessibility) at the individual scale. Wang (2016) [22] stated that good access to private cars 
encouraged individuals to have a frequent checkup for potential cancer risks. The author further 
added that the travel preferences of a person may follow a similar pattern to that observed in his/her 
neighboring communities. Therefore, using aggregated data or indicators (car ownership) of 
geographical references is important to elucidate people’s travel behavior under a concrete context. 

How car ownership may be spatially and globally aggregated facilitates planners and 
governments in the process of developing specific transportation policies and land use planning in 
response to various needs of practice and research. For instance, police makers may restrict the use 
of private cars when high car ownership is spatially correlated with decreasing trends of physical 
activity of citizens, increased road crashes, and higher levels of noise pollution [19]. By contrast, 
better access to cars, partly represented by high auto ownership, contributes to household-level 
benefits such as greater coverage of cancer screening uptake, necessitating that the parties with 
conflicting interests ought to seek a compromised policy on private vehicle usage [22]. 
Consequently, the spatial clustering of car ownership is a significant phenomenon in relation to 
policy making and the coordination of conflicting interests from a broader perspective, demanding 
additional research endeavors. 

A growing body of the literature has highlighted the significance of employing spatial methods, 
particularly those exceling in detecting spatial heterogeneity at a local level, into analyzing vehicle 
count data [20,23]. Spatially explicit approaches have been increasingly advocated in recent years 
because of their effectiveness in addressing spatial dependence, which has been a common yet 
unavoidable issue in transportation research [24,25]. Ignorance of the spatial dimension may lead to 
imprecise and inefficient estimators of regression coefficients [23,26] and unreliable inferences. In 
addition, the delineation of local hot spots regarding high car ownership helps to better understand 
bicyclists’ preferences [17], job accessibility [27], social equity [28], and other behavioral, economic, 
and societal topics at a fine scale. In sum, it is equally consequential to pinpoint local spatial 
autocorrelation of car ownership on top of global measures. 

Despite the literature’s stressing of the spatial impacts on transportation simulations [20], there 
is no rigorous attempt to incorporate spatial patterns as an explaining factor in addressing the causal 
mechanism in land use-transportation interaction. In an effort to bridge such gaps, this study 
explicitly incorporates spatial autocorrelation into the interpretation of spatial heterogeneity of 
automobile ownership. It develops an integrative framework that aims at understanding (1) whether 
or not automobile dependence is spatially clustered; (2) whether high levels of automobile 



Sustainability 2017, 9, 558  3 of 19 

ownership are locally correlated; and (3) how the spatial mechanism of automobile ownership is 
partly explained by the factors associated with households, built-up environments, and the 
interacting terms of these two categories. 

The remainder of this paper is organized as follows. The next section outlines findings of 
previous studies concerning the level of auto ownership and its driving factors. Following the 
literature review, Section 3 advances two primary hypotheses of this work. Section 4 introduces 
study areas, data sources, and approaches that were used to assess the hypotheses. Section 5 
highlights several key findings of the analysis. Finally, Section 6 summarizes the whole study, 
discusses policy implications of current research, and directs future work. 

2. Background 

For years, the relationships between land use development and commuters’ travel patterns 
have been under intensive debates [29–33]. Overall, the current literature focuses on two aspects; car 
ownership as a mediating variable and the exploration of various factors affecting vehicle 
dependence. 

First, studies have primarily explored the connection between a range of variables and vehicle 
ownership, which is viewed as an intermediate link bridging different factors [34–38]. As early as the 
1990s, for example, Golob (1990) [34] investigated a variety of interrelated factors, including vehicle 
ownership and weekly commuting times by private vehicle, transit, cycling, and walking. Using 
panel data, the author identified interconnected causal linkages between vehicle reliance and the 
remaining three variables. It was found that there existed a bidirectional casual effect between travel 
time by different modes and the number of cars per household. Furthermore, higher levels of car 
ownership were motivated by the propensity or willingness of households to lower their time 
expenditure as well as by people’s cost-and-benefit considerations. It was also noted by the author 
that, in the short term, the shift to a more costly but less time-consuming mode would partly result 
in a rise in the number of cars. In the long run, the adjustments on car ownership may become a 
driving force behind the households’ choices regarding residential locations [34]. Likewise, Raphael 
et al. (2002) [35] assessed whether car ownership substantively affects the employment 
characteristics of a household. Using employment status, work hours, and wages as dependent 
variables, the authors stated that the coefficients of auto ownership were significant and positive in 
all of three ordinary least squares regression models. Specifically, obtaining access to a car serves as 
a crucial factor in affecting labor market outcomes [35]. Nonetheless, these studies might chiefly 
concentrate on the interrelations between auto ownership and households’ characteristics, possibly 
lacking a comprehensive account of the effects of built environment. 

Second, recent studies have focused efforts on exploring the factors associated with car 
ownership, which is regarded as a dependent variable [39–44]. For instance, Cao et al. (2007) [43] 
evaluated the linkages between vehicle ownership and built environment using ordered probit and 
static-score models. They concluded that the number of vehicles of an examined family were 
prevalently determined by demographical and social factors; however, the effects of built 
environment were extremely limited. In the same year, Guo et al. (2007) [44] investigated the same 
issue, but a different definition of the built environment was introduced to their discrete choice 
models. A whole spectrum of measures, including land use types, urban forms, street networks, 
land use diversity index, and so on, were considered as built-up attributes [44]. Their findings are in 
accordance with Cao et al.’s findings [43]. Furthermore, not only do these attributes have impacts on 
the levels of car ownership but on households’ decisions of residential choices as well. Unlike Cao et 
al. (2007), Guo et al. (2007) [44] maintained that both socio-demographics and built environment 
attributes were important determinants in car ownership decisions. However, a major limitation of 
these studies is that they might inadequately consider the potentially spatial signature of car 
ownership. Such spatially unobserved components may contain missing information from 
uncontrolled variables over space and time [26]. 

To address this limitation, further research has applied Graphically Weighted Regression 
(GWR) models that integrate the spatial autocorrelation of regression coefficients in analyzing the 
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spatial distribution of car ownership. Several publications have studied the factors associated with 
car ownership using the GWR approaches [41,45,46]. GWR technologies are promising in capturing 
local patterns. These approaches may be further enhanced if future efforts could attempt to improve 
GWR’s generalizable power. 

In this respect, this study contributes to the current literature by developing a modeling 
framework that targets the understanding of the spatial agglomeration of family’s car ownership 
levels and the coupling effects of built environments and household attributes on the clustering 
phenomena. This work also sheds light on the literature by synthesizing different global and local 
techniques of spatial autocorrelation detection and corrected Poisson regression models. Such a 
synthesis is scarcely observed in previous studies. Moreover, it adds to transportation planning 
practices with additional insights by designing a straightforward procedure that planners find easy 
to implement for various policy purposes. Under this overarching framework, two research 
hypotheses were posited and will be specified in the next section. 

3. Research Hypotheses 

The goals of this article are to examine the following research hypotheses. 

(1) Households with three or more private cars are globally and locally clustered in a metropolitan 
region. 

(2) Household attributes, built-environment characteristics, life style factors, and several 
interacting terms collectively play a pivotal role in determining the level of a household’s car 
ownership. 

4. Data Description and Model Specifications 

4.1. Data Sources and Descriptive Statistics 

Three counties in southern Florida, US: Broward, Palm-Beach, and Miami-Dade, were 
identified as study areas in the empirical analysis because these counties are home to Miami, Fort 
Lauderdale, and other coastal megacities with enormous populations and exceptionally high levels 
of automobile reliance (Figure 1). Three data sources were used in this research. First, the National 
Household Travel Survey (NHTS) created by Federal Highway Administration represents a 
foundation of our data structures. There exist multiple versions of the NHTS [47]. This study opted 
to use the 2009 one, which is the most recent version with comprehensive information. The survey 
was conducted from March 2008 through May 2009 in the majority of the states in the USA. The 
NHTS provides such information as the travel patterns and socio-demographics of responding 
households. Specifically, NHTS’s focus groups are the civilian and non-institutionalized 
populations, which denote households in this article. Second, the data concerning built 
environments stemmed from the parcel data downloaded from the Florida Department of Revenue 
[48] and were processed by the Institute of Transportation Engineers at the University of Florida. 
This data set primarily offered knowledge regarding land use types and transit accessibility. Third, 
the Tiger 2010 Census Tract Files collected from the Geospatial Data Gateway [49] were used to 
ameliorate the presentation quality. After data preprocessing and the mapping of the numerical data 
onto census tract maps, a sample comprising 3980 households was identified. The following section 
will discuss the main procedures for data processing and the model specifications in detail. 
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Figure 1. The case region for this work. 

4.2. Model Specifications 

Figure 2 exhibits an overall outline for this study. A quadrat count analysis was first conducted 
to examine whether or not the spatial pattern of households with high levels of car ownership  
(three or more cars) is non-random. Second, the Poisson regression accounting for spatial 
autocorrelation was used to recognize the factors influencing vehicle ownership. Poisson regression 
has been proved to be powerful in modeling count data [50]. Finally, the Global Moran’s I statistics 
were used to validate the results of the quadrat count analysis regarding the point patterns of 
automobile ownership. We also employed the local version of the Moran’s I to identify hot spots or 
cool zones. The model specifications are introduced in the next few sub sections. 
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Figure 2. An overall research outline (top) and a technical roadmap (bottom). 

4.2.1. Quadrat Count Analysis 

The analysis was used to examine if spatial autocorrelation exists at a global level. First, the 

optimal quadrat size 
*Q  was determined by [51]: 

* 2(A/ N)Q   (1) 

where A  is the total area of the study region and N  is the total number of events, namely 
households with three or more private vehicles. 

Specifically, a total number of 661 households was first selected over a grid of 10,311 square 
kilometers, which was calculated according to the coordinates of the outermost households. Thus, 
the optimal quadrat size was approximately 34.89 square kilometers using Equation (1). 
Consequently, the suggested number of quadrats was 10,311/34.89, namely, 295.5. After 
adjustments, the finalized quadrat number was 308 (Figure 3). 
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Figure 3. The study area (left) and overlaid quadrat grids (right). 

Using the Geo-Spatial Modeling Environment Tool [52], this work next generated the frequency 
counts of quadrats that contained different numbers of events (e.g., 0, 1, 2, 3, etc.). Under the null 
hypothesis, the point pattern was random, complying with a Poisson distribution. Accordingly, the 
probability of observing X  ( X  = 0, 1, 2, 3, and so on) events in a randomly selected quadrat was 
calculated by the following equation: 

e ( )(X j| |)
!

X

P
X

 




   (2) 

where   is the ratio of the sum of the events to the number of quadrats and denotes the average 
number of points in a given quadrat, namely 1.92 in this study, and j  = 0, 1, 2, …, 12 and more, 
where the last category accounts for the possibility of 12 or more events in a given quadrat. 

Therefore, the expected number of quadrats that included a given number of points, i.e., X  = 
0, 1, 2, …, 12 and more, was calculated by: 

( | |)*KjE P X j    (3) 

where K  refers to the total number of quadrats. 
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Third, several tests were conducted to identify whether the observed probability distribution of 
households with three or more cars was significantly different from a benchmark distribution, the 
Poisson distribution. Finally, the observed frequency of households with high levels of auto 
numbers were compared with their expected counterparts using the Chi-square test, described by: 
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j j

j

j

O E

E
 






 (4) 

where jO  is the observed number of quadrats with a given number j  of the households with three 

or more vehicles and jE  denotes the expected number of quadrats with a given number j  of the 

households. 

4.2.2. Poisson Regression Analysis 

Poisson regression was selected to justify the proposed variables that may explain the variation 
of the number of vehicles per household for the whole 3980 units of analysis. Specifically, it was 
utilized to model the associations between a wide range of explanatory variables and the count data. 
Based on the literature and data availability, the model calibrated three categories of factors, 
household characteristics, built environment, and life style, simultaneously taking into account the 
interactive effects between households and built environment [34,35] (Table 1). It has been justified 
that residential locations are associated with auto ownership levels [35,53], and the preferences of 
households’ residential sites are argued to be partly reflected by an index describing the degree of 
land use mix [44]. Accordingly, this paper employed such an index as a potential explanatory 
variable. It adopted the paradigm of land use diversity designed by Guo (2007) [44], while minor 
modifications were made to accommodate the data structures of this empirical work. The modified 
measure of land use mix has a potential to be generalizable to similar studies that lack a rich and 
well-structured data source for the land use configurations. Specifically, it was defined by: 

0.25 0.25 0.25 0.25
1

1.5
Rs Cs Is Os

LUXs
      

   (5) 

where Rs, Cs, Is, and Os are the area percentages that correspond to residential, commercial, 
industrial, and other land use types surrounding a specific household in a 0.25-mile buffer area, 
respectively. According to Bhat and Guo (2004) [54], the indexes may range from 0 to 1, where 1 
refers to an entirely diversified land use structure and 0 indicates zero land use mix. 

Next, standard and corrected regression models were described by: 

0 1 1ln(U ) ...i i k ikX X       (6) 

where iU  is the number of vehicles of the i-th household, 1,...,i ikX X  represent k explanatory 

variables, and 0,..., k   denote the estimated coefficients corresponding to different independent 
variables. 
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Table 1. Description of possible explanatory variables for the Poisson Regression. 

Variable Name and Description Variable Type Code Definition Min. Mean Max.  Data Source 

Household 
characteristics 

HHFAMINCx (Derived total household income) Category  
1 = low income, 2 = medium income, 

and 3 = high income  - - - 

NHTS [47] 

NUMADLT (Count of adult household members at least 18 years old) Interval  - 1 1.88 10 
HOMEOWN (Housing unit owned or rented) Dummy  1 = rent and 0 = own - - - 
DRVRCNT (Number of drivers in household) Interval  - 0 1.72 7 

HHSIZE (Count of household members)  Interval - 1 2.22 10 
HH_RACEx (Race of household respondent) Dummy  1 = white and 0 = other races  - - - 
WORKER (Number of workers in household)  Interval  - 0 0.83 4 

CLWORK (Close to work) Dummy  1 = yes and 0 = no - - - 

FDOR [48] and UFIT 

Built environments 

DISTAC (Distance to nearest activity center in miles) Continuous  - 0.69 11.24 42.51 
DISTRES (Distance to nearest residential center in miles) Continuous  - 0.60 9.21 47.10 

MIX_25 (Land use mix index of a 0.25-mile buffer  
area of a household) 

Continuous  - 0 0.43 0.93 

BUS1MILE (Number of bus stops within one mile of a household)  Interval  - 0 36.01 259 
DISTBS (Distance to the nearest bus stop in meters)  Continuous  - 2.89 1394.13 15,629 

FDOR [48] and UFIT 
POPDENTRCT (Population density at census tract level (sq mile))  Continuous  - 0.03 5615.03 41,911.28 

JOBDENTRCT (Job density at census tract level (sq mile)) Continuous  - 2.54 2280.93 15,213.78 
HOSDENTRCT (House density at census tract level (sq mile)) Continuous  - 0.01 3026.96 38,555.15 

URBAN (Category of Urban area) Category  
1 = city core, 2 = inner city,  

3 = suburbs, and 4 = not in urban area 
- - - NHTS [47] 

Life style  
CLFRIEND (Close to friends) Dummy  1 = yes and 0 = no - - - 

FDOR [48] and UFIT  

CLSCHOOL (Close to schools) Dummy  1 = yes and 0 = no - - - 
CLRETAIL (Close to retail services)  Dummy  1 = yes and 0 = no - - - 

Interactions 

HHFAMINCx*BUS1MILE - - - - - 
HHFAMINCx*DISTBS - - - - - 
HHFAMINCx*MIX_5 - - - - - 

HHFAMINCx*URBAN - - - - - 
HOMEOWN*BUS1MILE - - - - - 

HOMEOWN*DISTBS - - - - - 
 

Note: NHTS: National Household Travel Survey; FDOR: Florida Department of Revenue; UFIT: Institute of Transportation Engineers, University of Florida. 
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4.2.3. Spatial Clustering Analysis 

The third part of this work was to detect any local clusters of the households with a high level of 
automobile ownership. Census tracts overlaid with the counts of households with three or more cars 
served as basic units of analysis. Additionally, the study area was adjusted by excluding those 
census tracts such as national parks and beaches, which are not considered residential locations. A 
total of 661 points of interest were overlaid with 1214 polygons, using the Geospatial Modeling 
Environment software, an open-source platform built upon the R language [52]. We then assessed if 
there are any ‘hot spots’ or ‘cool zones’ using the Global and Local Moran’s I statistics, two crucial 
functions in GeoDa, a freeware widely used among geographers [55]. Specifically, the Global 
Moran’s I is represented as: 

1 1
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1

( )( )
( )
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n n

ij i j
i j

n

i
i

c X X X X
nI
C X X
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where iX  and jX  are the number of households with three or more cars in the i-th and j-th census 

tracts, respectively, and 
1 1

n n

ij
i j

C c
 

 , and ijc  is a typical element from a pre-defined n-th order 

connectivity matrix, with C  describing the connectivity between the i-th and j-th census tracts. 
Additionally, the Local Moran’s I can be defined (for a given i-th census tract) as [56]: 
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where iy  and jy  denote the number of households with three or more cars in the i-th and j-th 

census tract, respectively, and ijw  is an element of the spatial weight matrixes that correspond to 

distinct connectivity definitions; Rook’s, Queen’s, and k-th Nearest Neighbor measures. The 
application of three connectivity concepts helped the reliability of hypothesis testing. Another layer 
of the credibility was further secured by the utilization of both raw data and standardized data in the 
ratio of events to the population at risk. 

5. Empirical Results  

5.1. Quadrat Count Analysis  

Table 2 indicates that at the 95% and 99% confidence levels, the observed spatial pattern of 
households with three or more vehicles is other than random, exhibiting a tendency of clustering. 
Accordingly, it is critical to explore whether the clustering of households with high rates of vehicle 
ownership can be explained by the demographic and life style characteristics of households as well 
as their surrounding built environments. The findings will be presented in the Section 5.2. 

5.2. Poisson Regression Results  

Table 3 displays the results of the standard Poisson procedure, and the lack of fit tests show that 
we fail to reject the null hypothesis that the model provides adequate model fit. In other words, at the 
99% and 95% confident levels, this best-fit model sufficiently explains the variation of the number of 
cars per household. Nevertheless, the value of Dispersion Phi, 0.2865, implies an under-dispersion 
issue of this current model, which may affect the efficiency of independent variables. This issue may 
potentially relate to the distribution of the dependent variable and spatial autocorrelation of the error 
terms. 
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Table 2. Goodness of fit test for the Quadrat Count Analysis. 

Number of Households with Three and 
More Vehicles per Quadrat 

Observed Number of 
Quadrats 

The Probability of Events under a Completely 
Random Poisson Distribution 

Expected Number of 
Quadrats 

Chi-Square 
Statistics 

0 191 0.1468 45.2078 470.1711 
1 15 0.2816 86.7460 59.3398 
2 16 0.2702 83.2255 54.3015 

… … … … … 
… … … … … 
10 5 0.0000 0.0084 2955.6760 
11 3 0.0000 0.0015 6114.4168 

12 and more 8 0.0000 0.0003 232,467.0013 
Total 308 1 308 242,658.76 * 

Lambda: point density 1.9188 
* significant at a 95% and 99% confidence level with a degree of freedom of 12. 

Table 3. The results of standard Poisson regression. 

Significant Explanatory Variables Coefficients Wald’s Chi Square 

DRVRCNT 0.35 ** 129.38 
HHFAMINCx 0.12 * 3.1 
HOWNOWN −0.19 ** 5.06 

HOSDENTRCT −0.00 ** 4.95 
WORKER 0.06 ** 10.03 

Dispersion Phi 0.29  
Pseudo R Square 0.49  

Final log likelihood −4357.11  
Intercept-only likelihood −4833.37  

Lack-of-Fit Test DF Chi Square
Pearson  3300 945.45  

G statistics  3300 990.58  
n = 3980; DF = Degree of Freedom; ** significant at 95% confident level; * significant at 90% confident level. 
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To address the under-dispersion problem, we reran the regression using Dispersion Phi to 
correct standard errors. Table 4 displays the model results, indicating an enhancement of the 
significance of explanatory variables. Surprisingly, six variables are found to be significant at a 95% 
confidence level. Specifically, the number of licensed drivers, household income, and the number of 
workers have a significantly positive association with the household’s vehicle ownership level. Such 
statistical inferences are intuitively reasonable since rich families have more purchasing power than 
poor ones and therefore are more eager to obtain driving licenses to fulfill their flexible travel needs. 
Further a household having more workers is more inclined to own more cars to commute to varying 
working sites than one with fewer workers. These findings are largely in accordance with similar 
research conducted in other metropolitan regions across the world [57,58]. 

Table 4. The results of the corrected Poisson regression. 

Significant Explanatory Variables Coefficients Wald’s Chi Square 
CLSCHOOL −0.16 ** 5.88 
DRVRCNT 0.35 ** 451.60 

HHFAMINCx 0.12 ** 10.82 
HOWNOWN −0.19 ** 17.67 

HOSDENTRCT −0.00 ** 17.27 
WORKER 0.06 ** 35.02 

Dispersion Phi 0.29  
Pseudo R2 0.49  

Final log likelihood −4357.11  
Intercept-only likelihood −4833.37  

Lack-of-Fit Test DF Chi2 
Pearson  3300 945.45 

G statistics  3300 990.58 
n = 3980; DF = Degree of Freedom; ** significant at 95% confident level. 

In addition, those households without properties have less cars than families living in their own 
houses or apartments, all else being equal, which was echoed by a similar study done by Li et al. 
(2010) [58]. Likewise, the variables of the distance to school and house density at the census tract 
level have similar impacts on car ownership. In other words, shrunken levels of automobile 
ownership are linked with higher densities of residential units and educational institutions, as also 
substantiated by a couple of studies (see, for example, [26,58,59]). However, only six out of 
twenty-seven variables add significantly explanatory powers in the current model. The majority of 
the measures of built environment are insignificant. Particularly, car ownership levels in three 
counties appear to be irrelevant to land use diversity, transit proximity, and job density; these 
variables have yet been argued to affect vehicle ownership [60]. Such inconsistency may be partially 
ascribed to three reasons. First, some other variables (such as housing densities) used in this work 
may already possess sufficient information regarding the land use characteristics, thereby rendering 
similar ones insignificant. Second, the interpretations are contingent upon concrete empirical 
locations. The USA has a long history of prioritizing auto oriented developments. Under such 
developmental strategies, therefore, her citizens may consider private cars favorably as a 
fundamental commuting alternative, even if recent years have witnessed a burgeoning advancement 
of transit-oriented development in this nation. 

Third, the current model may inefficiently capture additional unobserved factors, such as 
spatial autocorrelation (Figure 4). Hence, the following sections will focus on exploring the spatial 
patterns of auto ownership. 
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Figure 4. Spatial distribution of the residuals recovered by the corrected Poisson regression. 
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5.3. Spatial Clustering Results  

5.3.1. ‘Hot spot’ Detection Using the Global/Local Moran I Statistics 

Global Moran’s I Statistics Based on Raw Data and Standardized Data 

(1) Global Moran’s I statistics with raw data 

Using the GeoDa software developed by the Center for Spatially Integrated Social Science, we 
calculate the Global Moran’s I statistics based on various orders of nearest neighbors (Table 5). The 
results show that, at the 95% confidence level, there exists globally spatial autocorrelation among 
raw data (cases) at the nearest neighbors of different degrees. 

Table 5. Global Moran’s I results for raw data at various scales of nearest neighbors (NN). 

(2) Global Moran’s I statistics with standardized data 

Next, raw data were standardized through dividing case data by population data, taking into 
account the different size of the population at each polygon. Figure 5 shows that outliers were 
eliminated after the standardization process. 

Using the standardized data, the Global Moran’s I statistics for k nearest neighbors was generated 
through GeoDa (Table 6). Interestingly, with 99 permutations of the Global Moran’s I statistics, there is 
no evidence of global spatial autocorrelation even at a 90% confident level. In other words, the total 
population of each location heavily impacts the results of global autocorrelation. This result may also 
suggest that high auto ownership levels are correlated with population. 

 
Figure 5. Box maps of raw data (left) versus standardized data (right). 

Moran’s I Results NN (2) NN (3) NN (4) NN (5) NN (6) 
Moran’s Index 0.1725 0.1784 0.1744 0.1721 0.1639 

Pseudo p value (99 permutations) 0.01 0.01 0.01 0.01 0.01 



Sustainability 2017, 9, 558  15 of 19 

Table 6. Global Moran’s I results for standardized data at various scales of nearest neighbors. 

Moran’s I results NN (2) NN (3) NN (4) NN (5) NN (6)
Moran’s Index 0.0355 0.0239 0.0026 - - 

Pseudo p value (99 permutations) 0.11 (around) 0.19 (around) 0.40 (around) - - 
Pseudo p value (999 permutations) 0.10 (around) 0.14 (around) 0.40 (around) - - 

Local Moran’ I Statistics Based on Raw and Standardized Data 

All tests were conducted in 999 permutations through GeoDa at the 0.05 significance level. 
Figure 6 indicates an obvious disparity of results between the raw and standardized data. As for the 
raw data, the largest census tract in the north-west study area exhibits a trend of hotspots both under 
Rook’s and Queen’s weighting schemes. However, this phenomenon is not intuitively reasonable in 
that this census tract is not a populated area. In other words, the results would be biased if the 
population at risk in each census tract is not considered. Furthermore, the results of the raw data are 
more similar to the outcomes of the standardized data under the 2nd Nearest Neighbor weighting 
scheme than they are under the other two. The results seem intuitively reasonable if the testing 
procedures take into consideration the households with high levels of car ownership in neighboring 
tracts. Consequently, there do exist several hot-spots and cool zones if the local test is based on raw 
data. 

 
Figure 6. The comparison between raw data (top) and standardized data (bottom) regarding local 
hot spots (red) or cool zones (blue) of the levels of auto ownership. 
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With respect to standardized data, Figure 6 suggests a more consistent pattern than raw data 
concerning hotspots and cool zones; ‘high-high’ areas and ‘low-low’ regions. For instance, there 
appear only marginal differences of the sum and locations of the hotspots among three weighting 
schemes: Rook’s (24), Queen’s (32), and two Nearest Neighbors (25). When it comes to raw data, 
though, the number of hotspots (‘high-high’ areas) under boundary-based weighting schemes 
substantially differs from the number of hotspots under distance-based weighting schemes. Such 
discrepancies suggest that local hotspots and cool zones are randomly distributed over the study 
area. It seems that the three countries have an even distribution of high levels of auto ownership. 

6. Discussions and Conclusions 

The current paper illuminates the global and spatial patterns of vehicle ownership levels and 
explored the factors associated with households’ vehicle counts. It develops a framework that can be 
used to visualize and explain the spatial heterogeneity of auto ownership at the county level. It 
validates this framework in Broward, Palm-Beach, and Miami-Dade Counties, southern Florida, 
USA. This research indicates that the global pattern of households with high rates of vehicle 
ownership is non-random if population at risk is not taken as a reference. Nevertheless, there is no 
statistical evidence that households with three or more cars were globally clustered based on 
standardized data. Moreover, this paper does not find robust evidence that those households with 
high levels of vehicle ownership were locally clustered if the conclusion is made based on 
standardized data. In addition, six variables are found to significantly affect car ownership, as 
shown by the regression results of the Standard and Corrected Poisson models. The most substantial 
factors are the number of drivers in households, housing tenure, and the number of workers in 
households. These findings are in accordance with earlier studies [35,45,53]. The contributions of this 
work to the literature are twofold. First, this paper establishes a refined index to characterize land 
use diversity based on the approach of Guo et al. [44], and the measure appears to be scientifically 
sound to address those data sets with limited information on land use. Second, the application of 
distinct connectivity models boosts the robustness of hypothesis testing. 

This paper also adds additional insights into planning practice. Whilst the socio-demographics 
of households considerably impact their selection of travel modes, optimizing land use is beneficial 
to mitigate car dependency [61]. Compact urban forms and mixed land use structures may 
counteract households’ propensity to own a car. However, transportation policies and the 
regulations of private vehicles should be tuned toward specific contexts. As stated in the 
introduction, regulators should make distinct car usage policies based on different needs. Figure 6 
might indicate that a tendency of high car ownership is observed both in the downtown and rural 
regions, as represented by the red color. Imposing a strict tax on car use (such as road pricing) over 
the whole region may cause concerns about social inequity at the individual level. An elderly person 
with an apparent healthcare need may live in suburban areas, as suggested by previous studies 
regarding the transportation accessibility of people aged 65 or over [62,63]. These people residing in 
city peripheries may rely on private cars more heavily in order to make more frequent health 
checkups and cancer screenings than citizens in metropolitan regions. Thus, car ownership and its 
external consequences should be addressed in a way whereby flexible polices can accommodate the 
voices of different social groups. For example, when examining those areas of potentially high levels 
of car ownership, we need to be familiar with their demographic information and land use patterns 
before arbitrarily discouraging car dependence. For example, in download areas and central 
business districts, a variety of measures such as congestion pricing, the increase of parking fees, and 
restrictions on parking space can be deployed to deter people’s desire to own a private car, thereby 
promoting mass transit, cycling, walking, and other environmentally friendly travel modes. 
Meanwhile, the elderly, disabled people, and those with frequent healthcare needs can be exempt 
from those regulations of car usage with free parking space and discounted congestion tolls [22]. The 
methods and outcomes of this work can be applied to formulate flexible transportation policies. 

Several limitations of this study deserve further investigation. First, this study does not conduct 
a sensitivity analysis of the quadrat size, which may bias the results. Moreover, the quadrat analysis 
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and the spatial autocorrelation tests fail to consider edge or boundary effects of the study area. This 
may hamper the testing statistics. Second, the study is based on sample data, limiting its ability to 
model or predict human behaviors, and the statistical implications are unbiased only when the 
population at risk is explicitly integrated in the correlation analysis. Third, the under-dispersion 
issue of the Poisson model requires further scrutiny. 

This paper opens several promising avenues for follow up work and future research. First, 
prospective efforts can improve the techniques of the spatial autocorrelation of car ownership levels 
by developing innovative ways for edge or boundary corrections. In addition, future studies may 
employ other types of generalized models, including spatial error, spatial lag, multilevel 
ordered-response, and system dynamics models, for better revealing the impacts of land use 
patterns on vehicle ownership. With the rapid development of hardware and computers’ 
computational capacities, major auto manufacturers expand their investment in electric, 
hybrid-energy, and autonomous vehicles. Hence, the spatial patterns of the ownership levels of 
those vehicle types will be a fruitful direction in the near future.  
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