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Abstract: The Chinese government has committed to reaching its carbon emissions peak by 2030, 
which is a major undertaking. However, traditional carbon allocation processes may face a suite of 
difficulties, including the dynamics of the allocation principle, the independence of the allocation 
entities and data availability. Considering these difficulties, in this study, we developed a  
multi-level carbon allocation model that integrates five sectors and 30 provinces in China. Based on 
the clustering of the sectoral carbon emission of major countries (or regions), the model simulates 
and analyzes carbon allocation at the provincial level in China under the peak commitment. The 
results of this study are as follows: First, in contrast to allocating national carbon allocations (NCAs) 
to provinces, the grandfather principle is the only option for allocating NCAs to sectors. In the 
future, China’s carbon emissions pattern will be dominated by the contribution from electricity and 
heat production sectors. This carbon emission pattern can be further divided into three categories: 
Pattern M, where the manufacturing and construction sectors significantly contribute to total 
emissions; Pattern R, where the residential buildings and commercial and public services sectors 
have a significant contribution to total emissions; and Pattern T, where the contribution of the 
transport sector to total emissions is substantial. Second, emission patterns affect the allocation of 
sectoral carbon allocations at the national level (SCANs). Although the preferences vary from sector 
to sector, they are consistent between the national and provincial levels. Third, compared with 
sectoral preferences, provincial preferences are more complex. Sixteen provinces, including Hebei, 
Shanxi and Inner Mongolia, prefer Pattern T. There are nine provinces, for example, Guangdong, 
Shandong and Jiangsu, whose preferred pattern is M; and five provinces, represented by Beijing, 
Shanghai and Tianjin, have a preference for Pattern R. Last, but not least, to achieve China’s peak 
commitment, different provinces face alternative peak pressures. It is worth mentioning that, in 
patterns R and T, provinces with a high proportion of manufacturing and construction sector 
emissions, such as Guangdong, Shandong, Jiangsu and Zhejiang, may have to increase the share of 
carbon emissions from the transport sector or from residential buildings and commercial and public 
services sectors to postpone their peak year. 
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1. Introduction 

On 30 November 2015, at the 21st session of the UNFCCC (See Appendix A for abbreviations in 
the paper), China promised to reach its carbon emission peak by 2030 [1], marking the beginning of 
China’s cap control of carbon emissions. Achieving this commitment has become one of the major 
challenges facing the Chinese government as part of its response to global climate or environmental 
change. Curbing the carbon emissions requires the implementation of regional carbon reductions in 
China. However, a prerequisite for the implementation of carbon reductions is to determine future 
total carbon allocations and their interregional allocations in China. This represents a scientific 
problem that needs in-depth study. 

Before the Kyoto Protocol [2] was developed in 2007, most studies on carbon allocations focused 
on the allocation principles and used Article 3.1 of UNFCCC [3] as evaluation criteria. These studies 
concentrated on the selection of an appropriate principle [4–6]. Rose et al. [7] proposed three 
categories of controversial equity principles. The first category is based on distribution equity, 
represented by the principle of sovereignty, equality and the ability to pay. The second category is 
associated with output equity, for example the principle of horizontal and vertical compensation. The 
third one relies on process equity, exemplified by the principle of maximum minimization, 
consistency and the market. In general, as Steenberghe [8] stressed, the latter two categories are less 
frequently applied than the first category, although these two categories are superior in terms of 
dynamics and flexibility. The main reason is that these categories account for many uncertainties, 
such as economic growth, technology and emission reduction costs. It should be noted that given the 
dynamic evolution of regional carbon emissions, new challenges will arise regardless of the adopted 
allocation principle [9]. Currently, more studies are carried out using various models from a  
cost-effective point of view [10,11]. For example, Lin and Ning [12] assessed the EU’s carbon 
allocations based on the ZSG-DEA model. Park et al. [13] investigated the use of the Boltzmann 
distribution to allocate carbon for eight countries (Canada, China, Germany, Italy, Japan, Russia, the 
U.K. and the U.S.). Zhang et al. [14] combined the Shapley value with an entropy approach to allocate 
regional carbon allocations in China. These models provided important reference for further study. 
However, some studies of modeling carbon allocation appear to be subjective, and the indicators 
used in these studies tend to be one-sided and isolated [15] because the models are based on too many 
strict assumptions, some of which are only made at the theoretical level. 

With respect to the allocation process, there are mainly two approaches [16]. One is a top-down 
process: that is, first the allocations of the upper-level entity are calculated, and then, these allocations 
are assigned to subordinate entities, for example computing global carbon allocations among 
countries (or regions) [17–20], national carbon allocation among provinces [21,22] or among  
sectors [23,24]. The other approach for carbon allocation is a bottom-up process. This bottom-up 
approach first sets the emission reduction targets to calculate the allocations for the lower-level entity, 
and then, these allocations are aggregated to the superior entity, represented by estimating global 
allocations by regional voluntary emission reductions under UNFCCC [25,26]. In fact, both the  
top-down and bottom-up approaches require independence, which means that there should be no 
bargaining or conditional binding among lower-level entities. Otherwise, it is easy to form inequity 
in the allocation process, which would make it difficult to implement. For example, when assigning 
a country’s allocations to its provinces through the top-down process, each province tends to use its 
political or economic power to influence government decisions on the choice of principles when the 
results of provincial carbon allocations (PCAs) differ from one principle to another. Therefore, 
provinces with less power to negotiate can only make a compromise on the allocation principle, 
thereby losing the quotas that should be allocated to them under the principles that they prefer. 
Another example is the use of the bottom-up process to allocate global quotas. With respect to NCAs, 
more than 20 global schemes have been proposed. However, none of them have been unanimously 
accepted because it is hard to reach agreements on critical points (e.g., some countries’ emission 
reduction targets are based on others’) [27–29]. 

The research on carbon allocation has matured, which provides a reference for the study of  
intra-regional allocation. However, carbon allocation at the regional level, for example examining 
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regional allocations in China under the peak commitment, faces a series of challenging questions. 
First, how do we combine the dynamic evolution of regional carbon emissions with a specific 
principle? Second, how do we eliminate the interdependence among provinces in the allocation 
process? In addition, lack of data in some provinces further increase the difficulty.  

To address these challenging questions, we developed a carbon allocation model that integrates 
three levels, including national, provincial and sectoral, with different sectoral emission patterns. 
Here, sectoral emission patterns refer to the proportion of carbon emitted by different sectors within 
a region. To address the first question above, the sectoral emission patterns of representative 
countries are studied as the target model. Then, trend extrapolation and scenario simulation of the 
target model are applied to reflect the alternative future evolution of China’s carbon emission 
structure. To answer the second question, instead of the traditional methods where NCAs are 
allocated to provinces first and then to the different sectors within the province, an improved method 
is used where NCAs are allocated to sectors first and then to the corresponding sectors in each 
province. The advantage of the improved method is that the negotiation space will be greatly 
restricted due to large differences in production methods and the product mix among sectors. Thus, 
this method should effectively avoid the interdependence among the provinces in the traditional 
method. In addition, it is difficult to assign allocations to sectors within the province based on the 
traditional method because the proportion of carbon emitted by different sectors at the provincial 
level in China is often not available. Thus, the improved method calculates sectoral carbon allocations 
by taking the ratio of sectors’ output at the provincial level to those at the national level instead of the 
ratio of sectoral carbon allocations at the provincial level (SCAPs) to SCANs because these two 
proportions are usually consistent, and the former is easy to obtain from the input-output table at the 
provincial level. 

The rest of the article is structured as follows. In Section 2, we discuss the data and model. In 
Section 3, we use scenario simulation to analyze the allocation results of 30 provinces in China and 
discuss their implications. In Section 4, we provide a summary and concluding remarks. 

2. Model and Data 

2.1. Data 

2.1.1. Classification of Sectors 

The current classification standards of sectoral division can be based on five sector-,  
17 sector- and 42 sector-based categories. To ensure the consistency of data at the national and 
provincial levels and to account for the availability of data, the study classifies all sectors into five 
categories according to the World Bank criteria: (1) residential buildings and commercial and public 
services, (2) manufacturing and construction, (3) transport, (4) electricity and heat production and  
(5) “other” sectors (“Other” sectors represent all sectors, except the four sectors mentioned above per 
the World Bank database.). 

2.1.2. Data Sources and Processing 

The study mainly involves two types of data: (1) the proportion of sectoral carbon emissions in 
major countries (or regions) and (2) the ratio of sectors’ output at the provincial level to that at the 
national level. The former comes from the World Bank, where the proportion of sectoral CO2 
emissions were gathered from 1971 to 2013 and extrapolated to 2030 using a condition in which the 
summation of the proportion of all sectors is 100%. The latter comes from the input-output table on 
the 42 sectors of 30 provinces in China in 2007 (National Bureau of Statistics. China’s Regional Input-
Output Table 2007. China Statistics Press. In general, the ratio of sectors’ output at the provincial level 
to that at the national level remains relatively stable). See Appendix B for the consolidation of sectoral 
data from different data sources. The extrapolations in this study are based on the least squares 
principle, where the best curves are fitted by minimizing the sum of squared deviations of historical 
and trend values, including quadratic, logarithmic and exponential functions. In addition, mean 
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squared error (MSE) is used to validate the fitted curves. In the process of validation, 43 historical 
carbon emission data (1971–2013) are divided into two groups, where the former 30 data are taken as 
the curve fitting data group for training and the latter 13 data as the data group for validation. 

The study sets 2015 as the base year, 2030 as the final year and 2016–2030 as the allocation period. 
China’s carbon emissions in 2015 are extrapolated through polynomial fitting and trend extrapolation 
from the World Bank’s historical data. An average value of 2.85 GtC/year (The unit GtC represents 
the gigatons of carbon) was obtained, and values vary between 2.74 GtC/year and 2.97 GtC/year. 
China’s carbon emissions in 2030 were projected as 3.19 GtC/year using the projections for the current 
policy scenario of the World Energy Outlook [30]. 

2.2. Model 

In this study, we proposed a method to improve carbon allocation in China (see Figure 1). Using 
this method, our model first allocates NCAs to sectors and then allocates them to the corresponding 
sectors in each province based on a top-down process. Finally, the PCAs will be aggregated based on 
a bottom-up process. 

 

Figure 1. Improved method for carbon allocation in China (NCAs: national carbon allocations; 
SCANs: sectoral carbon allocations at the national level; SCAPs: sectoral carbon allocations at the 
provincial level; PCAs: provincial carbon allocations). 

2.2.1. National Carbon Allocations 

In general, NCAs are the maximum amount of carbon emissions allowed for a country. 
Therefore, the total NCAs from 2016 to 2030 can be expressed as follows: 

2016 2030– t

t
NCA NCA  ]2030,2016[t  (1) 

where t is a single year during the allocation period. 

2.2.2. Sectoral Carbon Allocations at the National Level 

SCANs can be obtained from NCAs. A relatively straightforward method of calculating SCAPs 
is to set representative indicators by selecting a specific principle and then allocate NCAs to sectors 
based on the value of representative indicators, as in Equation (2) 

tt
i

t
i NCASCAN    (2) 

where  is the value of representative indicators and i is the sector ID. 
To combine the dynamic evolution of regional carbon emissions with the selected principle, this 

study introduces the allocation approach for SCANs based on sectoral emissions patterns. The steps 
are as follows: 

(1) Conduct cluster analysis of the sectoral carbon emission structure of major countries (or regions), 
and extract typical target models. 

(2) Select a representative country in each target model. 
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(3) Set the ratio of sectoral carbon emissions to national carbon emissions as the representative 
indicator. Assuming the representative indicator changes at a constant rate, the value of the 
representative indicator during the allocation period can be expressed using the  
following formula. 

15)(）2015（ 201520302015
iii

t
i t    (3) 

(4) Allocate NCAs to all sectors using Equation (2). 

2.2.3. Provincial Carbon Allocations 

In contrast to the traditional method, the improved method first obtains SCAPs and then 
estimates PCAs, where SCAPs are calculated by multiplying SCANs by the ratio of sector output at 
the provincial level to sector output at the national level, as in Equation (4) 

t
ijiji

t
ji SCANSCAP  ,,,   (4) 

where j is the province ID,  is the ratio of sector output at the provincial level to sector output at the 
national level and  is the deviation from sectoral policies at the provincial level to the sectoral policies 
at the national level. Here, we assume  = 1, which means that the evolution process of sectoral policies 
at the provincial level follows the evolution process of sectoral policies at the national level. 

Finally, PCAs are calculated by summing up all SCAPs in the same province, as in Equation (5). 


i

t
ji

t
j SCAPPCA ,  (5) 

3. Simulation and Discussion 

3.1. China's National Carbon Allocations during the Peak Commitment Period 

The peak commitment means that the NCAs will rise until 2030. In general, the rising trend can 
be divided into three types according to the slope of the NCAs: constant, decreasing and increasing. 
The peak commitment also means that 2030 will be a turning point in the rise of NCAs, when the 
slope of NCAs changes from positive to negative. Therefore, it is not realistic for the slope of China’s 
NCAs to show an increasing trend under the peak commitment.  

Using Equation (1), we can estimate China’s NCAs from 2016 to 2030. Figure 2 shows that values 
range from 45.51 GtC to 47.91 GtC. The horizontal (NCAs peak in 2016 and remaining constant until 
2030) and slash scenario (NCAs increase with a constant slope from 2016 to 2030) represent the 
maximum and minimum, while the quadratic scenario (NCAs increase quadratically) lies in between 
(with an NCA of 46.19 GtC). 

 

Figure 2. NCAs in China from 2016 to 2030 (NCAs: national carbon allocations). 

The peaking scenario determines the relative size of China’s NCAs during the allocation period. 
Obviously, China’s NCAs before the peak will not behave like either the slash or horizontal scenario, 
but will be most like the quadratic scenario (with different degrees of curvature). Given the same 
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conditions, the greater the curvature in the scenario, the higher the value of China’s NCAs is. We 
focus on the quadratic scenario in the following simulation and analysis. 

3.2. China's SCANs during the Peak Commitment Period 

3.2.1. Selection of Principles for SCAN allocation 

Using Equation (2), we can now allocate NCAs across sectors. Taking the grandfather and output 
principles as examples (For the definition of the grandfather and output principles, see [7]), carbon 
emissions and the sector added value are set as the representative indicators for these two principles. 
Figure 3 shows the SCANs from 2016 to 2030. The results of SCANs under the grandfather and GDP 
principles show significant differences. Under the grandfather principle, electricity and heat 
production sectors account for the largest share of the SCANs, and “other” sectors account for the 
smallest portion. Under the GDP principle, the share of manufacturing and construction sectors 
becomes the largest, while the share of electricity and heat production sectors shifts from the largest, 
under the grandfather principle, to the smallest. 

 
Figure 3. SCANs under the grandfather and GDP principle from 2016 to 2030 (SCANs: sectoral carbon 
allocations at the national level). 

In contrast to the quota allocations among provinces in which interdependence exists, it is much 
easier to determine the allocation principle among sectors. Because of the difference in production 
methods and product mix among sectors, the adoption of any principles other than the grandfather 
principle would have a significant impact on most sectors, which is highly impractical. This makes 
the grandfather principle the only option for inter-sectoral quota allocation.  

3.2.2. Sectoral Emission Patterns in Major Countries or Regions 

Based on the grandfather principle, China’s NCAs can be allocated among sectors at the national 
level. However, an important prerequisite for the allocation is to get the future trend of the sectoral 
carbon emissions structure. Although sectoral carbon emissions vary from country to country, some 
common features or patterns may be identified that could be of help for inferring this future trend. 
Therefore, we conducted clustering analysis on the proportion of sectoral carbon emission (To avoid 
multicollinearity, the clustering process discards the data of the proportion of CO2 emissions from 
“other sectors” to total emissions.) in major countries (or regions) using the hierarchical clustering 
method [31] and used the clustering results as China’s alternative sector carbon emission patterns 
during the peak commitment period. The clustering result (see Table 1) shows that there are two 
categories of countries (or regions) that are significantly different from China as in Category 3 (where 
emissions from electricity and heat production sectors contribute most to total emissions), Category 
1 (where emissions from the transport sector contribute most to total emissions) and Category 2 
(where emissions from the manufacturing and construction sectors contribute most to total 
emissions). Further analysis finds that the countries (or regions) that fall within Categories 1 and 2 
are either economically underdeveloped or less populated. Accounting for the current conditions and 
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future trends of China’s economy and population, our study indicates that China will not shift to 
either Category 1 or 2 in the future and will more likely remain in Category 3. For this reason, these 
two categories (1 and 2) were dropped. We then conducted hierarchical clustering analysis on the 
remaining data (i.e., we focus on emissions from electricity and heat production sectors, contributing 
most to total emissions). The second clustering results (see Table 1) show that the USA and Canada 
belong to Category 3-1; the EU and Turkey fall within Category 3-2; and China and India belong to 
Category 3-3. These categories are referred to as Pattern T, Pattern R and Pattern M, respectively, 
where all three patterns are dominated by the contribution from electricity and heat production 
sectors. In Pattern M, the manufacturing and construction sectors significantly contribute to total 
emissions. In Pattern R, the residential buildings and commercial and public services sectors have a 
significant contribution to total emissions. In Pattern T, the contribution of the transport sector to 
total emissions is the second highest (after the dominating contribution from electricity and heat 
production sectors). 

Table 1. Sectoral emission patterns in major countries (or regions). 

Categories 
Countries (or Regions) Characteristics 1st 

Clustering 
2nd 

Clustering: 

Category 1 / 

Cameroon, Ghana, Cambodia, Tanzania, Ethiopia, 
Nepal, Benin, Congo, Angola, Albania, Costa Rica, 
Sudan, Kenya, El Salvador, Kyrgyzstan, Guatemala, 
Georgia, Brazil, Switzerland, Colombia, Ecuador, 
Botswana, Mozambique, Namibia, Togo, the 
Democratic Republic of the Congo 

Emissions from the transport 
sector contribute most to total 
emissions 

Category 2 / 
the United Arab Emirates, Oman, Trinidad and 
Tobago, Zambia, the Democratic People’s Republic of 
Korea 

Emissions from the 
manufacturing and 
construction sectors contribute 
most to total emissions 

Category 3 Category 3-1 
(Pattern T) 

U.S., Canada, Argentina, Bolivia, Chile, Côte d’Ivoire, 
the Dominican Republic, Algeria, the Arab Republic of 
Egypt, Eritrea, Gabon, Honduras, Croatia, Haiti, 
Indonesia, Iraq, Jamaica, Jordan, Lebanon, Libya, Sri 
Lanka, Morocco, Mexico, Nigeria, Nicaragua, Pakistan, 
Panama, Peru, Philippines, Saudi Arabia, Senegal, 
Syrian Arab Republic, Thailand, Tunisia, Uruguay, 
Bolivarian Republic of Venezuela, Viet Nam,  
Republic of Yemen 

Emissions from electricity and 
heat production sectors 
contribute most to total 
emissions and emissions from 
the transport sector 
significantly contribute to total 
emissions compared with  
Category 3-2 and Category 3-3 

Category 3 
Category 3-2 
(Pattern R) 

EU, Turkey, Armenia, Azerbaijan, Iran (Islamic 
Republic of), Moldova, Turkmenistan, Uzbekistan, 
Zimbabwe 

Emissions from electricity and 
heat production sectors 
contribute most to total 
emissions and emissions from 
residential buildings and 
commercial and public services 
significantly contribute to total 
emissions compared with 
Category 3-1 and Category 3-3 

Category 3 
Category 3-3 
(Pattern M) 

China, India, Russian Federation, South Africa, 
Australia, Bangladesh, Bahrain, Bosnia and 
Herzegovina, Belarus, Brunei Darussalam, Cuba, Israel, 
Japan, Kazakhstan, Republic of Korea, Kosovo, Kuwait, 
Macedonia, Montenegro, Mongolia, Mauritius, 
Malaysia, Qatar, Singapore, Serbia, Ukraine 

Emissions from electricity and 
heat production sectors 
contribute most to total 
emissions and emissions from 
the manufacturing and 
construction significantly 
contribute to total emissions 
compared with  
Category 3-1 and Category 3-2 

Suppose that China’s sectoral carbon emission structure will not fundamentally change before 
the peak, meaning that carbon emissions from the electricity and heat production sectors will 
continue to be the biggest contributors to national carbon emissions. Based on the above clustering 
results, Patterns M, R and T will be the three alternative target patterns for the future evolution of 



Sustainability 2017, 9, 552 8 of 18 

China’s sectoral carbon emission structure. Since China has become the world’s largest developing 
country, its policy decision on the future evolution of the sectoral carbon emission structure could be 
either continual to maintain the current pattern or converge with representative developed countries. 
According to the clustering results, China, the U.S. and the EU are selected as the representative 
countries for Patterns M, T and R, respectively, and their sectoral carbon emission trends are 
extrapolated (Refer to Section 2.1.2 for the process of extrapolation and validation). Figure 4 shows 
the proportion of the representative countries’ sectoral carbon emissions in 2030.  

 
Figure 4. Sectoral carbon emissions structure of representative countries in 2030. 

3.2.3. Comparison of SCANs under Different Target Patterns 

According to the trend extrapolation results of the target model, we use Formula (3) to derive 
the annual value of the representative indicators of five sectors for China from 2016 to 2030. By 
substituting them into Equation (2), we can allocate the NCAs to sectors based on Patterns M, R and 
T. The allocation results are shown in Figure 5. 

 
Pattern M Pattern R Pattern T 

 
Figure 5. SCANs from 2016 to 2030 (SCANs: sectoral carbon allocations at the national level). 

Figure 5 shows that the target patterns change the relative share of the SCANs. In Pattern T, the 
SCANs for the transport sector and for the residential buildings and commercial and public services 
sectors increase from 0.28 GtC and 0.14 GtC in 2016 to 1.09 GtC and 0.27 GtC in 2030. The SCANs for 
the manufacturing and construction sectors decline from 0.81 GtC down to 0.22 GtC during the same 
period. The remaining two sectors experienced only small changes. In Pattern R, the SCANs for the 
transport sector and for the residential buildings and commercial and public services sectors increase 
from 0.27 GtC and 0.15 GtC in 2016 to 0.96 GtC and 0.49 GtC in 2030. The SCANs for the 
manufacturing and construction sectors and for the electricity and heat production sectors decline 
from 0.82 GtC and 1.56 GtC to 0.36 GtC and 1.32 GtC, respectively, during the same period. The 
“other” sectors experienced only small changes. In Pattern M, the SCANs for all sectors increase 
steadily from 2016 to 2030. Apparently, SCANs show a great difference under alternative target 
patterns. It is worth mentioning that changes in the SCANs in Pattern R and Pattern T are similar, 
except for the electricity and heat production sectors where SCANs experienced little change in 
Pattern T and declined in Pattern R. 
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The differences in the distribution of SCANs will inevitably lead to diverse preferences for target 
patterns. Table 2 shows the allocation results of SCANs for all five sectors under the three target 
patterns from 2016 to 2030. The preference here means that a sector gets more quotas. 

Table 2. SCANs under the 3 target patterns from 2016 to 2030 (unit: GtC; SCANs: sectoral carbon 
allocations at the national level). 

Sector 
Target Pattern 

Pattern T Pattern R Pattern M 
Residential Buildings and Commercial and Public Services 3.11 4.83 * 2.65 

Manufacturing and Construction 8.03 9.13 13.80 * 
Transport 10.30 * 9.21 4.03 

Electricity and Heat Production 24.05 22.09 24.75 * 
Other 0.70 0.94 0.96 * 

* The most preferred target pattern for each sector. 

It can be seen from Table 2 that the key factor in changing sectoral preferences is the relative size 
of SCANs across sectors under different target patterns. For example, for given NCAs, a sector always 
prefers the target pattern that allocates most SCANs to its own. The more SCANs a sector gets under 
a target pattern compared to those under others, the higher its preference for this target pattern is. In 
general, the relative size of the SCANs determines the sectoral preference for the target pattern. 

3.3. China’s SCAPs and PCAs during the Peak Commitment Period 

3.3.1. Provincial Preferences for Carbon Emission Patterns 

SCANs can be used to calculate SCAPs using Equation (4). Figure 6 shows the total SCAPs for 
30 provinces in China from 2016 to 2030. 
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Figure 6. SCAPs for 30 provinces in China from 2016 to 2030 (SCAPs: sectoral carbon allocations at 
the provincial level). 

Like SCANs, the target pattern is also an important influential factor of SCAPs. However, the 
preference of the provincial sector for the target pattern is fully consistent with that of the national 
sector (see Table 2). This is mainly because the target pattern can only change the relative share of the 
SCANs, and the more the SCANs, the higher the corresponding SCAPs are according to Equation (4). 

In addition to the target pattern, SCAPs are also affected by the share of emissions from the 
provincial sector in the national sector. For example, compared with other provinces, the residential 
buildings and commercial and public services sectors, the transport sector and the electricity and heat 
production sectors in Guangdong province account for the largest share of carbon emissions in the 
corresponding sectors in China. Therefore, carbon allocations for these three sectors in Guangdong 
are larger than in other provinces. Similarly, the carbon allocations for the manufacturing and 
construction sectors and “other” sectors in Jiangsu and Shandong provinces will receive the most 
allocations. In the case that other conditions remain unchanged, the larger the share of emissions 
from the provincial sector in the national sector, the greater the SCAPs are. 

Using SCAPs, PCAs can be aggregated according to Equation (5). Table 3 lists PCAs for 30 
provinces in China from 2016 to 2030.  

Table 3. PCAs from 2016 to 2030 (unit: GtC; PCAs: provincial carbon allocations). 

Region Pattern T Pattern R Pattern M Region Pattern T Pattern R Pattern M
Beijing 1.45 1.49 * 1.30 Henan 2.330 2.328 2.335 * 
Tianjin 0.77 0.78 * 0.76 Hubei 1.738 * 1.725 1.737 
Hebei 2.59 * 2.55 2.43 Hunan 1.66 * 1.65 1.65 
Shanxi 1.38 * 1.34 1.34 Guangdong 5.48 5.49 5.71 * 

Inner Mongolia 1.66 * 1.59 1.56 Guangxi 1.10 * 1.09 1.09 
Liaoning 1.82 1.82 1.83 * Hainan 0.214 * 0.211 0.20 

Jilin 0.65 0.67 * 0.65 Chongqing 0.76 * 0.75 0.74 
Heilongjiang 1.10 * 1.09 1.04 Sichuan 1.781 1.77 1.783 * 

Shanghai 1.82 1.86 * 1.79 Guizhou 0.82 * 0.79 0.81 
Jiangsu 3.56 3.66 3.85 * Yunnan 0.80 0.80 0.81 * 

Zhejiang 2.90 2.95 3.06 * Shanxi 0.95 * 0.94 0.92 
Anhui 1.170 * 1.168 1.11 Gansu 0.58 * 0.57 0.56 
Fujian 1.66 * 1.64 1.60 Qinghai 0.221 0.21 0.223 * 
Jiangxi 0.863 * 0.862 0.85 Ningxia 0.280 * 0.27 0.277 

Shandong 3.60 3.65 3.73 * Xinjiang 0.470 0.472 * 0.43 

* The most preferred target pattern for each province. 

The provincial preference for the target pattern is complex. It depends on the weighted result of 
all sectoral preferences for the target pattern. The weight here is the share of the sectoral carbon 
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emissions in the province. Therefore, the higher the share, the greater the preference the province 
would have for the target model that the sector prefers. As Table 3 shows, the number of provinces 
with a preference for Pattern T is the largest (up to 16), including Hebei, Shanxi and Inner Mongolia. 
Their sectoral emission structure is mainly characterized by a relatively high proportion of emissions 
from the transport sector, compared to Patterns M and R. The number of provinces that prefer  
pattern M is nine, including Liaoning, Shandong and Jiangsu. Their sectoral emissions structure is mainly 
characterized by a relatively high proportion of emissions from the manufacturing and construction 
sectors. The number of provinces with a preference for Pattern R is the lowest (only five), including 
Beijing, Shanghai and Tianjin. Their sectoral emission structure is characterized by a relatively high 
proportion of emission from the residential buildings and commercial and public services sectors and 
a relatively low proportion from the manufacturing and construction sectors.  

3.3.2. Peaking Pressure at the Provincial Level 

Through the allocation of quotas, the peak pressure will be decomposed from the national level 
to the provincial level by advancing the provincial peak year. Figure 7 shows the peak year of PCAs 
under the different target patterns. 

 
Figure 7. The peak year of PCAs (PCAs: provincial carbon allocations). 

The NCAs experience a nonlinear change, making the peak PCAs year complex (PCAs are the 
sum of all SCAPs, which are computed by Equations (2) and (4); where  is linear,  is constant and 
 = 1.). In Pattern M, except for Shanxi, Inner Mongolia, Guangxi and Gansu provinces where the 
peak year advanced to 2029 and Guizhou, Qinghai and Ningxia provinces where the peak years 
advanced to 2028, the peak years occur in 2030, the same as China’s commitment to its peak year (see 
Figure 7). This indicates that the current sectoral carbon emission structure of the seven provinces 
above is quite different from Pattern M, meaning they need to make more adjustments to their 
sectoral structure than other provinces during the peak commitment. In Patterns R and T, most of the 
provinces with the peak year advanced are characterized by a relatively high share of carbon 
emissions from the manufacturing and construction sectors, while the SCAPs for these sectors are 
significantly reduced. This is mainly because the preference of the provincial sector for the target 
pattern is consistent with that of the national sector, and the manufacturing and construction sectors 
prefer Pattern M rather than Patterns T or R (see Table 2). Figure 7 shows that there are eight 
provinces that advanced their peak year in both Patterns R and T. Among the top four provinces with 
the largest carbon emissions from manufacturing and construction sectors (i.e., Guangdong, 
Shandong, Jiangsu and Zhejiang), the total SCAPs for these sectors account for 43% of SCANs, and 
their average peak year is much earlier than in Pattern M. These two patterns will bring significant 
challenges to manufacturing and construction sectors in China, especially to the four provinces 
mentioned above. In other words, these four provinces have to increase the share of carbon emissions 
from the transport sector or residential buildings and commercial and public services sectors in order 
to postpone the peak year. In contrast to Pattern T, Shanxi, Hubei, Guangxi and Guizhou provinces 
also advanced their peak years because of their significant differences in carbon emissions from 
residential buildings and commercial and public services in Pattern R. 
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3.4. Sensitivity Analysis 

Variation in parameter values may lead to changes in simulation results. It is thus necessary to 
perform sensitivity analysis on the parameters of our model. In the process of allocating PCAs, the 
parameter ij is introduced in Equation (4) to illustrate potential changes in the ratio of sectors’ output 
at the provincial level to sector output at the national level. However, ij is usually uncertain, thus 
leading to uncertainty in the SCAPs calculated from ij As a result, this uncertainty may lead to a 
change in the simulation results for target pattern preferences and provincial peak years. Therefore, 
we designed an experiment to conduct sensitivity analysis on ij to examine whether, and to what 
degree, the simulation results may change when ij is perturbed. Since the production behavior of 
provincial sectors is usually path dependent and tends to follow sectoral policies at the national level, 
we set ij to follow a normal distribution with mean  = 1 and standard deviation  (perturbation rate; 
typically small values). The average annual change in the ratios of sectors output at the provincial 
level to sector output at the national level in China’s sectors is between ±0.05 (According to the 
database of China’s National Bureau of Statistics from 2008 to 2015.). Considering that target patterns 
have largely reflected the average annual change trend of ij, the perturbation rate  (the standard 
deviation of ij) should be kept less than 0.05. Thus, in this sensitivity analysis experiment, we design 
three treatments by setting  to 0.01, 0.02 and 0.05, respectively. For each treatment, we perform 100 
Monte Carlo runs.  

The sensitivity analysis results (see Tables A3–A5 in Appendix C) show that, compared with 
Table 3, the absolute value of PCAs from 2016 to 2030 may vary with the increase in the perturbation 
rate . However, the preference of more than half of the provinces (16) for the target patterns remains 
unchanged, such as Beijing, Hebei and Liaoning. On the other hand, 14 provinces, such as Zhejiang, 
Anhui and Chongqing, tend to adjust their preference for target patterns. The main feature of these 
provinces that maintain their preference for a target pattern is that the contribution of some sector (or 
sectors) to the total emissions is significantly higher than that of others and consistent with the target 
pattern. For example, Beijing with dominant residential buildings and commercial and public 
services sectors always prefers pattern R. A high proportion of manufacturing and construction 
sectors in Liaoning province makes it always prefer Pattern M. The transport sector dominating in 
Hebei province leads to a stable, preferred Pattern T in response to perturbation. In other words, the 
more significant the sectoral carbon emission structure in provinces, the more stable the provincial 
preference for target patterns would be in the face of uncertainty, for example changes in the ratio of 
sector output at the provincial level to sector output at the national level here.  

The mean and standard deviation of provincial peak years for the three treatments of the 
sensitivity analysis experiment are reported in Tables A6–A8 in Appendix D. Further analysis 
revealed that the reason for advancing the provincial peak year was due to the inconsistency between 
the sectoral carbon emissions structure and the target patterns. The larger the gap between them, the 
more the provincial peak year will be advanced. Small perturbation (treatment 1;  = 0.01) leads to 
marginal change in provincial peak year. For example, the means of provincial peak years in Table 
A6 remain almost the same as the peak year of PCAs in Figure 7. With the increase of , the provincial 
peak years are advanced to some extent. It is mainly because larger  increases the possibility of the 
difference between the sectoral carbon emissions structure and the target patterns. Therefore, the 
larger the perturbation, the more the provincial peak years (with higher variation) would be 
advanced. Thus, to accurately estimate the peak years in advance, it is necessary to combine the 
planning of the future sectoral carbon emissions structure so as to reduce the uncertainty of change 
in the provincial sectoral carbon emissions structure. 

4. Conclusions  

In this study, we presented a model that combines top-down and bottom-up carbon allocation 
processes to overcome difficulties that traditional methods may face, including the dynamics of the 
distribution principle, the independence of allocations entities and data availability. By using 
clustering analysis and scenario simulation, we have the following five conclusions:  
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First, China’s NCAs range from 45.51 GtC to 47.91 GtC during the peak commitment period. In 
contrast to allocating NCAs to provinces, it is much easier to determine the allocation principle 
among sectors. The grandfather principle is the best and only option. In the future, China’s carbon 
emissions pattern will be dominated by the contribution from electricity and heat production sectors. 
This emission pattern can be further distinguished into three categories (Patterns M, R and T), in 
which other types of sectors (manufacturing and construction, residential buildings and commercial 
and public services and transport) have significant contributions to total emission while electricity 
and heat production sectors dominate the emission. 

Second, peak scenarios and emission patterns are two factors that can affect SCANs. The former 
sets the absolute size of the quotas for each sector, while the latter adjusts the relative share of quotas 
among the sectors. In terms of sectoral preferences, manufacturing and construction sectors, 
electricity and heat production sectors and “other” sectors prefer Pattern M; residential buildings and 
commercial and public services sectors prefer Pattern R; and the transport sector prefers Pattern T. 
Although the preferences vary from sector to sector, they are consistent at the national and  
provincial level. 

Third, compared with sectoral preferences, provincial preferences are more complex. There are 
16 provinces with a significant amount of transport sectoral carbon emissions (i.e., the preferred 
pattern is T), consisting of Hebei, Shanxi and Inner Mongolia. Nine provinces that have a high 
proportion of manufacturing and construction sector emissions (i.e., Pattern M is preferred) are 
represented by Guangdong, Shandong and Jiangsu. There exist five provinces with heavy residential 
construction and commercial and public service sector emissions that have a preference for  
Pattern R, including Beijing, Shanghai and Tianjin. 

Fourth, to achieve peak commitment for China, different provinces are facing alternative peak 
pressures. In the case of the quadratic scenario, Pattern R affected the largest number of provinces 
(up to 12), followed by Patterns T and M (eight and seven provinces). In the future, if China adopts 
either Pattern R or T, the manufacturing- and construction-oriented provinces will face higher 
pressure, especially Jiangsu, Zhejiang, Shandong and Guangxi provinces. In order to postpone the 
peak year, they may have to increase the share of carbon emissions from the transport sector or 
residential buildings and commercial and public services sectors. 

Last, sensitivity analysis show that the more significant the sectoral carbon emission structure 
in provinces, the more stable the provincial preference for target patterns would be in face of 
uncertainty. In addition, the larger the perturbation (standard deviation  of ), the more the 
provincial peak years (with higher variation) would be advanced. 

In summary, our model that combines both bottom-up and top-down processes provides 
support for decision-making related to carbon allocation in China. This combined modeling approach 
may provide insight into understanding the complexity of carbon allocation in other countries. We 
will focus on the following directions for future work. First, to make the carbon allocation results 
more robust, an analysis using IPCC [26] sectoral projections will be carried out once relevant data 
for the IPCC sectoral projections are available. Second, spatial analysis (e.g., spatial autocorrelation) 
will be conducted to reveal the spatially-explicit characteristics (e.g., hotspots) of carbon allocation at 
the province level in terms of sectoral preference and peak years. Third, an agent-based simulation 
modeling approach will be used to better represent the potential interactions among alternative 
sectors of different provinces in terms of carbon allocation. 
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Appendix A 

Table A1. Abbreviations for the paper. 

Definition Abbreviation 
United Nations Framework Convention on Climate Change UNFCCC 
National carbon allocations NCAs 
Provincial carbon allocations PCAs 
Sectoral carbon allocations at the national level SCANs 
Sectoral carbon allocations at the provincial level SCAPs 

Appendix B 

Table A2. Sectoral reunification. 

17 Sectors  5 Sectors  42 Sectors 

Commercial catering 
Public utilities and 
residential services 
Finance and insurance 
Other services 

Residential buildings and 
commercial and public 
services 

Information transmission, computer services and software 
Wholesale and retail trade 
Accommodation and catering 
Financial industry 
Real estate industry 
Leasing and business services 
Research and experimental development 
Integrated technical service industry 
Water conservancy, environment and public facilities management 
Resident services and other services 
Education 
Health, social security and social welfare 
Culture, sports and entertainment 
Public administration and social organization 

Food industry 
Textile, sewing and leather 
products manufacturing 
Other manufacturing 
industries 
Coking, gas and petroleum 
processing industries 
Chemical industry 
Building materials and other 
non-metallic mineral 
products industry 
Metal product 
manufacturing 
Machinery and equipment 
manufacturing 
Construction industry 

Manufacturing and 
construction 

Food manufacturing and tobacco processing 
Textile industry 
Textile, clothing, footwear, leather, down and related products 
Wood processing and furniture manufacturing 
Paper and printing and cultural, educational and sporting goods 
manufacturing industry 
Petroleum processing, coking and nuclear fuel processing 
Chemical industry 
Non - metallic mineral products industry 
Metal smelting and rolling processing industry 
Metal products industry 
General, special equipment manufacturing industry 
Transportation equipment manufacturing 
Electrical machinery and equipment 
Communications equipment, computers and other electronic 
equipment manufacturing 
Instruments, cultural and office machinery manufacturing 
Handicrafts and other manufacturing industries 
Waste materials 
Construction industry 

Transportation, post and 
telecommunications services Transport 

Transportation and Warehousing 
Postal service 

Electricity and steam, hot 
water production and supply 

Electricity and heat 
production 

Electricity, heat production and supply 
Gas production and supply 
Water production and supply 

Agriculture “other”  Agriculture, forestry, animal husbandry and fishery 

Mining industry  

Coal mining and washing industry  
Petroleum and natural gas industries 
Mining and dressing of metals 
Non-metallic mineral and other mining industry 
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Appendix C. Provincial Preference for Target Patterns for Different Perturbations on  

Table A3. Provincial preference for target patterns (perturbation rate: standard deviation  = 0.01). 

Region 
Pattern T Pattern R Pattern M

Region 
Pattern T Pattern R Pattern M

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Beijing  1.45 0.01 1.48 * 0.01 1.29 0.02 Henan 2.41 0.05 2.41 0.04 2.42 * 0.05 
Tianjin  0.75 0.02 0.76 * 0.02 0.75 0.02 Hubei  1.851 * 0.07 1.83 0.06 1.848 0.07 
Hebei  2.59 * 0.04 2.54 0.04 2.43 0.05 Hunan 1.64 * 0.05 1.63 0.04 1.62 0.05 
Shanxi  1.31 * 0.05 1.27 0.05 1.29 0.04 Guangdong 5.34 0.06 5.36 0.06 5.52 * 0.08 

Inner Mongolia  1.75 * 0.05 1.67 0.05 1.64 0.05 Guangxi 1.10 * 0.02 1.08 0.02 1.08 0.02 
Liaoning  1.82 0.03 1.826 0.03 1.832 * 0.02 Hainan  0.210 * 0.00 0.206 0.00 0.19 0.00 

Jilin  0.64 0.01 0.66 * 0.01 0.64 0.01 Chongqing 0.81 * 0.03 0.80 0.03 0.80 0.04 
Heilongjiang 1.055 * 0.01 1.050 0.01 1.01 0.01 Sichuan 1.775 * 0.03 1.76 0.03 1.767 0.03 

Shanghai  1.91 0.03 1.94 * 0.03 1.90 0.05 Guizhou  0.84 * 0.02 0.80 0.02 0.82 0.02 
Jiangsu  3.61 0.11 3.70 0.10 3.93 * 0.11 Yunnan  0.815 0.02 0.81 0.02 0.819 * 0.02 
Zhejiang 2.68 0.22 2.76 0.20 2.77 * 0.22 Shaanxi  0.98 * 0.02 0.96 0.02 0.95 0.02 

Anhui 1.217 0.02 1.219 * 0.02 1.19 0.02 Gansu  0.57 * 0.02 0.56 0.01 0.55 0.02 
Fujian 1.69 * 0.02 1.67 0.02 1.63 0.03 Qinghai 0.2322 * 0.01 0.22 0.01 0.2320 0.01 
Jiangxi 0.88 0.02 0.88 0.01 0.89 * 0.02 Ningxia 0.294 * 0.01 0.28 0.01 0.289 0.01 

Shandong  3.52 0.07 3.57 0.07 3.66 * 0.06 Xinjiang 0.475 0.01 0.477 * 0.01 0.44 0.01 

Table A4. Provincial preference for target patterns (perturbation rate: standard deviation  = 0.02). 

Region 
Pattern T Pattern R Pattern M

Region 
Pattern T Pattern R Pattern M

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Beijing  1.41 0.03 1.45 * 0.03 1.31 0.04 Henan 2.301 0.09 2.302 * 0.09 2.22 0.13 
Tianjin  0.745  0.06 0.752 * 0.05 0.71 0.06 Hubei  1.714 * 0.06 1.69 0.06 1.707 0.05 
Hebei  2.41 * 0.05 2.38 0.04 2.33 0.04 Hunan 1.70 * 0.05 1.68 0.05 1.68 0.05 
Shanxi  1.26 * 0.11 1.23 0.10 1.21 0.10 Guangdong 6.16 * 0.29 6.08 0.27 6.14 0.26 

Inner Mongolia  1.59 * 0.08 1.53 0.08 1.48 0.10 Guangxi 1.050 * 0.03 1.045 0.03 1.045 0.03 
Liaoning  1.78 0.05 1.78 0.05 1.83 * 0.05 Hainan  0.23 * 0.02 0.22 0.02 0.21 0.01 

Jilin 0.62  0.02 0.63 * 0.03 0.60 0.03 Chongqing 0.76 * 0.02 0.75 0.02 0.75 0.02 
Heilongjiang 1.07 * 0.05 1.06 0.05 1.04 0.05 Sichuan 1.74 0.10 1.76 0.11 1.77 * 0.12 

Shanghai  1.80 0.06 1.83 * 0.06 1.78 0.05 Guizhou  0.87 * 0.03 0.83 0.03 0.86 0.04 
Jiangsu  3.36 0.13 3.46 0.12 3.58 * 0.14 Yunnan  0.76 0.02 0.76 0.02 0.77 * 0.02 
Zhejiang 3.11 0.55 3.16 0.52 3.40 * 0.60 Shaanxi  0.98 * 0.02 0.97 0.02 0.95 0.02 

Anhui 1.14 0.03 1.15 * 0.02 1.11 0.03 Gansu  0.55 * 0.02 0.54 0.02 0.53 0.02 
Fujian 1.64 * 0.04 1.62 0.04 1.57 0.04 Qinghai 0.20 0.02 0.20 0.01 0.21 * 0.01 
Jiangxi 0.898 * 0.03 0.895 0.03 0.88 0.03 Ningxia 0.26 * 0.01 0.25 0.01 0.25 0.01 

Shandong  3.62 0.10 3.70 0.10 3.79 * 0.14 Xinjiang 0.50 * 0.02 0.49 0.02 0.46 0.01 

Table A5. Provincial preference for target patterns (perturbation rate: standard deviation  = 0.05). 

Region 
Pattern T Pattern R Pattern M

Region 
Pattern T Pattern R Pattern M

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Beijing  1.68 0.16 1.69 * 0.15 1.55 0.17 Henan 2.44 0.28 2.49 * 0.29 2.39 0.30 
Tianjin  0.68 0.07 0.70 * 0.07 0.69 0.07 Hubei  2.32 * 0.29 2.26 0.27 2.21 0.25 
Hebei  2.06 * 0.26 2.04 0.25 1.96 0.29 Hunan 2.03 0.30 1.97 0.28 2.04 * 0.34 
Shanxi  1.03 * 0.12 1.00 0.12 0.97 0.14 Guangdong 4.32 0.60 4.50 0.54 4.65 * 0.54 

Inner Mongolia  1.11 * 0.26 1.07 0.24 1.04 0.21 Guangxi 1.10 0.10 1.10 0.09 1.16 * 0.09 
Liaoning  2.03 0.15 2.05 0.16 2.14 * 0.23 Hainan  0.244 * 0.02 0.239 0.02 0.23 0.02 

Jilin  0.60 0.03 0.61 * 0.03 0.58 0.03 Chongqing 0.84 0.09 0.85 0.09 0.96 * 0.15 
Heilongjiang 0.93 0.13 0.96 0.12 0.98 * 0.10 Sichuan 1.75 * 0.13 1.73 0.12 1.62 0.12 

Shanghai  1.63 0.12 1.66 * 0.12 1.63 0.12 Guizhou  0.69 * 0.15 0.65 0.14 0.65 0.16 
Jiangsu  3.98 0.79 3.91 0.73 4.02 * 0.86 Yunnan  0.62 0.14 0.64 0.13 0.65 * 0.14 
Zhejiang 5.53 * 1.34 5.50 1.25 5.29 1.22 Shaanxi  0.733 * 0.08 0.731 0.08 0.71 0.08 

Anhui 1.29 * 0.10 1.28 0.09 1.22 0.11 Gansu  0.61 * 0.05 0.60 0.04 0.60 0.05 
Fujian 1.77 0.20 1.78 0.20 1.89 * 0.21 Qinghai 0.22 0.02 0.21 0.02 0.23 * 0.02 
Jiangxi 0.70 0.07 0.72 0.06 0.73 * 0.07 Ningxia 0.26 0.04 0.25 0.04 0.27 * 0.05 

Shandong  2.50 0.53 2.54 0.51 2.68 * 0.47 Xinjiang 0.465 0.04 0.469 * 0.03 0.44 0.03 

SD: standard deviation; * the most preferred target pattern for each province;  provincial preference 
remains unchanged for the same target pattern under all 3 treatments of sensitivity analysis. 
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Appendix D. Provincial Peaking Years for Different Perturbations on  

Table A6. Provincial peaking years for perturbation rate (standard deviation)  = 0.01. 

Region 
Pattern T Pattern R Pattern M

Region 
Pattern T Pattern R Pattern M

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Beijing 2030 0.00 2030 0.00 2030 0.00 Henan 2030 0.59 2030 0.00  2030 0.00 
Tianjin 2030 0.10 2030 0.00 2030 0.00 Hubei 2030 0.46 2029 0.44  2030 0.45 
Hebei 2030 0.00 2030 0.00 2030 0.00 Hunan 2030 0.00 2030 0.38  2030 0.00 
Shanxi 2030 0.00 2029 1.14 2029 0.34 Guangdong 2025 0.62 2025 0.81  2030 0.49 

Inner Mongolia 2030 0.00 2030 0.17 2029 0.00 Guangxi 2030 0.34 2029 0.92  2029 0.17 
Liaoning 2030 0.24 2030 0.17 2030 0.00 Hainan 2030 0.00 2030 0.00  2030 0.00 

Jilin 2030 0.00 2030 0.00 2030 0.00 Chongqing 2030 0.00 2030 0.00  2030 0.00 
Heilongjiang 2030 0.00 2030 0.00 2030 0.00 Sichuan 2029 0.61 2029 0.85  2030 0.38 

Shanghai 2030 0.00 2030 0.00 2030 0.00 Guizhou 2030 0.41 2025 0.58  2028 0.00 
Jiangsu 2021 0.77 2024 1.24 2030 0.00 Yunnan 2027 0.50 2027 0.28  2030 0.44 

Zhejiang 2024 0.93 2025 1.39 2030 0.00 Shaanxi 2030 0.14 2030 0.59  2030 0.50 
Anhui 2030 0.00 2030 0.00 2030 0.00 Gansu 2030 0.00 2030 0.32  2030 0.00 
Fujian 2030 0.00 2030 0.00 2030 0.00 Qinghai 2027 0.73 2023 0.62  2028 0.00 
Jiangxi 2030 0.00 2030 0.00 2030 0.00 Ningxia 2029 0.58 2024 0.66  2028 0.00 

Shandong 2026 0.99 2028 0.74 2030 0.00 Xinjiang 2030 0.00 2030 0.00  2030 0.00 

Table A7. Provincial peaking years when perturbation rate (standard deviation)  = 0.02. 

Region 
Pattern T Pattern R Pattern M

Region 
Pattern T Pattern R Pattern M

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Beijing 2030 0.00  2030 0.00 2030 0.00 Henan 2029 1.06 2029 0.82  2030 0.00 
Tianjin 2030 0.54  2029 1.51 2030 0.76 Hubei 2029 0.98 2028 1.02  2027 1.31 
Hebei 2030 0.44  2029 0.97 2029 0.43 Hunan 2030 0.27 2030 0.38  2030 0.29 
Shanxi 2029 0.94  2028 1.17 2029 0.51 Guangdong 2025 1.62 2025 1.93  2030 0.64 

Inner Mongolia 2030 0.00  2030 0.47 2029 0.84 Guangxi 2030 0.44 2028 1.47  2029 0.36 
Liaoning 2030 0.27  2029 0.82 2029 0.91 Hainan 2030 0.00 2030 0.00  2030 0.00 

Jilin 2030 0.86  2030 1.05 2030 0.00 Chongqing 2030 0.10 2030 0.30  2030 0.00 
Heilongjiang 2030 0.00  2030 0.00 2030 0.00 Sichuan 2028 0.82 2027 1.79  2027 1.94 

Shanghai 2030 0.00  2030 0.00 2030 0.00 Guizhou 2030 0.81 2025 0.61  2028 1.14 
Jiangsu 2020 1.61  2022 2.19 2028 1.14 Yunnan 2027 1.35 2027 0.55  2030 0.50 

Zhejiang 2024 1.84  2025 1.91 2030 0.00 Shaanxi 2029 0.96 2028 1.14  2029 0.57 
Anhui 2030 0.00  2030 0.00 2030 0.00 Gansu 2030 0.47 2029 0.47  2030 0.38 
Fujian 2030 0.00  2030 0.00 2030 0.00 Qinghai 2027 1.07 2023 0.98  2028 0.52 
Jiangxi 2030 0.00  2030 0.00 2030 0.00 Ningxia 2028 1.18 2024 1.39  2028 1.26 

Shandong 2025 1.29  2028 1.35 2029 1.25 Xinjiang 2030 0.00 2030 0.00  2030 0.00 

Table A8. Provincial peaking years when perturbation rate (standard deviation)  = 0.05. 

Region 
Pattern T Pattern R Pattern M

Region 
Pattern T Pattern R Pattern M

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Beijing 2030 0.00  2030 0.00 2030 0.22 Henan 2027 1.47 2028 1.36  2030 0.00 
Tianjin 2030 1.00  2029 2.65 2029 0.80 Hubei 2029 1.57 2028 1.24  2027 2.14 
Hebei 2030 0.82  2028 2.53 2029 0.80 Hunan 2027 2.12 2026 2.60  2029 0.44 
Shanxi 2029 0.60  2026 2.53 2028 0.67 Guangdong 2023 2.94 2021 3.58  2030 0.70 

Inner Mongolia 2030 0.00  2030 0.50 2029 0.95 Guangxi 2027 2.30 2025 1.70  2028 0.49 
Liaoning 2028 1.27  2027 2.80 2029 1.80 Hainan 2030 0.00 2030 0.00  2030 0.00 

Jilin 2030 1.14  2030 1.20 2030 0.00 Chongqing 2027 1.68 2027 2.09  2029 0.52 
Heilongjiang 2027 2.17  2027 2.56 2029 0.59 Sichuan 2027 1.36 2026 2.32  2026 2.43 

Shanghai 2030 0.20  2030 0.00 2030 0.00 Guizhou 2030 0.40 2024 2.13  2028 1.49 
Jiangsu 2020 2.05  2022 3.30 2026 3.14 Yunnan 2026 2.98 2027 2.11  2030 0.80 

Zhejiang 2024 2.25  2025 2.26 2027 1.19 Shaanxi 2029 1.00 2028 1.13  2028 0.71 
Anhui 2027 2.22  2027 2.47 2030 0.00 Gansu 2027 3.38 2026 2.60  2028 0.46 
Fujian 2027 2.52  2027 2.17 2030 0.49 Qinghai 2026 1.41 2023 2.28  2028 1.65 
Jiangxi 2030 0.10  2030 0.10 2030 0.31 Ningxia 2028 2.34 2024 1.70  2027 2.31 

Shandong 2023 3.45  2024 2.40 2029 1.41 Xinjiang 2026 2.83 2025 4.11  2029 0.86 

SD: standard deviation. 
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