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Abstract: Monte Carlo simulation (MCS) has been widely used for the uncertainty propagations of 
building simulation tools. In general, most unknown inputs for the MCS are regarded as single 
probability distributions based on experts’ subjective judgements and assumptions, when 
simulation information and measured data are inaccurate and insufficient. However, this can lead 
to meaningless and untrustworthy results, since the results are obtained using only single 
probability distributions without considering reducible possibilities of some unknown inputs. This 
paper introduces a fuzzy MCS for dealing with the aforementioned problems. In comparison with 
the MCS, the fuzzy MCS has the advantage of considering the aleatory and epistemic uncertainty, 
and can provide a family of probability distributions. This paper also discusses how fuzzy MCS 
could be effectively used for uncertainty and global sensitivity analysis.  

Keywords: Monte Carlo simulation; fuzzy Monte Carlo simulation; uncertainty; sensitivity; 
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1. Introduction 

Building performance simulation (BPS) tools, which transform physical phenomena in real 
systems into mathematical equations in a building simulation domain, generate model risks caused 
by inherent uncertainty sources. To draw upon the uncertainty sources in the BPS tools, techniques 
used for the uncertainty propagation are as follows: direct evaluation for linearly parameterized 
methods; Monte Carlo simulation (MCS) using sampling methods; perturbation methods using first-
order or second-order Taylor series expansion; and spectral representations [1]. In particular, the 
MCS has been recognized as the most dominant approach in the area of building performance 
simulation because it is easy to use. The uncertainty propagation for the first-principles-based BPS 
tools includes complex nonlinear models and needs to deal with correlated or high-dimensional 
inputs; nevertheless, it can provide probabilistic outputs with high performance qualities in spite of 
the vast computational burdens. Burhenne et al. [2] showed a multi-criteria decision-making 
methodology (cost and benefit) using the MCS-based uncertainty quantification as a robust design 
support tool. They indicated that the stochastic multi-criteria decision-making design process should 
offer more significant insights than the deterministic process. Almeida et al. [3] performed the MCS 
and life cycle cost (LCC) analysis for a school building energy conservation project. They insisted on 
the necessity of uncertainty and sensitivity analysis in terms of the effective renovation investment 
during a building life cycle. Cheng et al. [4] proposed a stochastic approach using the MCS and 
Markov model for a robust optimal design of chilled water systems. 

The two types of uncertainty sources are (1) aleatory uncertainty (i.e., irreducible uncertainty) 
and (2) epistemic uncertainty (i.e., reducible uncertainty) [1]. The aleatory uncertainty that cannot be 
reduced by additional information or data includes nonphysical model inputs with random 
variability [1]. In contrast, the epistemic uncertainty incurred from inaccurate and insufficient 
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information can be significantly reduced if trustworthy information is available. However, the 
general MCS was propagated using single probability distributions without regard for the reducible 
possibility embedded in the epistemic uncertainty. In other words, the MCS has a treated limitation 
on the condition that a priori probability distributions of all unknown inputs are definitely identified 
as single probability distributions. 

This study discusses a fuzzy MCS that can reflect two uncertainty sources (aleatory and 
epistemic). The fuzzy MCS combines a probability theory of MCS with a possibility theory of fuzzy 
arithmetic and can acquire a probabilistic output with a family of probability distributions, rather 
than a single probability distribution. The family of probability distributions can represent the model 
risks as a range between plausibility (lower limit) and belief (upper limit) [5,6]. The goal of this study 
is to compare the MCS to the fuzzy MCS with the aim of finding influential design options. For this 
study, an existing office building is selected and modeled using EnergyPlus 8.0. For this study, 
uncertainty and global sensitivity analyses were implemented using a Gaussian process (GP) 
emulator to alleviate the computational burdens of the uncertainty propagation. The GP emulator 
can be regarded as a surrogate model of a BPS tool with a high-fidelity model such as ESP-r, 
EnergyPlus, and TRNSYS [7,8]. 

2. Uncertainty Sources 

The uncertainties of the BPS tools mainly arise from a lack of definite physical or experimental 
knowledge (e.g., thermal properties) incurred from inaccurate and insufficient information and 
random variability (e.g., weather data, occupants’ behaviors). In such an uncertain simulation 
environment, it is impossible to build an ideal model with flawless processes. However, even an 
imperfect model could be an effective guide for decision support if appropriate uncertainty 
management is applied. For example, stochastic results using the MCS indicate the limitations of 
current modelling levels. In addition, risk-based design support tools can identify a best option from 
vast simulation design spaces, even if it is not an optimal solution in reality. 

BPS tools can obtain predicted outputs ( y ) using idealized mathematical models (  ,m X  ) and 

model errors (  ,m X  ) composed of various inputs ( X ) and parameters ( m ) , as shown in Equation 
(1). The real behaviors ( Dy ) can then be obtained using the predicted outputs ( y ) as well as the sensor 

errors (  Dx ) of measured data ( Dx ), as shown in Equation (2). In other words, the BPS tools will be 
able to acquire trustworthy results if the simulation experts continue to attempt to reduce the 
uncertainties inherited in the idealized mathematical models, model errors, and sensor errors. 
Among these, the model and sensor errors might be able to reduce some of the uncertainties due to 
advances in computing power, numerical methods, sensor devices, and sensor networks. In this 
sense, it is important to handle the uncertainties in the idealized mathematical models (i.e.,  
model uncertainty). 

   , ,m my X X      (1) 

 D Dy y x   (2) 

Model uncertainties can be categorized as aleatory or epistemic uncertainties based on the 
degree to which they were caused by random variability or lack of knowledge, respectively. 
However, it is difficult to clearly distinguish between an aleatory and epistemic uncertainty due to 
relative gaps of knowledge and the different physical or experimental capacities of each simulation 
user [5,6,9]. Nevertheless, Kiureghian [9] insisted that “distinction between aleatory and epistemic is 
useful for identifying sources of uncertainty that can be reduced, and in developing sound risk and 
reliability models”. 

However, most uncertainty studies, reported in a recent building simulation conference [10], 
focused mainly on predictions based on the probabilistic framework considering only aleatory 
uncertainty. When considering only aleatory uncertainty, all unknown inputs can be regarded as 
single, a priori, probability distributions, and the predictions propagated by uncertainty techniques 
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(e.g., MCS) are represented as a single probability distribution. It would then be important to 
determine whether or not a risk-based design with the single probability distribution is unbiased. 
However, most simulation users might know that some of the unknown inputs cannot be regarded 
as single, a priori, probability distributions due to epistemic uncertainties. In other words, it is 
necessary to implement a joint propagation method for two uncertainty sources (aleatory and 
epistemic). To address the aforementioned issue, this study introduces a fuzzy MCS for the joint 
propagation method. 

3. Fuzzy Monte Carlo Simulation 

The fuzzy MCS is a joint propagation method based on both the probability theory of MCS and 
the possibility theory of fuzzy arithmetic. Fuzzy set theory introduced by Zadeh [11] is an effective 
approach for representing epistemic uncertainty under imperfect knowledge. In the fuzzy set theory, 
fuzzy numbers are defined as convex and normalized fuzzy sets over the universal set with their 
fuzzy set membership functions that can be represented as a degree of likelihood between 0 and 1 
[5,6,12–15]. In general, the triangular fuzzy number (TFN) has been widely used (Figure 1). A 
membership function of the fuzzy set A is represented as    0,1A x  . Using a fuzzy a-cut technique 
of the transformation method [9], a fuzzy interval assigns degrees of likelihood (possibility) to 
intervals of values using presumption level (a). In other words, the unknown inputs with different 
types of epistemic uncertainty are transformed into a crisp set representing minimum–maximum 
intervals using the fuzzy set membership function and the fuzzy a-cut technique. For example, if the 
presumption level (a) is set to 0.5, the crisp set of the fuzzy a-cut   aA x x a   with the degree 

of possibility higher than the presumption level can be represented as [5,10], as shown in Figure 1. 
To implement the fuzzy MCS, an interval propagation can be performed using an optimization 
algorithm at the sampling case in the uncertainty propagation. The optimization is used for finding 
a set of optimal values (presumption level) minimizing or maximizing the given object function (MIN 
F(X) or MAX F(X)) subjected to the minimum–maximum intervals. Then, the uncertainty 
quantifications propagated using the obtained optimal values are represented as a plausibility 
distribution and a belief distribution. 

 
Figure 1. Fuzzy set using triangular fuzzy number. 

Figure 2 shows a fuzzy MCS process considering aleatory and epistemic uncertainty. The 
selected unknown inputs in the model need to be divided into probability distributions that have an 
aleatory nature or possibility distributions that have an epistemic nature. Probability distributions 
are propagated using the sampling methods—e.g., Latin hypercube sampling (LHS)—while 
possibility distributions are represented as minimum–maximum intervals using the random fuzzy  
a-cut technique. In addition, the optimization process is performed to estimate the presumption level 
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(a). With the simulation cases and min–max values generated by sampling methods and the estimated 
presumption levels, a family of probability distributions is calculated. 

 
Figure 2. Fuzzy Monte Carlo simulation (MCS) process considering aleatory and epistemic uncertainty. 

4. Target Building and Unknown Inputs 

An office building located in South Korea was chosen and modelled using EnergyPlus 8.0 
(Figure 3). The EnergyPlus model using Bayesian calibration was calibrated and validated [16]. With 
the previous calibrated and validated EnergyPlus model, this study only focuses on the uncertainty 
analysis and global sensitivity analysis using the MCS or fuzzy MCS. 

Table 1 shows the probability distributions and preferred representations (probability or 
possibility) regarding the design variables. The systems of the design variables were divided into 
thermal zones, heating, ventilation and air conditioning (HVAC) systems, fans, pumps, and plants, 
respectively. In addition, the predicted outputs were heating/cooling load, HVAC system load, fan 
electricity energy consumption, pump electricity energy consumption, and gas energy consumption, 
respectively. The reason is because the uncertainty and sensitivity results might be biased if it is only 
performed toward the gas energy consumption with all possible design variables [16]. In the thermal 
zones, the type and thickness of insulation and type of glass were selected as probability distributions 
that have an aleatory nature because the type and thickness of the materials (insulation and glass) 
derived from specific information of the related companies are less likely to reduce the uncertainties 
in comparison with the other unknown inputs that have an epistemic nature. The indoor loads were 
regarded as an important target for the future design, since the relocation of the interior space and 
changes in the highly efficient lighting fixtures and low energy devices can significantly affect the 
heating/cooling loads. In addition, the indoor set-point temperature was regarded as an adjustable 
option within the ranges defined in the previous literature [17]. In the given building, the indoor  
set-point temperatures were set to 20 °C for heating and 26 °C for cooling. The design inlet/outlet 
temperatures and design flow rates for the HVAC systems are adjustable options. Moreover, the 
design pressure head and motor efficiency for pumps and fans were chosen as the design variables. 
Finally, the coefficient of performance (COP) of the Absorption Chiller/Heater and the design 
inlet/outlet temperatures for the plant were chosen as important design variables. In particular, the 
COP is the thermal efficiency of the equipment system that converts the gas or electric energy into 
potential and kinetic energy. As the COP increases, the amount of gas or electric energy required to 
enhance the system efficiency is reduced. 
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(a)

(b)

Figure 3. Target building and simulation model. (a) Real building; (b) EnergyPlus. 

Table 1. Unknown inputs.  

No. Systems Design Variables Probability Distributions 
Preferred 

Representations 
x1 

Zone 

Insulation 
Type Discrete U [1, 20] Probability 

x2 Thickness Continuous U [0.005, 0.01] Probability 
x3 

Glass 
Type Discrete U [1, 16] Probability 

x4 Airtightness ratio T [0.5, 0.8, 1.0] Possibility 
x5 

Indoor loads 
Fraction person per area T [0.8, 0.9, 1.0] Possibility 

x6 Fraction internal gain for lights T [0.8, 0.9, 1.0] Possibility 
x7 Fraction internal gain for equipment T [0.8, 0.9, 1.0] Possibility 
x8 Indoor  

set-point 
temperature 

Heating set-point temperature T [20, 21.5, 23] Possibility 

x9 Cooling set-point temperature T [26, 27, 28] Possibility 

x10 

HVA
C 

Water 
Design water flow ratio T [0.8, 1.0, 1.2] Possibility 

x11 
Design water inlet/outlet temperature 

ratio 
T [0.8, 1.0, 1.2] Possibility 

x12 
Air 

Design air flow ratio T [0.8, 1.0, 1.2] Possibility 

x13 
Design air inlet/outlet temperature 

ratio 
T [0.8, 1.0, 1.2] Possibility 

x14 

Fan 

Supply fan 
Fan efficiency ratio T [0.8, 1.0, 1.2] Possibility 

x15 Pressure rise ratio T [0.8, 1.0, 1.2] Possibility 
x16 Motor efficiency ratio T [0.8, 1.0, 1.2] Possibility 
x17 

Return fan 
Fan efficiency ratio T [0.8, 1.0, 1.2] Possibility 

x18 Pressure rise ratio T [0.8, 1.0, 1.2] Possibility 
x19 Motor efficiency ratio T [0.8, 1.0, 1.2] Possibility 
x20 

Pump Chilled water 
Pump head ratio T [0.8, 1.0, 1.2] Possibility 

x21 Motor efficiency ratio T [0.8, 1.0, 1.2] Possibility 
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x22 
Condenser 

Pump head ratio T [0.8, 1.0, 1.2] Possibility 
x23 Motor efficiency ratio T [0.8, 1.0, 1.2] Possibility 
x24 

Hot water 
Pump head ratio T [0.8, 1.0, 1.2] Possibility 

x25 Motor efficiency ratio T [0.8, 1.0, 1.2] Possibility 
x26 

Plant 
COP 

COP for cooling T [0.8, 1.0, 1.2] Possibility 
x27 COP for heating T [0.8, 1.0, 1.2] Possibility 
x28 Design 

temperature 
Design inlet temperature ratio T [0.8, 1.0, 1.2] Possibility 

x29 Design outlet temperature ratio T [0.8, 1.0, 1.2] Possibility 

U: Uniform distribution, T: Triangular distribution; HVAC: Heating, ventilation and air conditioning; 
COP: Coefficient of performance. 

5. Development and Validation of Gaussian Process Emulator 

A GP emulator, which is regarded as the surrogate model of EnergyPlus, was used to obtain 
accurate and reliable uncertainty and global sensitivity results with fast computational speed. In this 
study, five GP emulators (thermal zones, HVAC systems, fans, pumps, and plants) were constructed. 

To generate the training dataset, the number of inputs (p)  1: 1,...,n nx x x  for thermal zone, 
HVAC system, fan, pump, and plant are set as 9, 4, 6, 6, and 4, respectively. The output dataset y  
includes heating/cooling load, HVAC system load, fan electricity energy consumption, pump 
electricity energy consumption, and gas energy consumption. The number of samplings for the LHS 
method was set at 200. A total of 150 training datasets for the GP emulator and 50 training datasets 
for validation were employed. The Gaussian Process regression model with Gaussian noise using the 
generated dataset represents a kernel matrix K(xi, xj) with zero mean function as shown in Equations 
(3)–(6). The Gaussian noise i  is generally expressed as an independent identically distributed (iid) 
normal distribution. In this study, a squared exponential covariance function C(xi, xj) in the kernel 
matrix was used. A maximum a posteriori (MAP) estimator out of the Bayesian inference was used 
to estimate three hyperparameters (scaling parameter 2

se , length scales 1:pl , and variance of 
Gaussian noise tv ). 

( )i i iy f x    (3) 

(0, )i tN v   (4) 

1 1 1
'

1

( , ) ... ( , )
( , ) ... ... ...

( , ) ... ( , )

p

i j

p p p

C x x C x x
K x x

C x x C x x

 
 

  
  

 (5) 

'( ) (0, ( , )i i jf x gp K x x
 (6) 

Table 2 shows the difference in the stochastic predicted outputs between EnergyPlus and the GP 
emulator using the separate validated dataset. The two-sample Kolmogorov–Smirnov (K–S) test was 
used to find whether or not the populations of the two samples have the same probability distribution. 
If p-value (0.0–1.0) is greater than 0.05, the populations of the two samples have the same probability 
distribution. In the results, the two samples have very similar distributions. This means that the 
outputs of the GP emulator are similar to those of EnergyPlus. In this study, the GP emulator can be 
used for uncertainty and global sensitivity analysis. 
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Table 2. EnergyPlus vs. Gaussian process (GP) emulator using stochastic results and the two-sample 
Kolmogorov–Smirnov (K–S) test. 

Systems 
EnergyPlus (kWh) GP Emulator (kWh) 

p-Values 
Mean STDEV Mean SD 

Zone 767,414 13,369 767,436 13,325 0.789 
HVAC 592,080 11,533 591,832 9568 0.117 

Fan 102,834 12,150 102,834 12,150 0.258 
Pump 376,135 53,641 376,150 53,603 0.979 
Plant 722,908 27,363 722,908 27,364 0.282 

SD: Standard Deviation. 

6. Monte Carlo Simulation vs. Fuzzy Monte Carlo Simulation 

6.1. Uncertainty Results 

Figure 4 shows some sampling results propagated using the LHS method. In the results, 
uncertainty propagations for the plausibility and belief functions of fuzzy MCS were biased in 
comparison with those of MCS. These biased propagations were caused by reflecting the epistemic 
uncertainties incurred from inaccurate and insufficient information.  

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 

 
(e) 

Figure 4. Sampling results using the Latin hypercube sampling (LHS) method. (a) Sampling results 
of thermal zone (x5: Fraction person per area, x6: Fraction internal gain for lights, x7: Fraction internal 
gain for equipment); (b) Sampling results of the heating, ventilation and air conditioning (HVAC) 
system (x10: Design water flow rate, x11: Design water inlet/outlet temperature ratio, x12: Design air 
flow ratio); (c) Sampling results of fan (x14: Fan efficiency ratio, x15: Pressure rise ratio, x16: Motor 
efficiency ratio); (d) Sampling results of pump (x20: Pump head ratio of chilled water, x21: Motor 
efficiency ratio of chilled water, x22: Pump head ratio of condenser); (e) Sampling results of plant 
(x26: Coefficient of performance (COP) for cooling, x27: COP of heating, x28: Design inlet temperature 
ratio). 



Sustainability 2017, 9, 539  9 of 14 

Table 3 and Figure 5 show the uncertainty results of the fuzzy MCS compared with those of the 
MCS. In the case of the fuzzy MCS, the uncertainty results were represented as a family of probability 
distributions with a range between plausibility and belief distribution. On the other hand, the results 
of the MCS are located between the plausibility and belief distribution. 

The difference in distance between the plausibility and belief distribution is closely connected 
with a lack of definite physical or experimental knowledge. A large difference in the distance implies 
that the predicted outputs are strongly influenced by unknown inputs that have an epistemic nature. 
In addition, the plausibility and belief distribution denote optimistic and pessimistic outcomes, 
respectively [5,6]. If the building stakeholders (e.g., architect, owner, engineer, and occupants) have 
optimistic preferences about the model risks, the plausibility distribution should be used for  
risk-based decision support. Otherwise, the belief distribution should be used. In the results, the 
uncertainty results of the thermal zone showed that the epistemic uncertainties have a decisive effect 
on the heating/cooling load since a strong difference was shown in the distance between the 
plausibility and belief distribution. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 

 
(e) 

Figure 5. MCS vs. fuzzy MCS using cumulative probability. (a) Uncertainty results of thermal zone; 
(b) Uncertainty results of the HVAC system; (c) Uncertainty results of fan; (d) Uncertainty results of 
pump; (e) Uncertainty results of plant. 

Table 3. Uncertainty results: Monte Carlo simulation (MCS) vs. fuzzy MCS. 

Systems Functions Mean (kWh) 
Standard 

Deviation (kWh) 
Min 

(kWh) 
Max (kWh) 

Coefficient of 
Variation 

(Dimensionless) 

Zone 
Belief 779,778 5825 767,679 792,771 0.00747 

Monte Carlo 765,544 8397 742,917 785,540 0.01097 
Plausibility 751,651 5679 739,364 763,286 0.00756 

HVAC 
Belief 601,325 1697 597,029 605,535 0.00282 

Monte Carlo 594,505 6451 573,222 604,237 0.01085 
Plausibility 581,836 8052 567,116 593,879 0.01384 

Fan 
Belief 122,051 6346 109,277 140,152 0.05199 

Monte Carlo 103,184 7806 81,917 128,638 0.07565 
Plausibility 86,851 4263 76,277 96,126 0.04908 

Pump 
Belief 452,561 31,453 383,288 532,293 0.06950 

Monte Carlo 376,932 37,474 298,143 514,584 0.09942 
Plausibility 309,587 18,422 276,177 357,096 0.05951 

Plant 
Belief 716,927 28,764 659,183 778,085 0.04012 

Monte Carlo 659,598 37,264 566,242 752,066 0.05650 
Plausibility 593,222 28,599 532,686 650,750 0.04821 

6.2. Global Sensitivity Results  

The sensitivity analysis quantifies the influence of unknown inputs on the outputs with 
probability distributions. The sensitivity analysis should lead to (1) ranking unknown inputs in order 
of importance; (2) identifying influential and non-influential inputs; (3) reducing the variance of the 
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outputs, and (4) finding influential inputs and their subset in a given probability range. In this study, 
the standardized rank regression coefficient (SRRC) method for the global sensitivity analysis was 
used; the SRRC method uses a rank transformation and is suitable for a nonlinear model [18–20].  

Table 4 shows the sensitivity results (sensitivity index and rank) for finding optimal design 
solutions among possible design variables. In the case of the thermal zones (x1–x9), lights (x6) and 
equipment (x7) were chosen as influential design variables. In terms of heating/cooling load, the 
lights and equipment were more sensitive than the type (x1) and thickness (x2) of the insulation 
boards; the type (x3) and airtightness (x4) of the glass; the number of occupants (x5); and the indoor 
set-point temperatures (x8 and x9). In particular, the sensitivity result of the equipment was higher 
than that of lights because some light fixtures were replaced with high efficient LED lamps, while the 
equipment (PC, copy machine, TV, etc.) had not been replaced. The results showed that the ranks, 
except for the lights and equipment, should be changed according to the preferred distributions 
(plausibility or belief distribution). 

Table 4. Global sensitivity results. 

No. 
Plausibility Belief Monte Carlo 

SI Rank SI Rank SI Rank
x1 0.008 6 −0.004 8 0.039 3 
x2 0.006 7 −0.006 6 −0.015 6 
x3 −0.021 3 0.0001 9 −0.025 5 
x4 0.011 4 0.007 5 0.009 7 
x5 0.003 9 0.004 7 −0.006 8 
x6 0.357 2 0.350 2 0.374 2 
x7 0.951 1 0.946 1 0.948 1 
x8 −0.004 8 −0.008 4 0.035 4 
x9 −0.008 5 −0.009 3 0.004 9 

x10 0.168 2 0.664 1 0.264 2 
x11 −0.984 1 −0.541 2 −0.913 1 
x12 −0.113 3 −0.445 3 −0.177 3 
x13 −0.003 4 0.025 4 0.040 4 
x14 −0.590 2 −0.744 1 −0.659 2 
x15 0.748 1 0.606 2 0.659 1 
x16 −0.008 5 0.0001 6 0.008 6 
x17 −0.295 4 −0.363 3 −0.277 3 
x18 0.347 3 0.283 4 0.268 4 
x19 −0.003 6 0.011 5 0.014 5 
x20 0.023 5 0.042 5 0.015 6 
x21 −0.004 6 −0.032 6 −0.025 5 
x22 0.935 1 0.595 2 0.659 2 
x23 −0.395 2 −0.803 1 −0.699 1 
x24 0.087 3 0.069 4 0.067 3 
x25 −0.031 4 −0.083 3 −0.066 4 
x26 0.360 2 0.364 2 0.440 2 
x27 0.942 1 0.942 1 0.919 1 
x28 −0.021 4 0.010 4 0.004 3 
x29 0.012 3 −0.020 3 0.002 4 

SI: Sensitivity index. 

In the case of the HVAC system (x10–x13), the design water inlet/outlet temperature (x11) and 
water flow (x10) for cooling and heating were more sensitive than the design air inlet/outlet 
temperature (x13) and air flow (x12) due to the difference between the thermal capacities of the air 
and those of the water. In other words, it is more advantageous to change the design water inlet/outlet 
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temperature and water flow than to change the design air inlet/outlet temperature and air flow for 
efficient heat exchange between the heating and cooling coils and the returned air. In the case of 
sensitivity results using the plausibility distribution, the design water inlet/outlet temperature was 
chosen as the first priority. If the belief distribution is used, the design water flow rate should be 
chosen. In other words, the first priority for the HVAC system should also be identified, depending 
on whether the preferences of the stakeholders are optimistic or pessimistic.  

In the case of the fan (x14–x19), the efficiency (x14) and pressure rise (x15) of the supply fan were 
chosen as more influential design variables than those of the return fans. These design variables were 
selected because the supply fan has an additional pressure drop for heat exchange inside the air-
conditioner (heating and cooling coils) and air filter. In the case of the pump (x20–x25), the pump 
head (x22) and the motor efficiency (x23) of the condenser pump (primary pump) were chosen as 
more influential design variables than those of the chilled water and hot water pump (secondary 
pump). It can be inferred that the pump electricity energy consumption needs to be reduced by 
improving the primary pump rather than the secondary pump. Finally, for the absorption 
chiller/heater of the plant (x26–x29), the COPs (x26–x27) for the cooling and heating were chosen as 
more influential design variables than the design inlet/outlet temperature (x28–x29). In addition, the 
COP for heating was selected as a more influential design variable than the COP for cooling. To reach 
an efficient design, improving the heating efficiency is the preferred approach. However, it should 
be noted that the sensitivity index or ranks for fan, pump, and plant should be changed depending 
on the preferred distributions. 

In summary, the influential inputs in the given target building are determined as follows: (1) 
lights and equipment for the cooling and heating load; (2) design water inlet/outlet temperature and 
water flow for the HVAC system load; (3) fan efficiency and pressure rise of the supply fan for the 
fan energy electricity consumption; (4) pump head and motor efficiency of the condenser pump for 
the pump energy electricity consumption; and (5) COPs of the absorption chiller/heater for the gas 
energy consumption. However, it should be noted that different design variables could be selected 
according to the preferred distributions of the stakeholders. 

7. Conclusions  

This study presents a comparison between the fuzzy MCS and the MCS for uncertainty and 
global sensitivity analysis in a given building. A global sensitivity analysis using the  
meta-model-based uncertainty results was conducted for finding influential inputs among all 
possible design variables in the existing office building. The SRRC method, which can provide the 
sensitivity measures that enable the quantitative identification of influential and non-influential 
inputs, was chosen. 

Comparing the fuzzy MCS with the MCS, this study showed that the fuzzy MCS provides 
decision makers with more meaningful and trustworthy information than the MCS, since the  
MCS-based uncertainty propagation has trouble in dealing with the epistemic uncertainties (i.e., 
reducible uncertainties). Such trouble is caused by all the unknown inputs that were assigned as 
single probability distributions depending on the subjective knowledge and experiences of the 
simulationists. If each single probability distribution is biased, then the uncertainty and sensitivity 
analysis should fail to fulfil its role for the risk-based design support management. 

On the other hand, the fuzzy MCS, which is a joint propagation method (probability theory of 
MCS and possibility theory of fuzzy arithmetic), can reflect aleatory as well as epistemic 
uncertainties, and obtain a family of probability distributions including plausibility and belief 
distribution. As shown in the global sensitivity results (refer to Section 5.2), such a probabilistic 
framework using the fuzzy MCS should offer stakeholders more chances to identify influential inputs 
by considering the factors behind the risks in a given range of the family of the distributions. In terms 
of the risk-based design support management considering decision makers’ preferences (optimistic 
or pessimistic), the fuzzy MCS performs better than the MCS. Future works will include the following: 

 Bayesian calibration based on the fuzzy MCS: the fuzzy MCS will be used to estimate posterior 
distributions of unknown inputs in the BPS tools 
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 Stochastic multi-criteria design based on the fuzzy MCS: by coupling between uncertainty 
results propagated using the fuzzy MCS and optimization techniques (e.g., genetic algorithm, 
particle swarm optimization), the multi-criteria design problems will be treated under 
uncertainty  
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Abbreviations 

The following abbreviations are used in this manuscript: 

MCS Monte Carlo simulation 
GP Gaussian process 
TFN Triangular fuzzy number 
LHS Latin hypercube sampling 
COP Coefficient of performance 
MAP Maximum a posteriori 
K-S Kolmogorov–Smirnov 
SD Standard deviation 
SRRC Standardized rank regression coefficient 
SI Sensitivity index 
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