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Abstract: Concrete is considered to be a construction material with high durability and excellent fire
resistance. However, degradation occurs, leading to structural safety problems and expensive
maintenance costs. Currently, durability design and its concepts are provided in the concrete
specifications and structural design codes in many countries, but they vary in terms of the design
methodologies and users’ demands. Reinforced concrete (RC) structures based on a reasonable
durability design with a quantitative procedure can prevent unnecessary maintenance expenses and
reduce environmental loads. This paper presents the current trends of durability design in South
Korea and government support for infrastructure. In this work, the two representative durability
design philosophies (deterministic and probabilistic approaches) are briefly summarized, and the
current guidelines and related requirements for durability design in several countries are investigated.
Durability design is now changing from simple material requirement control to performance-based
design with quantitative parameters considering various exposure classifications and evaluation
processes. RC structures based on reasonable durability design can make a great contribution to
reducing maintenance costs and environmental effects like CO2 emissions.
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1. Introduction

Concrete is an attractive construction material whose engineering advantages have been known
for a long time. The engineering properties of concrete such as strength and stable material behavior
in the curing process make it suitable for use and provide designers with the freedom of geometry,
a short construction period, and cost-effectiveness. In reinforced concrete (RC) or pre-stressed concrete
(PS) structures, an important assumption for design is the perfect integration between concrete and the
embedded steel [1,2]. The durability problems caused by steel corrosion begin with rust stains but
can also include the degradation of serviceability and the reduction of structural safety [3]. Durability
is the capacity to withstand the influence of actions in the course of time, such as chloride attack,
carbonation, and freezing/thawing cycles. Among the parameters affecting durability, chloride attack
is considered one of the most severe as it affects steel corrosion directly, leading to cracking, reduction
of steel area, delamination of the concrete cover, and breakdown of structures [3,4]. Several critical
disasters due to steel corrosion have been reported, including the collapse example of the I35W
bridge in Minneapolis [5]. The total estimated direct cost for repairing or preventing corrosion is
reported to be $276 billion, which is approximately 3.0% of the gross domestic product in the United
States of America (USA) [6]. The reasons for the increasing consideration of durability design can be
summarized as follows:

(1) The determination of the intended service life of the infrastructure: Concrete is considered an
economical and durable construction material. In small structures, durability problems can be
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controlled by simple measures such as sufficient concrete cover depth and a low water/cement
(w/c) ratio. However, structures are constructed on a large scale with various types; therefore,
the significance of the life cycle costs (LCC) for maintenance increases accordingly [7,8]. In order
to secure cost benefits and the required performance at the same time, an intended service life
should be determined in the planning stage. Several important structures are planned to maintain
performance for 100 years or longer without active repairing or retrofitting [1,9]. LCC analysis for
infrastructure covers the costs from initial construction to the dismantling process, and plays an
important role in cost savings and optimization of maintenance processes [7,8]. The determination
of intended service life, considering the significance of the structure, the maintenance costs, and
the difficulties of repairing, is the first step of durability design.

(2) Increasing users’ needs for maintenance: Before 1990, the serviceability of a structure was simply
achieved through satisfying the requirements regarding structural safety. However, the user
needs as well as maintenance expenses are increasing owing to an expectation of more safe and
convenient usage of the structures. Corrosion control and the related repairs in the USA are
reported to require $3.6 trillion [6,10]. User needs can be another expense since citizens are users
and reporters of corrosion detection at the same time [11]. The increasing repair costs in South
Korea are shown in Figure 1 for different structure types [12].
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(3) Long service life for sustainability: With the extension of service life of RC structures without
large-scale repairs, concrete usage can be reduced. During clinker manufacturing, 0.9 tons of
CO2 emissions are reported per 1.0 ton of cement [13]. The maintenance-free period is currently
recognized as a critical period since other construction efforts, and repairs on a large-scale
cause additional environmental impacts. Previous research on life cycle CO2 (LCCO2), i.e., the
evaluation of total CO2 emissions, reported that an initial investment into construction materials
and design details for reducing CO2 was the most sustainable solution when compared with the
total CO2 considering frequent repairs and small CO2 uptake in use [14].

(4) Reduction in social impact: Social impact is defined as “the consequences to human populations
of any public or private actions that alter the ways in which people live, work, play, relate to one
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another, organize to meet their needs, and generally cope as members of society” [15] (p. 1436).
Several reports have shown that construction projects affect human population, communities, and
social relationships [15,16]. For example, human health and a reasonable quality of life cannot
be achieved when living near a construction site owing to noise issues and traffic obstructions.
The extension of the service life of a structure can contribute to the members of a community
feeling settled.

This paper investigates the durability design trend for chloride attacks. Additionally, the
recommendations and requirements from concrete specifications in the USA, the European Union
(EU), Japan, and South Korea are investigated.

2. Deterministic and Probabilistic Durability Design for Chloride Attack

2.1. Overview of Durability Design in Specifications and Design Codes

Before 1990, the significance of durability was not yet a concrete issue and only conceptual
durability designs were proposed [1,17,18], as shown in Figure 2. During that period, durability design
was performed based on specifications such as maximum w/c ratio and minimum cover depth. If
structural safety was satisfied, the durability performance was thought to be satisfied accordingly.
With the increasing use of mineral admixtures and problems due to steel corrosion, durability design
was upgraded to deterministic design from the 1990s onwards. Several institutes, such as the Japan
Society of Civil Engineers (JSCE) [19] and the Architectural Institute of Japan (AIJ) [20], proposed
unique techniques for service life evaluation; however, they could not be developed to meet concrete
specifications or international codes.
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Figure 2. Service life concept in durability design [18].

2.2. Durability Design Based on the Deterministic Method

Durability design based on a deterministic approach is a method that ensures the induced chloride
content does not reach the critical threshold initiating corrosion in the outer steel during the intended
service life. Similar to structural safety design, the induced chloride and critical chloride content are
regarded as external loads due to design loads and internal strength due to nominal strength from the
designed material, respectively. The governing equations can be classified into two equations. The first
is Fick’s second law of diffusion [21,22] and the second is the Nernst-Einstein equation. Conventional
design is based on Fick’s second law of diffusion, and is rendered in Equation (1)
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where D is the chloride diffusion coefficient at time t, Cs is the surface chloride content, and erf is the
error function.

Several parameters for reasonable diffusion coefficient have been studied considering time
effect [21–23], temperature effect [21,24], humidity effect [25], surface chloride build-up [17,21,26],
and the mineral admixture effect on diffusion [27,28]. The diffusion coefficient in Fick’s second
law is an apparent diffusion coefficient that assumes steady-state chloride diffusion, where chloride
transport is explained only by the diffusion coefficient. The apparent diffusion mechanism is improved
using a multi-layer theory for concrete with different surface conditions. The apparent diffusion
coefficient is usually obtained from a long-term submerged test and field investigations. The chloride
profiles along the concrete depth are regressed based on a non-linear line (error function). Surface
chloride content and the diffusion coefficient are then obtained from the best fit line based on the
chloride profile [29–31]. In order to evaluate corrosion initiation, the critical chloride content is very
important. Many research efforts have been carried out to determine the chloride content accurately.
However, it varies depending on local conditions, including the cement type and mixture proportions.
The previous results regarding critical chloride content are summarized in Figure 3 [32–39].
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In the Nernst-Einstein equation, the behaviors of chloride ions in a non-steady state condition
are represented considering diffusion of free chloride ions, convection due to moisture pressure,
and kinetic reaction with cement hydrates. In the system, free and bound chloride ions are
calculated separately and the total chloride ions are considered as their summation based on isotherm
equations [40–42]. Recently, the models using the Nernst-Einstein equation adopted behaviors such as
porosity and saturation, which vary with time and local conditions, in early-aged concrete. The models
typically include cement hydration, moisture transport, and pore structure formation theories [43–46].
The strong points of these models are: (1) consideration of the varying external conditions (e.g., relative
humidity, temperature, and surface chloride content); (2) evaluation of the material characteristics
that are affected by external conditions; and (3) determination of the free chloride content, which
directly affects corrosion initiation. The models have been applied to the combined deterioration with
carbonation and locally unsound concrete with cracks [47]. The representative analysis frame for the
model is presented in Figure 4 [48].
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2.3. Durability Design Based on the Probabilistic Method

Durability design using a probabilistic approach began in the 1990s and was applied to actual
durability designs in the 2000s. The deterministic models are reported to have several limitations since
they cannot consider engineering uncertainties such as physical and statistical determination, and the
model itself. The uncertainties are summarized in Table 1 [49,50].

Table 1. Engineering uncertainties in durability design [50].

Type Source of Uncertainty

Physical Inherent random nature of basic variables
Model Governing mechanism and equation

Statistical Assumption for probability density function—limited sample size
Decision Definition of durability failure criteria

In probabilistic durability design, the design parameters are considered as random variables with
a specific distribution. The cover depth, diffusion coefficient, and critical chloride content with each
random variable (i.e., mean, Coefficient of Variation COV) are usually adopted for the evaluation of
failure probability [51–54]. Currently, several actual durability designs have been attempted for large
RC structures; however, this process has not been widely performed [55,56].

The critical condition—determined as the probability that can cause steel corrosion—does not
exceed the intended durability probability within the intended service life. The governing equation
can be rendered as Equation (2)

P
{

Cσ(µ, σ) < Co(µ, σ)

[
1− er f

(
x(µ, σ)

D(µ, σ)t

)]}
< Pmax (2)

where Cσ(µ,σ) and C0(µ,σ) are the random variables for the critical chloride and surface chloride content.
Pmax is the intended durability failure probability within the intended service life. In Equation (2),
random variables for the diffusion coefficient (D(µ,σ)) and cover depth (x(µ,σ)) are highly dependent
on field investigations and test results. In the design concept as presented in Figure 5, the resistance
distribution, R(t), and deteriorating distribution, S(t), are usually calculated in terms of time (t).
The design concept for the upper graph with two distributions represents the service life period design
concept, while the lower graph with one distribution represents the lifetime design concept [1].
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Recently, many research approaches have been proposed that include spatial variation through
random field generation of design parameters such as the diffusion coefficient and surface chloride
content [57–60]; however, these techniques have not been attempted for actual durability design.

2.4. Engineering Limitations of the Two Methods

From an engineering perspective, the proposed design methods have both strong and weak points.
The strength of the deterministic method is its design simplicity. That is, the solution can be obtained
as the chloride content, and the calculation process is relatively easier than the probabilistic manner;
hence, the remaining service life can be easily estimated when the design technique is applied to the
existing structure. The solution from the deterministic method is a physical value and the estimated
service life can provide a reasonable service period, thereby avoiding an overestimation of the cover
depth and binder content. The weakness of the design is the adaptation of the fixed critical chloride
content, which can vary with local conditions.

The design parameters can reflect actual situations such as the level of construction and material
quality. The strength of the probabilistic method is based on conservative design and higher reliability;
however, the weakness of the design is the complexity of the calculation frame and the low intended
probability of durability failure, which is proposed to have a range from 7.0% to 10.0% [61–63].
The design limitations of the two methods can be summarized in Table 2.

Table 2. Design limitations of the two approaches.

Deterministic

• Determination of diffusion coefficient at the reference time
• Time-dependent diffusion behavior considering binder type
• Diffusion due to local conditions such as cracks or joints
• Design parameters for curing and aging
• Environmental parameters for temperature and humidity
• Critical chloride content causing corrosion initiation
• Determination of the surface chloride content considering the binder type and

exterior conditions

Probabilistic

• Appropriate random variables and probabilistic distributions for design parameters
(cover depth, diffusion coefficient, critical content, construction level)

• Determination of intended durability failure and intended service life
• Variations of environmental conditions
• Accuracy of the analysis/evaluation system for chloride behavior
• Significant dependence on field investigation results or long-term exposure data
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3. Current Durability Design Methodology

3.1. Durability Design of Concrete Specifications and Structural Design Codes

With the increasing engineering and social significance of durability and durability design,
the related requirements are prepared in structural design codes and concrete specifications in
many countries. Durability design based on specific requirements such as maximum w/c ratio,
minimum cover depth, and critical chloride content is still prevalent. Several classifications for
harsh environment are prepared by considering the distance from the seashore line and the required
performance. The current section examines durability design methods in the Structural Codes and
Concrete Specifications of Japan, the USA, the EU, and South Korea; as well as governmental support
for durability and maintenance in South Korea.

3.2. Foreign Trends in Durability Design

3.2.1. Japan

In Japan, quantitative design procedures are introduced based on deterministic approaches (Fick’s
second law of diffusion) where performance-based durability design is partially suggested. Regarding
durability design, in the Japanese concrete specifications [64], the determination of the diffusion
coefficient is based on field investigations and lab-scale tests. In order to evaluate the service life of RC
structures, a safety factor of 1.0–1.3 is considered, and design parameters are provided for concrete
with normal and slag cement. Surface chloride contents based on a specified distance from the seashore
are determined from field investigations. In order to achieve a 100-year service life, the maximum w/c
ratio, required cover depth, and construction levels are determined for several concrete members like
columns, girders, slabs, and piers. For the durability design, the required diffusion coefficient from
the tests discussed in JSCE 571 [65] and JSCE 572 [66] is proposed. The design diffusion coefficients
and the related cover depths are proposed for an intended service life ranging from 20 to 100 years
by considering the critical chloride content (1.2 kg/m3) and a safety factor of 1.3. Design parameters
for actual crack width and allowable crack width are considered in the design diffusion coefficient.
Surface chloride content from the coastline is prepared for durability design based on the specific cities
listed in Table 3. It is very informative to enlist the regional conditions in concrete specifications for
reasonable durability design.

Table 3. Chloride ion concentration at concrete surface (kg/m3) according to Japanese concrete
specifications [64].

Splash Zone
Distance from Coast (km)

Near
Shoreline 0.1 0.25 0.5 1.0

Region with high
airborne chloride

concentration

Hokkaido, Tohoku,
Hokuriku, Okinawa 13.0

9.0 4.5 3.0 2.0 1.5

Region with low
airborne chloride

concentration

Kanto, Tokai, Kinki,
Chugoku, Shikoku, Kyushu 4.5 2.5 2.0 1.5 1.0

Regarding materials and construction, Japanese concrete specifications [67] propose maximum
w/c ratios and minimum binder content for specified external conditions, as shown in Tables 4
and 5. In the specifications, the requirements are provided for concrete mix proportions with several
external conditions.
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Table 4. Maximum water/cement ratios determined from durability (%) in the Japanese concrete
specifications [67].

Construction Conditions

Ordinary Construction Concrete Products, or the Quality Equal
to or Higher than Concrete Products

Environmental
classifications

Offshore air 45 50
Splash zone 45 45

Undersea 50 50

Table 5. Minimum cement content of concrete determined to ensure durability (kg/m3) the Japanese
concrete specifications [67].

Maximum Size Coarse Aggregate (mm)

20 or 25 40

Environmental
Classifications

Offshore air, Splash zone 330 300
Undersea 300 280

In Japan, quantitative procedures are provided for durability design based on deterministic
manner using Fick’s second law. Additionally, the Japanese concrete specifications determine several
material requirements for mixture. The criteria of acceptance for the cover depth and diffusion
coefficient is shown in Figure 6, and the diffusion coefficients with required cover depth for durability
design are listed in Table 6 [64]. In Figure 6, γcl and γi are noted as the material and structure factor,
and C0 and Clim represent the surface chloride and critical chloride content, respectively. Cd and Dd
represent the design cover depth and diffusion coefficient based on the intended service life (t).
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Table 6. Maximum diffusion coefficients for passing the examinations for chloride ingress (Dd) (only 1
km from coast) according to the Japanese concrete specifications [64].

Life Time
(Years)

Design Concrete Cover (mm)

25 30 35 40 50 60 70 100 150 200

20 0.62 0.893 1.22 1.59 2.45 3.57 4.86 9.92 22.3 39.7
30 0.413 0.595 0.81 1.06 1.65 2.38 3.24 6.61 14.9 26.4
50 0.248 0.357 0.486 0.635 0.992 1.43 1.94 3.97 8.93 15.9

100 0.124 0.179 0.243 0.317 0.496 0.714 0.972 1.98 4.46 7.93

3.2.2. United States of America (USA)

In the USA, American Concrete Institute (ACI)’s 318-11 Code [68], durability design is considered
a part of structural design. The specification provides minimum requirements for concrete considering
exposure classifications. In ACI 318-11, there are four major classifications and the durability
requirements are provided with each classification. Compared with the JSCE classification, the
ACI 318-11 code has more detailed exposure classes such as F (freezing and thawing), S (sulfate),
P (permeability), and C (corrosion). For each exposure class, the durability requirements are proposed
including maximum w/c ratios, minimum strength, binder types, and maximum water-soluble
chloride ion content. Among the classifications, the corrosion category is shown in Table 7 for the
exposure class and Table 8 gives requirements for the concrete.

Table 7. Exposure categories and classes in the US American Concrete Institute (ACI) 318-11 Code [68].

Category Severity Class Condition

C Corrosion protection
of reinforcement

Not applicable C0 Concrete dry or protected from moisture

Moderate C1 Concrete exposed to moisture but not to
external sources of chlorides

Severe C2

Concrete exposed to moisture and an
external source of chlorides from deicing
chemicals, salt, brackish water, seawater, or
spray from these sources

Table 8. Requirements for concrete by exposure class in the US ACI 318-11 Code [68].

Exposure
Class

Max.
w/c

Min. f’C
psi Additional Minimum Requirements

Maximum water-soluble chloride ion (Cl−) content
in concrete, percent by weight of cement (%)

RC PS

C0 N/A 2500 1.00 0.06

C1 N/A 2500 0.30 0.06

C2 0.40 5000 0.15 0.06

w/c, water/cement; f’c, compressive strength; RC, reinforced concrete; PS, pre-stressed concrete.

In Table 8, lower criteria for water-soluble chloride ions are recommended for PS since the
tendons inside the concrete are subject to tensile stress, which causes more rapid corrosion propagation.
The actual concept and quantitative procedures for durability design are not introduced. Several
committee reports handle specific deterioration and the related countermeasures. The guidelines from
the respective ACI committees can be summarized as in Table 9.
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Table 9. Guidelines and contents the ACI committee related to concrete durability.

Committee Contents and Guidelines

ACI 201R [69]

• Overall mechanism for freezing/thawing, chemical attack, erosion,
alkali-silica reaction

• Repairing corrosion and local damage
• Protection and enhancement for durability

ACI 210 [70]

• Control of erosion, cavitation, abrasion
• Overall explanation on mechanism, causes, and control for hydraulic

structures subjected to erosion

ACI 362 [71]

• Control of steel corrosion, freezing/thawing, cracking, spalling, and
delamination in parking structures

• Special considerations for deicing salt and concrete joint
• Suggestions for requirements such as cover depth, w/c ratios, anti-corrosive

agents, and coatings for concrete/steel

ACI 357 [72]

• Classification of sea water conditions (splash, tidal, submerged)
• Material requirements to meet greater than 40 years of service life

(mix proportions, aggregates, low w/c ratios)

The ACI’s requirements for durability seem to be more demanding when compared with the JSCE
standards [64,67], where specific durability design requirements are not yet codified and the concept
of intended service life is not clearly determined. The suggestions from ACI 201 contain durability
design based on Fick’s second law of diffusion [69].

3.2.3. European Union (EU)

The EU’s concrete specifications, e.g., EN 1992-1-1 (2004) [73], do not consider the service life
design and quantitative design procedures. However, exterior classifications are determined in detail
with six grades. Major deteriorating environments are as follows: normal condition (X0), carbonation
(XC), chloride attack (XD and XS), freezing and thawing (XF), and chemical attack (XA). In particular,
special attention is paid to the determination of minimum cover depth. For a 100-year service life,
additional severe exterior conditions are assumed. Moreover, quality control and strength grades
are roughly proposed to ensure meeting the required performance levels (composition limits and
compressive strength). The minimum cover depth for embedded steels and tendons are also proposed,
but the related service life is not determined.

In the European and British codes [73,74], very detailed conditions are provided for considering
strength grade, maximum w/c ratios, binder type, and nominal cover depth. Exterior conditions are
classified into four groups, and unit content of binder and minimum w/c ratio are proposed in each
category. The exposure classes regarding steel corrosion are listed in Table 10. The recommended
minimum cover depth and the required performance are listed in Tables 11 and 12, respectively.
The cover depth in Table 11 should be increased by the additive safety element over 10 mm.
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Table 10. Exposure classes related to environmental conditions in accordance with EN 206 [73].

Class Designation Description of the Environment Informative Examples Where
Exposure Classes May Occur

No risk of corrosion or attack

X0

For concrete without reinforcement or embedded
metal: all exposures except where there is
freeze/thaw, abrasion or chemical attack
For concrete with reinforcement or embedded
metal: very dry

Concrete inside buildings with very low air humidity

Corrosion induced by carbonation

XC1 Dry or permanently wet Concrete inside buildings with low air humidity
Concrete permanently submerged in water

XC2 Wet, rarely dry Concrete surfaces subject to long-term water contact
Many foundations

XC3 Moderate humidity
Concrete inside buildings with moderate
or high air humidity
External concrete sheltered from rain

XC4 Cyclic wet and dry Concrete surfaces subject to water contact, not within
exposure class XC2

Corrosion induced by chlorides

XD1 Moderate humidity Concrete surfaces exposed to airborne chlorides

XD2 Wet, rarely dry
Swimming pools
Concrete components exposed to industrial waters
containing chlorides

XD3 Cyclic wet and dry

Parts of bridges exposed to spray
containing chlorides
Pavements
Car park slabs

Corrosion induced by chlorides from sea water

XS1 Exposed to airborne salt but not in direct contact
with sea water Structures near to or on the coast

XS2 Permanently submerged Parts of marine structures

XS3 Tidal, splash and spray zones Parts of marine structures

XO, normal condition; XC, carbonation; XD/XS, chloride attack; XF, freezing and thawing; XA, chemical attack.

Table 11. Minimum cover requirements with regard to durability for reinforced steel in accordance
with EN 10080 [73].

Structural Class
Exposure Class

X0 XC1 XC2/XC3 XC4 XD1/XS1 XD2/XS2 XD3/XS3

S1 10 10 10 15 20 25 30
S2 10 10 15 20 25 30 35
S3 10 10 20 25 30 35 40
S4 10 15 25 30 35 40 45
S5 15 20 30 35 40 45 50
S6 20 25 35 40 45 50 55

Table 12. Recommendation limiting values for composition and properties of concrete.

Exposure Classes

Types
No Risk of
Corrosion
or Attack Carbonation-Induced Corrosion

Chloride-Induced Corrosion

Sea Water Chloride Other Than
from Sea Water

X0 XC1 XC2 XC3 XC4 XS1 XS2 XS3 XD1 XD2 XD3

Maximum w/c — 0.65 0.60 0.55 0.50 0.50 0.45 0.45 0.55 0.55 0.45

Minimum
strength class C12/15 C20/25 C25/30 C30/37 C30/37 C30/37 C35/45 C30/37 C30/37 C30/37 C35/45

Minimum cement
content (kg/m3) — 260 280 280 300 300 320 340 300 300 320
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As listed in Table 4 (JSCE) and Table 12 (EN), the required minimum w/c ratio level is 45%–50%
for concrete exposed to chloride attack, in which the expected strength level is 30–35 MPa. The codes
and concrete specification suggest a sufficient required strength since high strength with low w/c
ratio usually leads low chloride diffusion coefficient. The guidelines in Table 11 show a higher cover
depth with an increasing structural class and harsh exposure class. The penetrated chloride ion can be
controlled by increasing the cover depth and low diffusion coefficient. In Table 12, the range for the
cement binder in sea water is recommended to be 300–340 kg/m3, which is slightly higher than for
chloride other than from the sea (300–320 kg/m3) as the exposure condition of sea water is considered
to be harsh owing to the abundance of chloride ions. In Table 10, the carbonation depth may increase
most rapidly in XC3; however, the corrosion in the carbonated concrete is more activated in XC4 due
to abundant oxygen and moisture. Hence, it is determined that XC4 is the most critical condition for
steel corrosion under carbonation. Chloride penetration under the actions of freezing and thawing is
more severe than corrosion due to carbonation. With more harsh exposure classes, more conservative
requirements on material design can be found like the higher cover depth in Table 11 and the lower
w/c ratio in Table 12.

3.3. South Korea

3.3.1. Concrete Specifications

Unfortunately, original design codes and durability design procedures have not yet been
developed for South Korea. In the Korean concrete structure design code [75], exposure classifications
from ACI-318 are adopted and requirements such as minimum design strength, air content, and soluble
chloride content are developed using the same ACI Code [68]. In the Korean concrete structure design
code, the service life over 50 years is understood conceptually, but the intended service life considering
structure type and significance is not determined. The design code for bridges in South Korea [76]
adopts the same exterior classifications as the EN Code and suggests an allowable crack width.
The minimum compressive strength and cover depth are also given for each exterior classification.
In the concrete specifications on durability [63], durability design procedures based on JSCE [64,67] are
adopted but several parts are modified to take regional conditions into consideration. The five major
sources of deterioration are determined to be chloride attack, carbonation, freezing/thawing, chemical
attack, and alkali silicate reaction (ASR). For each deteriorating agent, durability design procedures are
provided for concrete material and structures with the same concept as JSCE [64,67]. Reliability indices
like durability reduction factor and environmental factors are proposed; however, the deterministic
method for durability design has been primarily adopted. The exposure conditions for temperature are
listed for six representative districts in South Korea for freezing and thawing actions. Time dependent
diffusion and mineral admixture effects (fly ash, slag, and silica fumes) are proposed based on Life365
(Life365, 1.0; Silica Fume Association (SFA): Lovettsville, VA, USA, 2002) [21] based on Fick’s second
law of diffusion. The durability design steps in Korea, comparable to the design procedure of the
JSCE [64], are summarized as in Figure 7:
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Currently, the Korean concrete specifications for harbor structures have proposed a roadmap for
durability design [77], in which the required design level is improved from current specified material
requirements to probabilistic durability design by 2025 through the deterministic design based on
Fick’s second law of diffusion by 2020.

3.3.2. South Korea’s Governmental Support for Durability and Sustainability

Recently South Korea announced several major governmental plans. In South Korea, a significant
amount of construction had been performed from the 1980s onwards, which now requires significant
maintenance. In the USA and Japan, a number of structures from Social Overhead Capital (SOC)
projects were constructed in the 1930s and 1950s, respectively. Thirty to 40 years later, these massive
construction periods have now resulted in aged infrastructure that needs significant maintenance, as
shown in Figure 8a [78]. Figure 8b plots the number of structures aged over 30 years [78], and shows
that the number of structures used for over 30 years has increased by 2.23 times from 1860 (in 2013) to
4211 (in 2023). The structures without durability design usually incur significant maintenance costs, so
durability design is strongly required here and now.
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The major governmental plans are listed in Table 13 and they represent the increasing significance
of durability and sustainability in infrastructure.
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Table 13. Major governmental policy and plans in South Korea [10].

Policy and Plans Agenda (2013–2017)

3rd Science-Technology Basic Plan
Safe City, New industry with ICT (Information and
Communication Technology) convergence supported
by Ministry of Science, ICT, and Future Planning

5th Civil Technique Promotion Basic Plan
Step-to-Step ability for Enhancement of require
performance supported by Ministry of Land,
Infrastructure and Transport

3rd SOC Safety and Maintenance Basic Plan

Active response safety maintenance and Needs for
durability design supported by Ministry of Land,
Infrastructure and Transport
(Special law for city for maintenance)

Green Architecture Certification Plan

Eco building certification with performance grading
and Durability introduction for structural design
supported by Ministry of Land, Infrastructure and
Transport, Ministry of Environment

4. Conclusions

Durability design in South Korea has not been widely pursued except for several major projects.
The reasons for this can be found in the absence of a legal system for service life grading and design
parameters without consideration of regional conditions. Sustainability for infrastructure can be
achieved through reasonable durability design, which can cut CO2 emissions and maintenance
costs due to unnecessary construction or large-scale repairs. In the present study, the increasing
significance of durability design and the related governmental supports in South Korea are described.
The conclusions are as follows:

(1) Through a survey of several concrete specifications and design codes, durability design
procedures that have been adopted in the USA, the EU, Japan, and South Korea were investigated.
Durability design has been performed based on the specified requirements for material parameters;
however, the exposure conditions and the related required performances are not quantitatively
determined. The exposure classification is based on considering a specific deteriorating agent.
In particular, the design code in Japan proposes a quantitative procedure for durability design similar
to the procedures for structural safety design.

(2) Regarding chloride attack, two representative design methodologies are summarized.
The current design trend is based on the deterministic design utilizing Fick’s second law of diffusion.
The probabilistic durability design is often attempted considering uncertainties in material, design,
and the construction stage. The inherent strengths and weaknesses of the two methods are briefly
discussed. In order to adopt the design method using the probabilistic technique, design parameters
of random variables such as cover depth, diffusion coefficients, and surface chloride content should be
determined quantitatively, considering regional conditions.

(3) Durability design in South Korea is still in the initial stages. Several durability requirements
have been adopted from foreign structural codes and specifications. A legal system for service life
grading and quantitative durability design procedure with reasonable design parameters are required
for avoiding the costs for long-term maintenance, which has not yet been addressed but will come in
the future. Durable structures can contribute to a reduction in maintenance costs and CO2 emissions
by eliminating unnecessary repairs or additional construction.
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