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Abstract: The problem of large amounts of carbon emissions causes wide concern across the world,
and it has become a serious threat to the sustainable development of the manufacturing industry.
The intensive research into technologies and methodologies for green product design has significant
theoretical meaning and practical value in reducing the emissions of the manufacturing industry.
Therefore, a low carbon-oriented product reliability optimal design model is proposed in this paper:
(1) The related expert evaluation information was prepared in interval numbers; (2) An improved
product failure analysis considering the uncertain carbon emissions of the subsystem was performed
to obtain the subsystem weight taking the carbon emissions into consideration. The interval grey
correlation analysis was conducted to obtain the subsystem weight taking the uncertain correlations
inside the product into consideration. Using the above two kinds of subsystem weights and different
caution indicators of the decision maker, a series of product reliability design schemes is available;
(3) The interval-valued intuitionistic fuzzy sets (IVIFSs) were employed to select the optimal reliability
and optimal design scheme based on three attributes, namely, low carbon, correlation and functions,
and economic cost. The case study of a vertical CNC lathe proves the superiority and rationality of
the proposed method.

Keywords: sustainable development; low carbon; reliability optimization; product failures;
grey correlation; interval numbers; uncertainty

1. Introduction

Numerous environmental issues have recently become considerably more threatening, such as
global warming and toxic hazes. In particular, the energy crisis and carbon emissions have become two
critical and universal concerns which have generated additional loads in the cycles within the natural
ecosystem and restricted the sustainable development of the whole world [1–3]. The manufacturing
industry generates great financial fortunes, but also produces massive amounts of carbon emissions
and waste resources. The problem of large amounts of carbon emissions and resource wastes caused
by the manufacturing industry is a wide concern across the world, and how to reduce the carbon
emissions and resource wastes of the manufacturing industry has become one of the primary questions
in the modern manufacturing industry. The thorough study of technologies and methodologies for
green product design has important theoretical meaning and practical value.
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Reliability tends to be related to the safety of products and its operating performance under
specified conditions [4]. Reliability allocation aims at reasonably planning the reliability of individual
elements to optimize the utilization of resources and ensure the design functions of products [5,6].
In other words, once a specified reliability target for a system has been determined, the reliability
value of every subsystem must be appropriately calculated and balanced [7,8]. The quality of products
has been greatly enhanced in modern society, and product complexity and functionality have also
increased greatly with the enormous development of science and the tough competition of the market.
Products are also now required to be beneficial to environmental protection [9].

Before the processing and manufacturing of products, product quality design with assured
product reliability apportionment is mandatory, and optimal reliability design for modern products is
a complicated problem. Most traditional reliability optimal design methodologies cannot meet the
requirements of long-term and responsible sustainable development for the modern product.

Firstly, most traditional reliability optimal design methodologies fail to consider the carbon
emissions of products. Global warming is induced mainly by the growing amount of carbon emissions
which can be processed with quantity calculations and have a major influence on the global climate
balance [10,11]. To realize sustainable development, every country is now trying to implement
policies for the reduction of carbon emissions. Unfortunately, sustainable product development
is overlooked by conventional reliability apportionment theorists, and previous studies on carbon
emissions mainly focused on carbon emissions and climate change, emission calculations, emission
decomposition factors, and emissions projections [12], and the field combining carbon emissions and
product reliability apportionment is under-researched.

For instance, Jung et al. [13] performed an investigation of the effect factors for carbon emissions
and provided a case study of a college campus. Robinson et al. [14] revealed that carbon emissions
increased more and more if the velocity of the engine increased and the load of the engine improved.
Shi and Zhao [15] suggested that carbon emission reduction should highlight how to dominate the size
of the economy and how to increase the energy density. Wang et al. [16] proposed that we would have
the confidence to achieve the goal of emission reduction related to energy consumption if a series of
necessary and reasonable actions were taken. Most scholars did not adequately take carbon emissions
into consideration when they were allocating the reliability for the subsystems included in products.

It is universally acknowledged that optimal reliability design is a key step for the preliminary
design of important and high-technology products. This has a significant influence on a product’s
carbon emissions. Failures of important and high-technology products have a latent influence on
the physical security, economic profits, and the harmony between human beings and nature. Hence,
product failure is an inevitable aspect of optimization design based on reliability. Usually, the effect of
product failure is measured by the failure frequency and failure severity [17,18], and some scholars
recently [19–23] handled the failure effect in product reliability optimal design with risk priority
number (RPN) information produced by the qualitative analysis and quantitative calculation of failure
mode effects analysis (FMEA). FMEA is defined as an analysis model to recognize various failure
modes occurring in a system and the corresponding impacts on the whole product function. It has
been widely employed to guarantee the safety and functionality of different domains, but it has two
defects. (1) Product failure has a crucial influence on the design and development of products, but the
relationship between the product failure analysis and carbon emissions is neglected. Once a product
fails, the malfunctioned subsystem would be repaired or dumped, which will result in additional
carbon emissions. The amount of carbon emissions caused by these product failures is determined by
the failure severity, failure frequency and carbon emissions of the relative subsystems in processing;
(2) FMEA classifies product severity and product failure occurrence by crisp numbers, but they cannot
reflect and deal with the uncertainty data.

In addition, modern products usually have several functions that are facilitated by the mutual
correlations among subsystems to satisfy variable customer demands. The subsystem with a high
correlation degree is more important than the subsystem with a low correlation degree. The former
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should be apportioned with higher reliability than the latter. Products with optimal reliability design
contain many different subsystems and the correlations among them are abstract and complex, so
the grey correlation analysis is often used to determine the subsystem weight given their mutual
correlations [24–27]. For many engineering problems, such as observation distortion, resource
limitations, system complexity, and so on, it is difficult to collect sufficient information at the early
design phase which tends to cause uncertainty in modeling real industrial products. Therefore,
product designers often need to manage the treatment of all kinds of uncertainties in reliability
optimal design [28–31]. Bayesian models and fuzzy theories are basic approaches for handling
uncertainties [32–34]. Bayesian models rely on subject-reported uncertainty which can result in illogical
calculation [35]. Fuzzy theories require product designers to determine the optimal membership
functions in the early design stage, but this is impossible in engineering applications. To solve these
problems, interval analysis has been proposed [36]. Lu et al. [37] applied interval analysis to the use and
management of land resources containing multifarious uncertainties; the numerical example of Suzhou
illustrated its advantages in reliability optimal design with uncertainties. Wang et al. [38] pointed out
that the introduction of interval numbers into the product reliability redundancy optimization in the
product concept design phase was of important practical value to speed up the product development
and reduce the economic cost of product engineering. In order to reasonably conduct product reliability
analysis and optimal design, interval analysis is often combined with mixed uncertainty, probability,
fuzzy theory, and grey system theory in the optimal reliability design [24,39,40].

Thus, it can be concluded that, to reduce the carbon emissions and promote the sustainable
development of the manufacturing industry, the problems discussed above in the traditional reliability
optimal design methods must be solved. Therefore, carbon emissions brought about by product
failures, uncertainty, and correlation among subsystems all need to be considered in modern product
reliability optimal design. Thus, a novel reliability optimal design model with interval product failure
analysis and interval grey correlation analysis is proposed in this paper.

This paper has four sections. In the next section, the framework and detail operators of the
proposed methodology are described. In Section 3, the superiority and rationality of the proposed
model are verified by the case study of a modern CNC lathe. Section 4 presents a summary and the
future development directions of the proposed method.

2. Variables, Data, Framework and Method Specification

2.1. Framework Specification

As illustrated in Figure 1, the proposed methodology for product optimal reliability design
contains three major phases.

Phase 1. Relevant data are prepared. The target system reliability is determined based on market
demands, and experts on the target product are invited to give their assessment of the carbon emissions
based on the product failure analysis and degrees of correlation among subsystems. The assessment
information is expressed as interval numbers within the internal [0, 10]. To avoid a distortion of the
optimal reliability design results caused by high uncertainty, the width of the interval numbers must
be restricted to being within three.

Phase 2. The subsystem weight taking into account the carbon emissions and their mutual
correlations is calculated based on the product failures analysis and the interval grey correlation
analysis, respectively. With their integration, the revised subsystem weight is available. It should be
noted that the optimal design result varies with the caution indicator of the decision maker. Therefore,
a series of reliability design schemes can be obtained.

Phase 3. A fuzzy-multiple-attributes decision-making (MADM) method by the accuracy function
of interval-valued intuitionistic fuzzy sets (IVIFSs) is adopted [41–43] to select the optimal reliability
optimal design scheme so that it can provide effective guidance to obtain low-carbon, safe and
economical products.
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More detail about these operations can be found in Sections 2.2 and 2.3.Sustainability 2017, 9, 369 4 of 14 
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Figure 1. The general framework of the proposed reliability optimal design method.

2.2. Definition of Variables and Model of Low Carbon-Oriented Reliability Optimal Design Specification

2.2.1. Basic Arithmetic of Interval Fuzzy Numbers

The primitive form of an interval number can be expressed as [a, b]. In particular, an interval
number is essentially a real number when a = b. The basic arithmetic of interval numbers must be
introduced to conduct the interval analysis operator [44].

[a, b] and [c, d] denote two interval numbers, where a and c, b and d represent left-end and
right-end points, respectively. Then, the basic interval arithmetic is expressed as Equations (1)–(4).
In addition, let A = [z, x] be an interval number, then its defuzzified value can be denoted as A and can
be calculated by Equation (5), where v is the caution indicator of the decision maker. When v = 0, 0.5
and 1, decision makers are in the most radical condition, the most peaceful condition and the most
cautious condition, respectively.

[a, b] + [c, d] = [a + c, b + d] (1)

[a, b] − [c, d] =[a − d, b − c] (2)

[a, b] [c, d] = [min (ac, ad, bc, bd), max (ac, ad, bc, bd)] (3)

[a, b]/[c, d] = [a, b][1/d, 1/c], where cd > 0 (4)

A = [(z + x) + (2v − 1)(x − z)]/2 (5)

2.2.2. Interval Product Failure Analysis Considering Carbon Emissions

The product failure analysis and its carbon emissions are combined to obtain the product
subsystem reliability design weight given the carbon emissions. From the discussion in Section 2, we
can see that the traditional FMEA cannot fully adapt to the uncertainty in the optimal reliability design.
Moreover, it overlooks the carbon emissions induced by the relative product failures. To overcome
these difficulties, the traditional FMEA is improved to include an interval failure model, effect, critical
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and carbon emission analysis. Let subsystem i whose carbon emissions in processing are denoted as
CE∗i , have Ni failure modes with carbon severity S∗ij, and frequency O∗ij. Subsystem carbon emissions
in processing, CE∗i , mainly includes the carbon emissions brought about by its materials (determined
by their types and weight) and its processing technology. The carbon severity S∗ij represents the
assessment of the carbon emission cost to maintain the failed subsystem. Frequency O∗ij represents the
quantitative measure of the related product failure mode. Evaluation data is expressed through the
internal numbers between [0, 10]. In addition, to avoid a distortion of the reliability optimal design
result caused by high uncertainty, the width of the interval numbers is restricted to being within 3.

Because this section aims to apportion high reliability to the subsystems with high carbon
emissions brought about by the corresponding product failures, the evaluation standards are as
follows. For carbon severity ranking, the lower the carbon emission cost to maintain the given failure
mode, the higher the value of the related evaluation data. For occurrence ranking, the lower the
frequency of the given failure mode, the higher the value of the related evaluation data. For carbon
emissions in processing, the lower the carbon emissions induced by the subsystem’s materials and
processing technologies, the higher the value of the related evaluation data.

Suppose the product is composed of n subsystems. The carbon emissions for product failure of
the ith subsystem is denoted as T∗i , and it can be obtained from Equations (1)–(4) and Equation (6).
Then, the interval vector of subsystem carbon emissions for product failure, H*= (T∗1 , T∗2 , . . . , T∗n ),
as well as its defuzzified value, H = (T1, T2, . . . , Tn), can be calculated by Equation (5), where v is
the caution indicator of the decision maker and v ∈ [0, 1]. The normalized optimal reliability design
vector for a subsystem considering carbon emissions, w& = (w&

1 , w&
2 , . . . , w&

n ) can be calculated by
Equation (7), where the w&

i determines the weight of the ith subsystem given the carbon emissions for
reliability optimal design.

T∗i =

(
j=ji

∑
j=1

S∗ij ×O∗ij

)
× CE∗i (6)

w&
i =

Ti
n
∑

i=1
Ti

; (7)

2.2.3. Interval Grey Correlation Analysis

Due to the lack of basic data and the existence of uncertain information, such as the expert
evaluation data, etc., as well as the neglect of the correlations among product subsystems, it was
difficult to apply the conventional reliability optimal design theories to advanced modern products.
To solve this problem, the interval grey correlation analysis based on expert experiences and knowledge
is adopted to revise the normalized subsystem weight of reliability optimal design considering carbon
emissions based on the improved product failure analysis. The core of this section is accessing the
correlation degree among product subsystems by using the interval grey decision-making and grey
relative analysis method. Then, high reliability should be apportioned to subsystems with high
correlation degrees. Suppose the target product is composed of n subsystems, then we can establish
the interval evaluation matrix for the correlations among subsystems. This is shown in Table 1.

Table 1. Interval evaluation matrix for correlation among product subsystems.

Expert Subsystem and the Relative Evaluation Data

S1 S2 . . . Sn

E1 a11
∗ a12

∗ · · · a1n
∗

E2 a21
∗ a22

∗ · · · a2n
∗

. . . ...
...

...
...

Em am1
∗ am2

∗ · · · amn
∗
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Based on the grey correlation theory, select the subsystem group and individual subsystem to be
the system’s feature sequence and behavioral sequence, respectively. Compare the system’s feature
sequence and behavioral sequence to get their correlation degree. It is apparent that the subsystem
with the high correlation degree is important to the whole product.

(1) Determining the feature sequence and behavioral sequence of the product’s subsystem.

The feature sequence of the subsystem group is represented as UO = {uo1, uo2, . . . , uoi}, where
u∗oi = max {a∗i1, a∗i2, . . . , a∗in} (I = 1, 2, . . . , m and m is the number of experts invited). The behavioral
sequence of the kth subsystem is determined by the kth column vector in Table 1 and represented as
UK = {uk1, uk2, . . . , ukm}, where uki = aki (k = 1, 2, . . . , n, and n is the number of product subsystems).

(2) Calculation of Subsystem Weight Considering Grey Correlation.

The grey correlation coefficient of the ith subsystem given the kth expert can be obtained by
Equation (8).

ξi(k) =
min

i
min

k
∆i(k) + ρ max

i
max

k
∆i(k)

∆i(k) + ρ max
i

max
k

∆i(k)
; (8)

where ρ is the discriminating coefficient. ρ ∈ [0, 1], and its value should be determined before the
calculation. In this paper, suppose ρ to be 0.5. Based on the feature sequence and behavioral sequence
of product subsystem given the kth expert, the absolute residual sequence, ∆(k), can be available.
Then, the column vectors of the absolute residual sequence ∆i(k) are selected to calculate the grey
correlation coefficients with Equation (8).

The grey correlation degree reflects the advantages of the behavior sequence compared to the
feature sequence. It can be obtained from Equation (9). The reliability optimal design weight of the ith
subsystem is available from Equation (10).

ri =
m

∑
k=1

ξi(k)
/

m (9)

wG
i = ri

/ n

∑
i=1

ri (10)

2.2.4. Low Carbon-Oriented Reliability Optimal Design Schemes

The low carbon-oriented subsystem weight for reliability optimal design, w∗i , can be calculated
with the above subsystem weight given carbon emissions and their mutual correlations, wc

i and wG
i ,

respectively, as shown in Equation (11). The final reliability of the ith subsystem, Ri, can be expressed
by Equation (12), where is R the target reliability of the whole system.

ω∗i =
ω&

i ×ωG
i

m
∑

i=1
ω&

i ×ωG
i

(i = 1, 2, ..., n) (11)

Ri = Rw∗i (12)

2.3. Multicriteria Decision-Making of Reliability Optimal Design Schemes

The proposed model has integrated the improved product failure analysis considering the
uncertainty carbon emissions and interval grey correlation analysis of the uncertainty correlation
of product subsystems. Thus, it is superior to the conventional reliability optimal design models in
improving the product’s carbon emissions and functioning. However, different reliability optimal
design schemes can be obtained with different caution indicators of the decision maker. Besides,
because the main purpose of enterprises is to make a profit, the economic cost is also an important
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attribute of product reliability optimal design. Therefore, it is necessary to find the optimal scheme
among the different reliability design optional schemes according to three attributes including low
carbon B1, correlation and functioning B2, as well as economic cost B3. IVIFSs are good at dealing
with the uncertainties in multiple attribute decisions, and this scheme is good at selecting the most
suitable ones among a succession of decision options based on various actual attributes in practical
engineering. Therefore, in this section, an appropriate and simple accuracy function of the IVIFSs is
utilized to select the optimal reliability design scheme.

2.3.1. Preliminaries

(1) Basic Concepts [41].

Y and E denote a complete range of objects and all closed subintervals of the interval [0, 1],
respectively, and then an IVFS, F in Y, can be expressed as F = {〈y, eF(y), cF(y)〉 : y ∈ Y} with three
constraint conditions shown in Equation (13).

eF : Y → E[0, 1]
cF : Y → E[0, 1]

sup(eF(y)) + sup(cF(y)) ∈ [0, 1]
(13)

where eF(y) and cF(y) are the interval numbers representing the degree of membership and
non-membership of y to F, respectively, whose inferior and superior end points can be expressed as
eF(y) =

[
eF

I(y), eF
S(y)

]
and cF(y) =

[
cF

I(y), cF
S(y)

]
.

In this way, the fundamental form of an IVIFS can be described as follows:

F =
{〈

y,
[
eF

I(y), eF
S(y)

]
,
[
cF

I(y), cF
S(y)

]〉
: y ∈ Y

}
, (14)

where eF
S(y) + cF

S(y) ∈ [0, 1].
Then, φF

S represents the hesitation degree of the fact that y belongs to F, and its inferior and
superior end points can be expressed with Equation (15)

[φF
I , φF

S] =
[
1− eF

S − cF
S, 1− eF

I − cF
I
]

(15)

To express this more succinctly, an IVIFS is represented by F = ([ f1, f2], [ f3, f4]) with the constraint
conditions that the interval numbers [ f1, f2] and [ f3, f4] belong to the interval [0, 1].

(2) Concrete Weighted Average Operators

Fj (j = 1, 2, . . . , n) is a series of IVIFSs whose weight can be expressed as ωj with the constraint
conditions that 0 ≤ ωj ≤ 1 and ∑n

j=1 wj = 1. The weighted averages of arithmetic and geometry can
be calculated with Equations (16) and (17), respectively.

ga(Fi) =

([
1−

n
∏
j=1

(1− eFj
I(y))wj , 1−

n
∏
j=1

(1− eFj
S(y))wj ,

]
,

[
1−

n
∏
j=1

(1− cFj
I(y))wj , 1−

n
∏
j=1

(1− cFj
S(y))wj

])
(16)

gg(Fi) =

([
n

∏
j=1

(eFj
I(y))

wj ,
n

∏
j=1

(eFj
S(y))

wj ,

]
,

[
1−

n

∏
j=1

(1− cFj
I(y))

wj , 1−
n

∏
j=1

(1− cFj
S(y))

wj

])
(17)

(3) Appropriate Accuracy Function of IVIFNs.

An appropriate and simple accuracy function of IVIFNs with the consideration of their hesitancy
degree [41] is more effective in the decision-making process than in most traditional numerical
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computation models [42–44]. The accuracy function of the F is represented by G(F) ∈ [0, 1] and it is
obtained by Equation (18).

G(F) =
f1 + f2 × (1− f1 − f3) + f2 + f1 × (1− f2 − f4)

2
, (18)

2.3.2. MADM

An appropriate and simple accuracy function of IVIFNs [41] is adopted to select the optimal
reliability deign scheme so that it can provide effective guidance to obtain low-carbon, safe and
economical products. Assume that there are s reliability design options F = {F1, F2, · · · , Fs} and q
decision attributes B =

{
B1, B2, · · · , Bq

}
. The weight of the attribute Bj (j = 1, 2, . . . , q) is denoted by

ωj, where 0 ≤ ωj ≤ 1 and ∑n
j=1 ωj = 1. The feature of reliability design option Fi can be represented

as follows.
Fi =

{〈
y,
[
eFi

I(y), eFi
S(y)

]
,
[
cFi

I(y), cFi
S(y)

]〉
: Bj ∈ B

}
(19)

For j = 1, 2, . . . , s and i = 1, 2, . . . , q, the corresponding constraint conditions can be expressed as
eFi

I(y) + eFi
S(y) ∈ [0, 1]

cFi
I(y) + cFi

S(y) ∈ [0, 1]
eFi

I(y) ≥ 0
cFi

I(y) ≥ 0

(20)

The fuzzy value for attribute Bj is represented with Equation (21).

δij =
[([

δ1
ij, δ2

ij

]
,
[
δ3

ij, δ4
ij

])]
, (21)

where
[
δ1

ij, δ2
ij
]

is the degree that the corresponding reliability design option Fi meets the requirements
of attribute Bj.

[
δ3

ij, δ4
ij
]

is the degree that the alternative corresponding reliability design option
Fi does not meet the requirements of attribute Bj. The expert evaluation for the decision-making of
optimal reliability design is represented as the matrix δ =

(
δij
)

m×n.
Utilize Equation (16) to calculate the value of accuracy function for the option Fi given the

reliability optimal design attributes, G(Fi), to judge which is the optimal design scheme. The higher
the value of the G(Fi), the better the performance of the reliability design option Fi.

3. Case Study

3.1. Low Carbon-Oriented Reliability Apportionment

In this section, the numerical example of a computerized numerical controlled (CNC) lathe is
presented to demonstrate the potential application of the proposed method. CNC lathes are widely
used in the manufacturing industry. In particular, precise and advanced CNC machines account for
65% of the whole equipment investment. Hence, the investigation of CNC lathes for the optimal
reliability design is very important [19,20,45]. The target reliability for the vertical CNC lathe is
required to be 0.875. As shown in Figure 2, it is divided into five subsystems. They are: the main
transmission system (S1), the electrical system (S2), the feed system (S3), the detecting system (S4), and
the hydraulic system (S5); The main components and parts of these subsystems are shown in Table 2.
Table 3 shows the improved product failure analysis for carbon emissions of the vertical CNC lathe.

The interval carbon emissions for product failure of the ith subsystem T∗i and the interval vector
of subsystem carbon emissions for product failure H can be obtained with the use of Equations (1)–(6).
Let v be 0.2, 0.4, 0.6 and 0.8, respectively. Then, the defuzzified vector of subsystem carbon emissions
for product failure, H*, and the normalized vector of subsystem carbon emissions for product failure,
w&, can be calculated by Equation (7).



Sustainability 2017, 9, 369 9 of 14

H = ([660.8, 1054], [328.5360, 594.6420], [308.2320, 675.5800], [195.8580, 387.2580], [456.1460, 761.7720]).
H*(v = 0.2) = [739.4400, 381.7572, 381.7016, 234.1380, 517.2712];
H*(v = 0.4) = [818.0800, 434.9784, 445.1712, 272.4180, 578.3964];
H*(v = 0.6) = [896.7200, 488.1996, 528.6408, 310.6980, 639.5216];
H*(v = 0.8) = [975.3600, 541.4208, 602.1104, 348.9780, 700.6468];
w&(v = 0.2) = [0.3313, 0.1673, 0.1653, 0.1039, 0.2322];
w&(v = 0.4) = [0.3203, 0.1723, 0.1743, 0.1067, 0.2265];
w&(v = 0.6) = [0.3131, 0.1786, 0.1846, 0.1085, 0.2183];
w&(v = 0.8) = [0.3048, 0.1825, 0.1900, 0.1131, 0.2096].
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Table 2. Main components and parts of the vertical CNC lathes’ subsystems.

ID Main Components and Parts

S1 axle, bearing, gear, bed, column, beam, base, workbench
S2 electromotor, transformer, magnetic valve, fuse
S3 worm gear, guideway, bearing
S4 multispeed revolver, rotary inductosyn, grating measuring device, pulse encoder
S5 hydraulic pump, hydraulic valve, hydraulic cylinder, tank, hydraulic motor, filter

Table 3. The improved product failure analysis for carbon emissions of the vertical CNC lathe.

ID Failure Mode S∗ij O∗ij CE∗ij

S1
Gear worn out [6.2, 7.3] [7.7, 8.6]

[9.1, 9.9]Transmission inaccuracy [4.2, 5.6] [6.4, 7.8]

S2
Insufficient power [5.4, 7.2] [3.7, 4.6]

[7.8, 9.3]Relay or solenoid valve failure [4.1, 4.6] [5.4, 6.7]

S3
Positioning inaccuracy [4.6, 6.3] [5.1, 7.0]

[7.2, 8.5]rapid movement failure [4.5, 6.1] [4.3, 5.8]

S4
Low sensitivity of detection [5.7, 6.6] [3.7, 4.4]

[6.2, 7.9]Lose of safe-guard ability [4.2, 4.7] [2.5, 3.4]

S5
Leak [6.6, 7.5] [4.3, 5.6]

[7.9, 8.7]oil contamination and pump jam [5.4, 6.8] [5.4, 6.7]
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3.2. Reliability Design Considering Correlation among Subsystems

Five experts were invited to give their assessment about the correlation degree among subsystems
based on the interval grey system theory, and the evaluation data is listed in Table 4. The first step is to
calculate the interval grey evaluation matrix.

Table 4. Expert evaluation on correlation among the CNC lathe subsystems.

Expert Subsystem

S1 S2 S3 S4 S5

1 [5.3, 6.4] [8.2, 9.6] [5.6, 7.2] [7.9, 8.5] [5.5, 7.2]
2 [5.5, 6.2] [7.8, 8.4] [6.2, 6.7] [7.2, 8.1] [5.4, 7.1]
3 [5.1, 6.9] [8.2, 9.9] [5.9, 7.5] [9.2, 9.9] [5.3, 6.8]
4 [5.7, 6.6] [6.9, 8.7] [5.5, 6.9] [7.6, 9.0] [6.0, 7.5]
5 [5.1, 6.3] [7.9,8.4] [6.3, 7.1] [8.2, 9.6] [5.9, 6.6]

Let v be 0.6. Based on Table 1, the interval feature sequences about the subsystems of the CNC
lathe and its defuzzified value can be obtained as U = {[8.2, 9.6], [7.8, 8.4], [9.2, 9.9], [7.6, 9.0], [8.2, 9.6]}
and U* = {9.04, 8.16, 9.62, 8.44, 9.04}, respectively. The defuzzified sample evaluation matrix for the
correlation among the CNC lathe subsystems can be calculated, as shown in Table 5, and the absolute
residual sequences are obtained as shown in Table 6.

Table 5. Defuzzified sample evaluation matrix about the CNC lathe subsystems.

Expert Subsystem

S1 S2 S3 S4 S5

1 5.96 9.04 6.56 8.26 6.52
2 5.92 8.16 6.50 7.74 6.42
3 6.18 9.46 6.86 9.62 6.20
4 6.24 7.98 6.34 8.44 6.90
5 5.82 8.21 6.78 9.04 6.32

Table 6. Absolute residual sequences about the CNC lathe subsystems.

Expert Subsystem

∆1 ∆2 ∆3 ∆4 ∆5

1 3.08 0 2.48 0.78 2.52
2 2.24 0 1.66 0.42 1.74
3 3.44 0.16 2.76 0 3.42
4 2.20 0.46 2.10 0 1.54
5 3.22 0.83 2.26 0 2.72

It can be known that min
i

min
k

∆i(k) = 0, max
i

max
k

∆i(k) = 3.44, i = 1, 2, ... 5, k = 1, 2, ... 5. Let

the identification coefficient ρ be 0.5. From Equation (8), the correlation coefficients of the CNC lathe
subsystems are obtained as shown in Table 7.

Table 7. Correlation coefficients of the CNC lathe subsystems.

Expert ξ1(k) ξ2(k) ξ3(k) ξ4(k) ξ5(k)

1 0.3583 1 0.4095 0.6880 0.4057
2 0.4343 1 0.5089 0.8037 0.4971
3 0.3333 0.9149 0.3839 1 0.3346
4 0.4388 0.7890 0.4503 1 0.5276
5 0.3482 0.6745 0.4322 1 0.3874
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With Equation (9), the correlation coefficient vector of the CNC lathe subsystems can be calculated
as r = [0.3826, 0.8757, 0.4370, 0.8983, 0.4305]. From Equation (10), the normalized subsystem weight
vector for reliability optimal design considering their correlations is obtained as wG(v = 0.6) = [0.1265,
0.2896, 0.1445, 0.2970, 0.1424]. Similarly, let v = 0.2, 0.4, and 0.8. Then we can obtain wG(v = 0.2)
= [0.1575, 0.2351, 0.1792, 0.2657, 0.1625], wG(v = 0.4) = [0.1405, 0.2596, 0.1562, 0.2859, 0.1578], and
wG(v = 0.8) = [0.1132, 0.3019, 0.1330, 0.3136, 0.1383].

3.3. Reliability Optional Schemes Considering Low Carbon and Correlation among Subsystems

From Equations (11) and (12), the low carbon-oriented reliability optimal design schemes, which
are based on the product failure analysis for carbon emissions and interval grey correlation analysis
for correlations among subsystems, can be obtained as shown in Table 8.

Table 8. Low carbon-oriented reliability optimal design schemes.

Caution Indicator of
the Decision Maker

Reliability of Subsystem

R1 R2 R3 R4 R5

v = 0.2 0.9633 0.9722 0.9790 0.9804 0.9733
v = 0.4 0.9677 0.9679 0.9804 0.9780 0.9743
v = 0.6 0.9712 0.9626 0.9805 0.9766 0.9774
v = 0.8 0.9746 0.9598 0.9814 0.9739 0.9787

3.4. Multiple Attribute Decision-Making for Reliability Apportionment Schemes

The product designer needs to select the optimal reliability design scheme from a series of options
according to the attributes including the low carbon B1, correlations and functions B2, as well as the
economic cost B3. Take the optional schemes obtained in Table 8 as objectives, the expert evaluation
information for the decision-making of reliability optimal design is obtained, as shown in Table 9.

Table 9. Expert evaluation for the decision-making of reliability optimal design.

Optional Scheme B1 B2 B3

F1 ([0.60, 0.70], [0.16, 0.25]) ([0.45, 0.49], [0.44, 0.51]) ([0.46, 0.60], [0.30, 0.39])
F2 ([0.59, 0.62], [0.31, 0.37]) ([0.52, 0.58], [0.35, 0.41]) ([0.41, 0.70], [0.21, 0.28])
F3 ([0.50, 0.58], [0.36, 0.41]) ([0.58, 0.65], [0.27, 0.34]) ([0.31, 0.44], [0.28, 0.42])
F4 ([0.41, 0.49], [0.45, 0.50]) ([0.62, 0.71], [0.13 ,0.25]) ([0.51, 0.62], [0.25, 0.34])

The weighted averages of arithmetic and geometry of these optional reliability design schemes
can be calculated with Equation (16) and (17), respectively.

ga(F1) = ([0.5203, 0.6282] [0.2866, 0.3075]), ga(F2) = ([0.5124, 0.6405] [0.2882, 0.3515]),
ga(F3) = ([0.4659, 0.5575] [0.3116, 0.3967]), ga(F4) = ([0.5038, 0.5993] [0.3146, 0.3919]);
gg(F1) = ([0.4990, 0.5998] [0.3094, 0.3925]), gg(F2) = ([0.4946, 0.6314] [0.2924, 0.3555]),
gg(F3) = ([0.4880, 0.5495] [0.3045, 0.3910]), gg(F4) = ([0.5061,0.5998] [0.2893, 0.3721]).

Then, the accuracy function of the optional schemes based on the two kinds of weighted averages
are obtained with the Equations (18)–(21). They are shown as follows.

G(ga(F1)) = 0.6352, G(ga(F2)) = 0.6424, G(ga(F3)) = 0.5844, G(ga(F4) = 0.6077;
G(gg(F1)) = 0.6084, G(gg(F2)) = 0.6335, G(gg(F3)) = 0.5801, G(gg(F4) = 0.6214.

It can be found that the value of G(ga(F2)) is higher that these of G(ga(F1)), G(ga(F3)) and G(ga(F4)),
and the value of G(gg(F2)) is higher that these of G(gg(F1)), G(gg(F3)) and G(gg(F4)). Therefore,
the optional scheme F2 is the final reliability optimization design scheme.
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4. Conclusions

With the improved product failure analysis for carbon emissions, the proposed method apportions
high reliability to subsystems with high carbon emissions brought about by product failures. This
method is beneficial in reducing the total carbon emissions of products. With the interval grey
correlation analysis, the proposed method takes the correlations among subsystems into consideration
and advocates to apportion high reliability to subsystems with a high degree of correlations. This is an
important step to guarantee the functioning of the whole product. In addition, the uncertainties in
reliability optimal design are handled by the adoption of interval numbers in these steps. Therefore,
the proposed method is superior to most traditional reliability optimal design methods because it has
taken the carbon emissions brought about by product failures, uncertainties, and correlations among
product subsystems into account. Meanwhile, the process of interval numbers contains an important
parameter, the caution indicator of the decision maker, which results in a series of reliability optimal
design schemes. Given that the reliability optimal design is a MADM problem, the IVIFS is introduced
to select the optimal reliability design scheme according to three attributes, including: low carbon,
correlations and functions, and economic cost. Thus, the final optimal reliability design scheme is
conductive to balance the carbon emissions, functioning and economic cost of products, and this is of
great significance to promote the sustainable development of products. The superiority and rationality
of the proposed method is illustrated by the case study of a vertical CNC lathe for reliability optimal
design. The proposed method can be applied to more large-scale mechanical and electrical equipment,
for instance, air separation machines, coal mining machines and vibrating screens, to reduce carbon
emissions and promote the sustainable development of the total equipment manufacturing industry.

In addition, this proposed reliability optimal design method is not suitable for use in certain
operating conditions without the accuracy and competency of subjective expert evaluation. Thus,
the collection of qualified evaluation data is of great significance. In particular, compared with
traditional optimal design, the proposed reliability optimal design is prone to causing inaccurate
reliability optimal design results at the design phase without accurate expert evaluation. Furthermore,
this method usually requires a large number of calculations. Given the efficiency and time costs,
improving computational efficiency has become another urgent issue.
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