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Abstract: This paper adopts the slacks-based measure-directional distance function (SBM-DDF, 2009)
method for deriving the “Green Innovation Growth” rates of 28 manufacturing industries in China.
The results indicate that the overall level of green innovation growth in China’s manufacturing is
relatively low, with a declining trend. The tradeoffs among energy, environment and economy
are rather sharp, and the “Porter Effect (1995)” (environmental regulation will promote green
technology innovation) is not currently realized quickly in manufacturing. These evaluations imply an
unsustainable development model in China, with significant differences among industries. By using
a dynamic panel threshold model and employing an industry-level panel dataset for 2008–2014,
we show that external knowledge sourcing has a significant negative impact on green innovation
growth but with different constraints on R&D levels among industries. With the strengthening of
R&D levels, gradually surpassing “critical mass”, the negative role of external knowledge sourcing
in driving this mechanism becomes smaller and smaller; it has a non-linear relationship with
the “threshold effect”. Consequently, we provide insights into the relationship among energy
consumption, environmental pollution and technology innovation, and show how the heterogeneity
of the R&D threshold affects differences in external knowledge sourcing and green innovation growth.
These insights lead to a better understanding of the driving force, realizing path and policy design
for green innovation growth.

Keywords: external knowledge sourcing; green innovation growth; environment and energy
regulation; SBM-DDF model; dynamic threshold effect

1. Introduction

Economic growth and industrial development in developing countries have long relied mainly
on a resource path that entails high investment, high energy consumption, high emissions, low
quality, low efficiency and low output [1,2]. Although this extensive mode of industrial growth
contributes significantly to economic growth, it has also increased energy consumption, environmental
pollution, and pollution emissions. Moreover, energy consumption has been approaching the limit of
environmental carrying capacity. After more than 30 years of rapid development, China has become
the world’s second largest economy. However, it has paid a huge price in terms of energy, environment
and social welfare, and has surpassed the United States as the world’s largest pollution emitter.
As the core of China’s economy, manufacturing plays a significant role in industrial economic growth,
energy consumption and environmental pollution, and its negative impact on both energy and the
environment cannot be ignored. For instance, the problem of haze pollution, which is mainly composed
of PM10 and PM2.5, is particularly severe in China. Areas with a high concentration of manufacturing
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are shrouded in “the Gray Great Wall”, stretching for thousands of kilometers. The manufacturing
industry is responsible for 469,366 billion cubic meters of total volume of industrial waste gas emissions,
accounting for 67.61% of China’s total emissions; manufacturing consumes 2450.51 million tons of
standard coal, accounting for 57.55% of China’s total energy consumption [3,4]. The high energy
consumption and high emissions of Chinese manufacturing have come under great pressure and have
become the focus of global attention.

Therefore, it is urgent that China transition to a mode of manufacturing that prioritizes energy
saving and environmental protection, and this transition must be driven by the integration of
green growth and innovation. “Green growth” is a mode of pursuing economic growth and
development while preventing environmental deterioration, biodiversity loss and unsustainable
use of natural resources [5,6]. Due to the need for balanced consideration of the relationship between
growth and the environment, it has become the new preference of many countries and international
organizations (United Nations Environment Programme, Organization for Economic Co-operation
and Development and European Union) and is regarded as an important strategy in achieving
sustainable development [7,8]. Meanwhile, if innovation is the driving force behind development,
green innovation is the driving force behind sustainable development. Green innovation is the
innovation pathway to reducing pollution, saving resources and improving the environment; it
has both ecological and economic benefits, fundamentally promotes sustainable development and
enhances the competitiveness of enterprises [9]. To achieve sustainable development, it is increasingly
important that industries develop and strengthen green technology innovation [10,11].

In this context, Green Innovation Growth is a complex developmental process based on
technological innovation and knowledge accumulation. Due to the uneven distribution of industrial
innovation resources in China, manufacturing is limited by its own resources: the Research and
Development (R&D) foundation is very weak; and R&D intensity is only approximately 0.91%,
which is well below the average level of 2.5%–4% in developed countries. Thus, the corresponding
innovation-driving effect is limited. With the development of open innovation, Chinese manufacturing
enterprises are creating and acquiring knowledge through external sourcing to produce new knowledge
flows to build and update their technology stocks [12]. Furthermore, by cooperating with enterprises,
universities and research institutes with technical advantages, including cooperative R&D, R&D
outsourcing and commissioned technology development, can achieve innovation transformation [13].
Therefore, although a great deal of innovation comes from entrepreneurs and intrapreneurs
independent of external knowledge, external knowledge sourcing has become one of the main
paths by which the Chinese manufacturing industry pursues green innovation growth. Chinese
manufacturing needs a clear understanding of the role (and adverse effects) of external knowledge
sources in the growth of green innovation; it must explore new systems of technological innovation and
environmental regulation, establish a model of green and eco-industrial development, and contribute
to global green development.

This paper is organized as follows. Section 2 provides an overview of the related literature.
Section 3 presents the methodology and empirical specifications, as well as the estimation variables and
our database. Section 4 discusses the evaluations of Green Innovation Growth under environmental
and energy regulations. The empirical results and discussions of dynamic threshold effects between
external knowledge sourcing and green innovation growth are presented in Section 5. Finally, Section 6
provides conclusions and recommendations.

2. Literature Review

Scholars have extensively studied and discussed open innovation, external knowledge sourcing
and diversified innovation paths. It is worth noting that more and more scholars are beginning to
examine the impact of external knowledge sourcing on innovation performance. For example, Reagans
and McEvily [14] proposed that external R&D institutions could promote the flow of knowledge,
especially implicit knowledge. Meanwhile, external connections can bring all types of valuable
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innovation resources to the firm, reduce environmental uncertainty, promote the development of
innovation activities and ultimately improve innovation performance. Hewitt-Dundas [15] noted that
the resources and abilities obtained from an external innovation partner could encourage enterprises’
innovation behavior and improve innovation ability. Cooperative partners may also benefit from
complementary and shared innovative resources to make up for their individual lack of enterprise
resources and limited capacity [16]. Technical cooperation can help enterprises cope with global
competition, financial and economic uncertainty, and rapid and fundamental technological change,
and cooperation can reduce investment risk [17,18]. Based on the data of Austria enterprises,
Todtling et al. [19] showed that external cooperation innovation in Austria has a significant effect
on innovation performance. Furthermore, Liu [20] found that foreign technical cooperation has
positive impacts on China’s energy industry performance, which are more obvious in developed
regions of China.

However, unlike most studies, De Man and Duysters [21] found that an enterprise’s
external cooperation could have positive, negative and neutral effects on innovation performance.
Vega-Jurado et al. [22] observed that the influence of external sourcing on innovation performance
is very weak in manufacturing of Spain. This also happens in Korea; interestingly, there is no
significant impact of external knowledge-oriented approach while there is positive impact of internal
knowledge-oriented approach [23]. The high transaction costs of searching for and selecting partners,
configuring additional resources, and coordinating and managing R&D activities of cooperative
members reduce the benefits of external innovation activities and challenge organizational structure.
Indeed, external cooperation with competitors or institutions has a negative impact on innovation
performance [24], and the failure rate of cooperative R&D is higher [25]. Other studies suggest that
there is an inverted U-shaped relationship between external knowledge resources and innovation
performance in Europe, meaning that a threshold is created by a critical point [26,27]. Beyond this
threshold, the enterprise’s innovation performance is reduced, and with the increase in the stock of
technology, external knowledge sourcing will lead to increased opportunity costs, and the negative
effect will be more significant. In other words, internal and external R&D may be complementary to
varying degrees, but they may also substitute for each other [28,29].

In fact, no matter what type of innovation path an enterprise follows, it must adapt to the
base of technology and resources in its industry, that is, the concept of development threshold [30].
Technological innovation depends on the accumulation of knowledge, and the level of R&D determines
the ability to innovate [31,32]. In turn, a strong technological base allows the extension of a firm’s
technological capabilities and increases the odds of developing and realizing new products [33].
In short, the foundation of R&D is support for technological innovation, which has a significant
impact on innovation output. Thus, is innovation in external knowledge sourcing really effective at
different levels of R&D? How does the heterogeneity of R&D thresholds affect the mechanism by
which external knowledge sourcing shapes green innovation growth, and what type of heterogeneity
has the greatest impact?

This study attempts to fill some of the abovementioned gaps. First, we clarify the relationship
among energy consumption, environmental pollution and technological innovation by developing
the slacks-based measure-directional distance function (SBM-DDF) to calculate the green innovation
growth index of China’s manufacturing in 2008–2014; we further analyze its structure across industries
with environmental and energy regulations. Second, any innovation path needs to correspond to
the industry’s level of technological development; only with a minimal foundation of R&D can the
industry effectively follow a certain innovation path. We introduce the threshold factor of R&D level
into the complex mechanism linking external knowledge sourcing and green innovation growth to
examine the dynamic threshold effect and its heterogeneity, and we try to explore the role of driving
factor, realizing path and policy design in green innovation growth. Accordingly, this research provides
key insights on the implications of green innovation growth.



Sustainability 2017, 9, 342 4 of 17

3. Methodology and Model

3.1. The SBM-DDF Model

Many scholars have studied green technology innovation [34–36]. However, prior studies have the
following fundamental problems: Most adopt the non-parametric method of Malmquist–Luenberger,
based on the directional distance function proposed by Chung et al. [37], which presents environmental
pollution as an undesirable output. However, due to the existence of radial and directional deviation,
production efficiency is overestimated and cannot be non-proportionally adjusted simultaneously [38].
The non-radial and non-oriented method of Slacks-Based Measure (SBM), based on the slack
variable [39], corrected the problem to some extent, but it is still unable to adjust the input and
output radially, and the efficiency is overvalued. Consequently, Fukuyama and Weber [38] proposed a
new method that combines the SBM with the direction vector model (SBM-DDF); this can solve the
above problems and better fit the input–output relationship under the constraints of environment
and energy. The methodological contributions of SBM-DDF are as follows. (i) Undesirable outputs:
SBM-DDF examines the decrease in undesirable outputs while examining the increase in output;
(ii) Redundancy: This method can get input redundancy, and output deficiency has a strong policy
implications; (iii) Weighting: SBM-DDF can be used to set the weight of the input and output variables,
which is conducive to the analysis framework of the policy factors. It can reveal the government’s
motivation and tendency in the green development and its different preference structure; (iv) Validity
and authenticity: Green efficiency is essentially to examine the contribution of environmental and
energy input to economic output, and it needs to be measured and decomposed in the framework
of total factor. In other words, SBM-DDF can get a real sense of green efficiency [40]. Therefore, this
paper uses the new development model of the SBM-DDF to measure green innovation growth in
manufacturing (Details are provided in Appendix A).

3.2. Indicators for Evaluating Green Innovation Growth

3.2.1. Input Indicators

In this paper, the investment of green innovation in manufacturing mainly includes R&D capital
stock (because early investment in R&D will affect the current input, we estimate the R&D capital stock
using the perpetual inventory method), full-time R&D personnel and energy consumption [41,42].
It should be noted that for green innovation growth based on energy efficiency, we adopt the indicators
of comprehensive energy consumption (million tons of standard coal) in manufacturing to measure
the energy input of green innovation growth.

3.2.2. Output Indicators

Green innovation outputs include desirable outputs and undesirable outputs. Desirable outputs
reflect the willingness of industrial technology to innovate. We choose the number of patent
applications to illustrate the level of direct innovation in manufacturing. Meanwhile, we take new
product sales revenue as the indirect output indicator, representing the commercial value of technology
innovation [43].

Undesirable outputs, as the “by-products” of the desirable outputs, directly or indirectly damage
performance during the process of technological innovation (pollution emissions, environmental
effects, etc.). We select undesirable outputs from the main pollution sources of manufacturing,
including the amount of discharged pollutants (industrial wastewater, industrial waste gas, and
industrial solid waste), as well as SO2, soot and dust emissions [44,45]. Thus, we fit these indicators
into a comprehensive index of environmental pollution using the entropy method (The indexes are
provided in Supplementary Materials):
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First, data standardization:

Pij =
Xij

n
∑

i=1
Xij

, (i = 1, 2 . . . , n, j = 1, 2 . . . , m) (1)

where n is the number of industries, m is the number of indicators, Xij is the pollution value of indicator

j industry i, and
n
∑

i=1
Xij is the sum of the pollution value.

Second, calculating the entropy of indicator j:

ej = −k
n

∑
i=1

pij ln(pij), k > 0, k = 1/ ln(n), ej ≥ 0 (2)

Then, calculating the difference coefficient of indicator j:

gj =
1− ej

m− Ee
, Ee =

m

∑
j=1

ej, 0 ≤ gj ≤ 1,
m

∑
j=1

gj = 1 (3)

The weight values of the pollution indicators are obtained:

wi =
gj

m
∑

j=1
gj

(1 ≤ j ≤ m) (4)

Finally, we can obtain the comprehensive index of environmental pollution each year:

si =
m

∑
j=1

wj × pij(i = 1, 2, . . . n) (5)

The evaluation indicators system of green innovation growth is shown in Table 1.

Table 1. The indicators system of green innovation growth.

Type Indicator Definition

Input
R&D input

Human input
Energy input

R&D capital stock
Full-time R&D personnel

Energy consumption (million tons of standard coal)

Desirable outputs Direct output
Indirect output

The number of patent applications
New product sales revenue

Undesirable
outputs

The comprehensive index of
environmental pollution

The amount of discharged pollutants (industrial wastewater, industrial
waste gas, industrial solid waste), as well as SO2, soot and dust emissions

3.3. Dynamic Panel Threshold Model

According to previous studies [30], the innovation path has its own development threshold, which
is compatible with the level of technological development. To examine the non-linear relationship of
external knowledge sourcing and green innovation growth, we employ the dynamic panel threshold
model based on the method proposed by Hansen [46]. (Two statistical tests are needed with the panel
threshold model: (1) To test for a threshold with the null hypothesis of no threshold effect: H0: β11 = β12.
(2) When there is a threshold effect (β11 6= β12), we need to use the likelihood ratio statistic to test
whether γ̂ is consistent for γ0 (the true value of γ) with the null hypothesis: H0 : γ = γ0. More details
can be found in Hansen [46].) It is worth noting that the Hansen [46] method is only applicable to the
non-dynamic panel model; it cannot reflect dynamic change or the lag effect of the sample object, and
it also ignores the processing of endogenous variables. Thus, we add the lag variable (we find that the
instrumental variables of the Second-order lags are significant and the fitting degree is the best, so we
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choose the first-order and the Second-order lags) to control the lag effect and include dynamic factors
based on dynamic panel estimation. We first estimate the dynamic panel threshold and then use the
“first-order difference GMM” [47] to estimate the parameters between different threshold regimes.
Using this method, we investigate the effect of external knowledge sourcing on green innovation
growth with different thresholds on R&D level between industries. Taking a single-threshold model as
an example, the specification is as follows:

GIGit = θ + α1GIGit−1 + α2GIGit−2 + α3REGit + α4FDIit + α5 AGGit + α6SCAit
+α7ENDit + β1EKSit−1 I(LEVit ≤ γ) + β2EKSit−1 I(LEVit > γ) + µi + vt + εit

(6)

where I(•) is the indicator function, and γ is the threshold value. The observations are divided into
two regimes depending on whether the threshold variable LEVit is lower or higher than the threshold
value γ. The regimes are distinguished by differing regression slopes, β1 and β2. The subscripts
i and t denote province and year. µi is a specific effect of the individual; νt is a specific effect of
time; and εit is a random disturbance. In addition, we allow a one-year lag [48] in the EKS variable
(as green innovation growth requires changes in technological processes that require time to become
effective, it appears reasonable that there exists a time lag between innovation path and changes in
green innovation growth).

We take the index of green innovation growth (GIG) as the dependent variable and external
knowledge sourcing (EKS) as the independent variable. With open innovation, the source of innovation
is diversified, and external knowledge sourcing is one way for industries to acquire knowledge
and develop new technologies through cooperation with external organizations [12,28]. External
knowledge sourcing primarily measures R&D costs, including cooperation expenses paid by the
industry to external organizations such as enterprises, universities and research institutes [22,49].
Thus, we use external R&D stock (we estimate the external R&D capital stock using the perpetual
inventory method) to represent the degree of external knowledge sourcing. The threshold variable is
the R&D level (LEV). “Financial Times” reporter Peter Marsh has suggested that “China has won the
manufacturing, but lost the R&D” [50]. Fortunately, the Chinese government has a clear understanding
of this and believes that China’s manufacturing industry is large but not strong, and the foundation of
R&D is still weak. Different levels of R&D have heterogeneous impacts on green innovation growth.
We use the ratio of the R&D stock value to the main business income value as a proxy indicator.

In addition, we add a series of control variables. Based on the Porter hypothesis, the
“compensation effect” and “learning effect” of environmental regulation will promote green technology
innovation [51]. However, the development of the industry bears high environmental costs, and
environmental regulation may also be inversely proportional to green innovation growth [48,52,53].
We use investment in the treatment of environmental pollution by industry as a proxy for
environmental regulation (REG). Foreign direct investment (FDI) will increase the host country’s
environmental pressure (Pollution Haven Hypothesis) [54] but also promote industrial green
production and reduce environmental pollution (Pollution Halo Hypothesis) [55] by introducing
the technologies of green energy and clean production. We use the ratio of industrial assets from
foreign investment to total industrial assets to represent the FDI effect. Industrial agglomeration (AGG)
is measured by “the number of manufacturing enterprises”. Industry scale (SCA) is also one of the
important factors used by scholars [56]. We define the industry scale as the ratio of its total asset
value to the number of enterprises. The share of production factors, such as capital and labor, has
a significant impact on efficiency. We use the ratio of total asset value to average annual number of
employees to reflect the structure of industrial factor endowment (END).

3.4. Data Sources and Processing

The database of this paper is industry-level panel data for 2008–2014 obtained from the National
Bureau of Statistics of China. We selected 28 manufacturing industries for the sample. Given the
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influence of price factors on R&D expenditures, we convert the nominal value of R&D expenditures to
the actual value using a “price index for R&D”—the weighted average of the consumer price index
and the fixed-asset investment price index, with the weights estimated to be 0.55 and 0.45, respectively.
Investments in the treatment of environmental pollution and total asset value are weighted with the
fixed-asset price index, and the main business income values are weighted with the PPI; the base
period is 2008. Table 2 summarizes the descriptive statistics of variables.

Table 2. Descriptive statistics of variables.

Variable Mean P50 S.D. Minimum Maximum

Green Innovation Growth (GIG) 0.653 0.619 0.231 0.294 1.000
External Knowledge Sourcing (EKS) 12.785 12.915 1.334 10.408 15.228

R&D Level (LEV) 0.005 0.003 0.003 0.001 0.012
Environmental Regulation (REG) 10.593 10.698 1.742 6.957 13.825
Foreign Direct Investment (FDI) 0.302 0.286 0.130 0.001 0.663
Industrial Agglomeration (AGG) 9.066 9.070 1.116 4.868 10.519

Industry Scale (SCA) 23143 7870 59840 2147 372333
Industrial Factor Endowment (END) 50.110 36.135 43.937 7.824 242.566

4. Measuring Green Innovation Growth

We measure green innovation growth in relation to environmental and energy regulations for
manufacturing based on the SBM-DDF model, and the results are shown in Table 3.

The overall level of green innovation growth in China’s manufacturing sector is relatively low,
with an average of 0.6137. There is ample room for the development of green innovation growth in
China, and the heterogeneity among industries is significant. Based on the gap in green innovation
growth among manufacturing industries, we create three groups: the high green innovation group,
middle green innovation group and low green innovation group. The industries in the high green
innovation group, with a mean of 0.9775, can reach the forefront of green innovation growth, while
the mean of the low green innovation industries is only 0.4381, which is significantly lower than
the high green innovation group. In the high green innovation group, which includes industries
that manufacture Tobacco; Articles for Culture, Education, Arts and Crafts; Sport and Entertainment
Activities; Electrical Machinery and Apparatus; Computers, Communication and Other Electronic
Equipment; Measuring Instruments; and Machinery and Transport Equipment, green practices, are
the strongest, and the driving effect of green technology innovation is remarkable. Most of these
industries are technology-intensive, their input–output efficiency (in terms of human and capital
resources in technological innovation) is higher, and their energy consumption and environmental
pollution are relatively low. Light industries, such as the Manufacture of Printing and Textiles, are
at the middle level of green innovation, which also includes a number of high-tech industries and
equipment manufacturing, such as the Manufacture of Metal Products, General Purpose Machinery
and Medicines. To realize a transformation in green technology innovation, these industries can be
further upgraded to achieve green growth, but they must pay attention to energy saving and improve
the efficiency of their pollution emissions through more green technology innovations. Meanwhile,
some high-tech manufacturing sectors have not yet realized the effects of low pollution and low
energy consumption, indicating a lack of deep integration between technological innovation and
green growth. The manufacture of Chemical Raw Materials and Chemical Products; the Processing
of Petroleum; Coking; and the Processing of Nuclear Fuel have the lowest level of green innovation
growth. The driving force behind technological innovation in these industries is insufficient, and
they consume a large amount of energy and produce high emissions, causing serious damage to the
ecological environment.
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Table 3. Index of green innovation growth in manufacturing (2008–2014).

Manufacturing 2008 2009 2010 2011 2012 2013 2014 Mean

High green innovation group 1.0000 1.0000 1.0000 0.9776 0.9868 0.9312 0.9492 0.9775
Tobacco 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Artworks, and Articles for Culture, Education, Sports and Recreation 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Electrical Machinery and Equipment 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Computer, Communication and Other Electronic Equipment 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Measuring Instrument and Meters 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Transport Equipment 1.0000 1.0000 1.0000 0.8532 0.9114 0.8356 0.9037 0.9268
Furniture 1.0000 1.0000 1.0000 1.0000 1.0000 0.7266 0.7684 0.9201

Middle green innovation group 0.6919 0.6885 0.6336 0.5798 0.5904 0.5785 0.5885 0.6199
Leather, Fur, Feathers and Related Products and Shoes 1.0000 1.0000 0.7008 0.6381 0.6468 0.6290 0.6201 0.7322

Textile, Apparel and Accessories 0.7240 0.7511 0.7381 0.6442 0.7675 0.7344 0.7402 0.7275
Printing, Reproduction of Recording Media 0.7313 0.7950 0.6781 0.6913 0.7459 0.7176 0.7003 0.7219

Special Purpose Machinery 0.7355 0.6790 0.6486 0.6883 0.7481 0.7671 0.7365 0.7136
General Purpose Machinery 0.6800 0.6914 0.6272 0.7110 0.7453 0.7558 0.7294 0.7045

Processing of Timbers and Wood, Bamboo, Rattan, Palm and Straw 0.6816 0.6630 0.6608 0.5304 0.5632 0.4801 0.5054 0.5783
Metal Products 0.6529 0.6180 0.5823 0.5080 0.5567 0.5140 0.5435 0.5658

Rubber and Plastic 0.6303 0.6411 0.5583 0.4923 0.5241 0.5619 0.5597 0.5647
Textile 0.6199 0.5728 0.5894 0.5050 0.5268 0.4712 0.5016 0.5387

Medicines 0.5827 0.5648 0.5269 0.4657 0.4908 0.5169 0.5212 0.5228
Other Manufacturing 0.6486 0.6919 0.6938 0.5741 0.3464 0.3745 0.4228 0.5165

Low green innovation group 0.6185 0.4615 0.4214 0.3706 0.4259 0.4061 0.4014 0.4381
Processing of Food from Agricultural Products 0.6228 0.6070 0.4654 0.4452 0.4696 0.4075 0.4174 0.4844

Chemical Fiber 0.5805 0.4598 0.4632 0.4232 0.4788 0.4823 0.4496 0.4747
Foods 0.6860 0.6056 0.5172 0.3977 0.4176 0.3877 0.3829 0.4730

Ferrous Metals 1.0000 0.4398 0.4193 0.3497 0.4148 0.4397 0.3783 0.4614
Non-ferrous Metals 0.5596 0.4455 0.4340 0.3910 0.4345 0.4114 0.4237 0.4402

Paper and Paper Products 0.5440 0.4227 0.4660 0.3846 0.4643 0.3923 0.4163 0.4387
Non-metallic Mineral Products 0.4828 0.5121 0.4714 0.3820 0.3851 0.4011 0.4067 0.4318

Chemical Raw Materials and Chemical Products 0.4763 0.4505 0.3300 0.3725 0.4224 0.3897 0.3983 0.4031
Processing of Petroleum, Coking and Processing of Nuclear Fuel 1.0000 0.3480 0.2943 0.2923 0.3692 0.3586 0.3780 0.3949

Liquor, Beverages and Refined Tea 0.4719 0.3903 0.4075 0.2982 0.4163 0.4029 0.3701 0.3907
All manufacturing 0.7289 0.6552 0.6139 0.5631 0.5974 0.5743 0.5785 0.6137
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Regarding development trends (Figure 1), most manufacturing is not showing growth in green
innovation, and there is even a downward trend to a certain extent, with a large decline from 2008 to
2011. In 2012, the Chinese government vigorously implemented an innovation-driven development
strategy, and continued to strengthen its green development policy, leading to some improvements to
green innovation in manufacturing. However, due to the weak foundation of endogenous innovation
and higher operating costs of energy and environmental technology, manufacturing cannot realize the
“Porter effect” in a short time. Therefore, manufacturing does not show sustainable green innovation
growth in 2013–2014. The concrete distribution of best practice manufacturing in Green innovation
growth (2008–2014) is presented in Supplementary Materials.
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5. Empirical Results and Discussions

To examine how external knowledge sourcing affects green innovation growth given the
heterogeneity of R&D thresholds, we first estimate the number of thresholds to determine the form of
the model. Then, the F statistic and p-value are obtained by the bootstrapping method (Tables 4 and 5).
We find that a single threshold is significant at the 5% level and the double threshold is significant
at the 1% level, while the triple threshold is not significant because the bootstrap p-value is 0.954.
Therefore, further analysis is based on the double threshold model.

Table 4. Results of threshold-effect tests.

Model F-Statistic p-Value
Critical Value

1% 5% 10%

Single threshold 69.023 ** 0.020 83.961 40.368 7.323
Double threshold 22.655 *** 0.002 16.988 5.484 2.372
Triple threshold 0.003 0.954 26.645 15.405 9.609

Note: The p-value and the critical value are obtained from 500 bootstrap replications. * p < 0.05; ** p < 0.01;
*** p < 0.001.

Table 5. Results of threshold estimators and confidence intervals.

Model Threshold Estimators 95% Confidence Intervals

Single threshold 0.001 [0.001, 0.001]

Double threshold
0.007 [0.007, 0.007]
0.001 [0.001, 0.001]

Triple threshold 0.010 [0.008, 0.011]
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According to threshold theory (details for estimation techniques of panel threshold models are
provided in Hansen [46]), the effects of external knowledge sourcing on green innovation growth
include a significant double threshold for R&D level: the threshold values are 0.001 and 0.007, which
are within the 95% confidence intervals [0.001, 0.001] and [0.007, 0.007], respectively. Thus, we can
divide the sample into different regimes: low level of R&D (LEV ≤ 0.001), middle level of R&D
(0.001 < LEV ≤ 0.007) and high level of R&D (LEV > 0.007). The function chart of the threshold
variable “likelihood ratio” sequence, with the well-defined change in threshold value, shows the
structure of the estimate and the confidence interval (Figure 2). (We use the likelihood ratio LRn(γ) to
construct the “non-rejection region” showing the valid confidence interval of γ. The “non-rejection
region” at the confidence level of 1− α is a series of γ values that meet LRn(γ) ≤ c(α). That is, when
LRn(γ) ≤ c(α) = −2ln(1−

√
1− α) (α is a significant level, c(α) = 7.35 at 95% confidence level), we

cannot reject the original hypothesis that the threshold estimate is equal to the true value (H0 : γ = γ0).
This corresponds to the horizontal line in the Figure 2.)
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Then, based on different regimes, we further use the dynamic estimation method of the first-order
difference GMM to estimate the partition coefficient between different regimes.

Table 6 reports the estimates of the effects of external knowledge sourcing on green innovation
growth. Overall, external knowledge sourcing has a significant negative effect on green innovation
growth in manufacturing. With improvements in R&D level, there are differences in the mechanism of
external knowledge sourcing: When the R&D level is lower than the threshold value 0.001, external
knowledge sourcing has a significant negative impact on green innovation growth at the 1% level;
and between 0.001 and 0.007, this negative impact is significantly weakened, but there is still a
certain degree of limitation. When the threshold value is higher than 0.007, the negative effect is
further weakened, and external knowledge sourcing is the minimum limit to green innovation growth.
The distribution of manufacturing in these different threshold intervals each year is provided in
Supplementary Materials. Statistically, this presents a threshold characteristic: when the R&D level is
higher than the critical value, the negative effect of external knowledge sourcing on green innovation
becomes smaller and smaller.



Sustainability 2017, 9, 342 11 of 17

Table 6. Results of dynamic threshold regression.

Coef. Std. Err. t P > |t| 95% Conf. Interval

L1. −0.548 *** 0.083 −6.600 0.000 −0.711 −0.385
L2. −0.058 *** 0.020 −2.940 0.003 −0.096 −0.019

REG −0.060 0.142 −0.420 0.674 −0.337 0.218
FDI 0.761 *** 0.105 7.240 0.000 0.555 0.967

AGG 0.161 *** 0.014 11.460 0.000 0.133 0.188
SCA 0.000 *** 0.000 4.190 0.000 0.000 0.000
END −0.002 *** 0.001 −2.910 0.004 −0.003 −0.001

EKS(LEV ≤ 0.001) −0.752 *** 0.246 −3.060 0.002 −1.235 −0.270
EKS(0.001 < LEV ≤ 0.007) −0.072 ** 0.033 −2.200 0.028 −0.137 −0.008

EKS(LEV > 0.007) −0.069 ** 0.033 −2.120 0.034 −0.133 −0.005
_cons 1.466 1.517 0.970 0.334 −1.508 4.440

Note: GMM-type: L(2/.).GIG; * p < 0.05; ** p < 0.01; *** p < 0.001.

Normally, to improve knowledge accumulation, external sourcing is necessary. However, we
found that this is clearly not true for developing countries, where there is a large “gap”. This finding
demonstrates that there may be a substitutional relationship between R&D and external sourcing under
the influence of R&D level. When developing countries accumulate knowledge, internal R&D becomes
more efficient, and the enterprise can use more R&D to replace external sourcing. At a certain level of
R&D, and with an increase in external investment, R&D begins to see diminishing marginal returns;
at this point, R&D and external sourcing still essentially have a simple substitutional relationship.

In China, the distribution of innovation resources is significantly uneven across industries.
Industries with high R&D in manufacturing focus on R&D investment and endogenous innovation,
external knowledge sourcing has long been neglected, and the diversified innovation effect is not fully
developed. In contrast, industries with low R&D levels exhibit over-reliance on external cooperation
and technology acquisition and will damage their industry’s R&D initiatives and encounter problems
with absorption and intellectual property [57], which will eventually reduce the positive spillover
effect of external knowledge sourcing (Substitution effect). R&D is the intrinsic basis for the process
of green innovation in industry, and corresponding knowledge and technical support are needed for
every link in R&D, organization, design and manufacture, sales and other aspects of green innovation.
However, most of manufacturing’s R&D foundation is weak due to resource constraints. R&D intensity
in China is only approximately 0.91% (2014), and enterprises with R&D institutions accounted for
only 13.34% (2014) of all enterprises. Coupled with the urgent problems of energy shortage, expensive
resources and environmental protection, there are no strong foundational conditions for manufacturing
to expand its external activities, and the corresponding driving effects are limited.

When the industry has accumulated a higher R&D base, industrial knowledge helps external
sourcing identify the most worthwhile market issues and then optimize innovation performance,
making up for the diminishing marginal returns of R&D investment [58]. Meanwhile, knowledge stock
has absolutely independent property rights and can be applied to internal R&D at a lower cost, thereby
promoting the commercialization of internal R&D and innovation output [59,60]. Consequently,
the industry will promote green innovation growth and gradually realize the transformation to
green innovation.

Finally, the lag variable is significant at the 1% level, which indicates that the dynamic panel
threshold model constructed in this paper is reasonable. The Sargan tests show Prob > χ2 = 0.0539,
which does not reject the original hypothesis that the instrumental variables are reasonable at the 5%
level. The AR(1) and AR(2) test (Table 7) also shows that the model setting and the use of a first-order
difference GMM are also more reasonable.



Sustainability 2017, 9, 342 12 of 17

Table 7. AR(1) and AR(2) test.

Order z Prob > z

AR(1) 2.4512 0.0142
AR(2) −0.2648 0.7912

6. Conclusions

This study attempts to measure green innovation growth with environmental and energy
regulations based on the SBM-DDF method and then takes the heterogeneity of the R&D threshold
as the breakthrough point to examine the nonlinear effects of external knowledge sourcing on green
innovation growth by developing a dynamic panel threshold model. Accordingly, the research provides
interesting insights into the implications of green innovation.

The average level of green innovation growth in China’s manufacturing is relatively low. There
is considerable room for improvement in green innovation growth in China, and the heterogeneity
among industries is significant. The growth effect of green innovation is strongest in the manufacture of
Tobacco; Articles for Culture, Education, Arts and Crafts; Sport and Entertainment Activities; Electrical
Machinery and Apparatus; Computers, Communication and Other Electronic Equipment; Measuring
Instruments; and Machinery and Transport Equipment. Light industry, such as the Manufacture of
Printing and Textiles, is at the middle level of green innovation; it also includes a number of high-tech
industries and equipment manufacturing, such as the Manufacture of Metal Products; General Purpose
Machinery; and Medicines. The manufacture of Chemical Raw Materials and Chemical Products,
Processing of Petroleum, Coking, and Processing of Nuclear Fuel has the lowest level of green
innovation growth. These industries consume a large amount of energy and have high pollution
emissions; they urgently need to be transformed by green innovation. Moreover, there is very little
growth in green innovation in most manufacturing, and there is even a downward trend. The “Porter
effect” cannot currently be realized in China. Finally, external knowledge sourcing has a significant
negative effect on green innovation growth but with a non-linear relationship to the “threshold effect”:
when the R&D level is higher than the critical value, the negative role of external knowledge sourcing
in driving this mechanism becomes smaller and smaller.

From the above analysis, this study has several policy implications. First, as the main body that
can promote the process of industrialization and modernization in China, manufacturing exhibits a
low level of green innovation; it obviously has serious problems of environmental pollution and energy
consumption. The manufacturing industry must strengthen its drive toward innovation integration
and green development to achieve sustained growth in green innovation. Only by strengthening
the integration of innovation-driven and green development can manufacturing achieve sustainable
growth. Second, Chinese government needs to give full consideration to the gaps among industries
and then implement a system of green innovation. On the one hand, the government should focus on
supporting and developing strong green innovation industries and increase incentive policies such as
tax, financial and other preferential incentives for these industries to further enhance the level of green
innovation growth; it should also encourage these industries to play a leading role in the development
of green innovation. On the other hand, for industries with low green innovation, the government
should actively coordinate development planning and flexibly choose diversified environmental
regulation tools, such as environmental taxes, sewage charges, clean development mechanisms (CDM),
and carbon trading and planning, to encourage technological exchanges and cooperation between low
and high green innovation industries, further promote the diffusion and spillover of knowledge and
technology, and realize the balance of green innovation growth across these industries. Third, China
must be aware of the adverse effects of external knowledge sourcing on green innovation growth.
Therefore, manufacturing should properly control the input costs of external sourcing and establish
a “bridge” between R&D and external sourcing by using the government’s preferential policies to
promote cooperation on green innovation, improving the industrial green innovation system to absorb
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external knowledge of green technology, and optimizing green production and technical conditions,
which will in turn expand R&D for manufacturing to effectively improve external green innovation.
Finally, considering the threshold effect of R&D level, when choosing an innovation path for green
innovation growth, developing countries need to select their optimal innovation paths depending
on the distribution of the level of R&D across different industries. The government should further
establish and improve the efficient implementation platform and the monitoring mechanism for
the rational screening, introduction, transformation and accumulation. When the country reached
a developed basis of R&D, the government can gradually turn to external knowledge sourcing to
effectively drive the development of green innovation through the rational allocation of diversified
innovation path.

There are several limitations of this study relating to: (i) the limited number of observations; (ii) the
effective decision-making units (DMU) of green innovation growth cannot be further differentiated;
(iii) presence of other unknown threshold factors in the relationship between external knowledge
sourcing and green innovation growth; and (iv) there may also be more driving paths in the regression
model as well as potential interactions between them. The limited number of observations is offset
by the fact that multiple adjustments in statistical caliber of manufacturing enterprises by National
Bureau of Statistics of China, especially in the classification of manufacturing industry, there are
differences in the statistical aspects of science and technology and environmental energy. The data
of external knowledge activities were published from 2008; hence, our data starts from 2008. Second,
regarding the DMU of green innovation growth, such as industries in high green innovation group,
their green innovation evaluation value reached the highest value 1.0000. However, it is important
to note that this does not mean that no further improvement necessary for these industries, rather it
is due to the limitations of our model being unable to distinguish differences among these effective
DMU of green innovation growth. The last two limitations indicating that the influence of the external
knowledge sourcing on green innovation growth may have other threshold effects beyond R&D level
in the complex green innovation system. There is a threshold created by a critical point in open
innovation system [26,27], and this includes threshold factors such as GDP level, education level,
pollution events, command-and-control regulation and market-based regulation, which may have
significant influence on green innovation [48]. Moreover, in addition to external knowledge sourcing,
the diversified innovation paths also include internal knowledge sourcing, non-R&D and others, and
possible interactions between these driving paths may have been overlooked. For instance, internal and
external R&D may be complementary to varying degrees but may also substitute for each other [29].
Green innovation may be affected by interactions between these diversified driving paths. However, in
the regression model, only uncorrelated explanatory variables were included in order to avoid biased
regression results due to multi-collinearity [61]. Adding more driving paths in the model is not feasible
because of the low number of observations.

For future work, there is a need for an improved evaluation system to subdivide and compare the
structure of effective decision-making units, and further identify and measure the difference in green
innovation growth among high group industries. Meanwhile, it would be necessary to empirically
study the underlying threshold factors and driving paths. Future research may analyze interactions
between diversified driving paths on green innovation with various threshold constraints.

Supplementary Materials: The following are available online at www.mdpi.com/2071-1050/9/3/342/s1,
Table S1: the comprehensive index of environmental pollution, Table S2: Distribution of best practice
manufacturing in Green innovation growth (2008–2014), Table S3: Distribution of manufacturing in different
threshold intervals each year.
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Appendix A.

Specifications of the SBM-DDF Model

We regard each industry in manufacturing as a production decision unit and construct the
best practice frontier in each period. Each industry has n inputs: x = (x1, . . . , xn), and m outputs:
y = (y1, . . . , ym); then, the input–output value of industry k = 1, . . . , K is (xk,t, yk,t) in the period
t = 1, . . . , T. When the production possibility set meets the condition that the closed set, bounded set,
output and input can be freely disposed, the production technology model can be expressed as follows
using data envelopment analysis:

Pt = {(xt, yt) : xt
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where λt
k is the weight variable, the sum of the weight is 1, and the weight is non-negative, indicating

variable returns to scale (VRS). If this condition is removed, it becomes constant returns to scale (CRS).
Then, we set the directional distance function based on SBM:
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where (xt,k′ , yt,k′ ) is the input and output vector of industry k′ in the period t. (gx, gy) is the positive
direction vector of the value of the output expansion and input reduction. (sx

n, sy
m) is the slack vector of

inputs and outputs. sx
n, sy

m is positive when the actual input is greater than the frontier input and the
actual output is less than the frontier potential output. When the measurement unit of the direction
vector (gx, gy) and the slack vector (sx

n, sy
m) is consistent, we can make the slack vector standardized,

sum the standard input and output slack separately, and then calculate its average value. Thus, the
objective function is to maximize the sum of the average values of the inputs and outputs. When

the direction vectors (gx, gy) are xmax
n − xmin

n and ymax
m − ymin

m , 0 ≤
→
S

t

V(xt,k′ , yt,k′ ; gx, gy) ≤ 1. Finally,
we construct the index of green innovation growth (GIG) as follows:

GIG = 1−
→
S

t

V(xt,k′ , yt,k′ ; gx, gy) (A3)

The GIG value is within the interval [0, 1]; and the lower
→
S

t

V (inefficiency value), the higher GIG.
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