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Abstract: This paper focuses on dynamic carpooling services in urban areas to address the needs
of mobility in real-time by proposing a two-fold contribution: a solution with novel features with
respect to the current state-of-the-art, which is named CLACSOON and is available on the market;
the analysis of the carpooling services performance in the urban area of the city of Cagliari through
emulations. Two new features characterize the proposed solution: partial ridesharing, according to
which the riders can walk to reach the driver along his/her route when driving to the destination; the
possibility to share the ride when the driver has already started the ride by modeling the mobility to
reach the driver destination. To analyze which features of the population bring better performance
to changing the characteristics of the users, we also conducted emulations. When compared with
current solutions, CLACSOON allows for achieving a decrease in the waiting time of around 55% and
an increase in the driver and passenger success rates of around 4% and 10%, respectively. Additionally,
the proposed features allowed for having an increase in the reduction of the CO2 emission by more
than 10% with respect to the traditional carpooling service.

Keywords: real-time carpooling; smart city; Internet of Things; smart transport

1. Introduction

Vehicular traffic congestion is one of the main problems of most of our cities and towns [1]:
it degrades the quality of life, leading to a wide set of social, economic and environmental impacts.
It calls for a great effort in studying and deploying innovative and ambitious urban transport modes
to reach a less car-dependent life-style, which is one of the main causes of urban traffic congestion.

The particular vehicles used for transport, the source of energy and the infrastructure used to
implement the transport play a critical role for the evaluation of the social, environmental and climate
impact [2]. Different alternative transport modes have been implemented for reducing air pollution,
most of the time based on public transport services, where several options have been proposed and
deployed according to the specific configurations of the cities’ public transportation infrastructures,
e.g., city buses, light rails, trains, subways, ferries. The use of public transport infrastructures is indeed
certainly one of the best solutions to face the challenge of vehicular traffic congestion. However,
conventional public transport denotes a service that follows fixed routes and schedules; it may not be
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available in certain areas, and usually, the distance to the stop locations may be great in sparse areas.
Therefore, public transport cannot accommodate all types of mobility needs, which would inevitably
be met by the use of personal transportation means. Unfortunately, still, a significant number of people
prefer the use of a personal car (or other personal transportation means) over public transportation,
who however should be persuaded to change their mobility-style. A report by the U.S. Environmental
Protection Agency revealed that light-duty vehicles are the source of nearly 25% of the country’s
greenhouse gas emissions [3]. Consequently, cutting this significant source of emissions is crucial, and
a shift of single-occupancy vehicles towards shared cars could help to address these problems. In this
context, carpooling has been a widely-accepted concept to implement Intelligent Transport Systems
(ITS) in smart cities and to reduce the gas emissions caused by the use of the personal car. Carpooling
(also known as ridesharing) is defined as the sharing of car journeys so that more than one person
travels in one car, thus reducing travel costs, such as fuel costs, tolls, etc., but most importantly, from
the societal and environmental point of view, reducing air pollution. While the concept of carpooling
has existed for decades [4], currently, this service is having a lift thanks to the advancements in the
ICT sector. In particular, the wide-spread availability of broadband Internet services allows for the
deployment of powerful tools for carpoolers to meet potential companions and reach an agreement
on the shared trips [5,6]. Most of the ridesharing systems operating today allow the passenger and
drivers to find convenient trip arrangements over the Internet, to support trust building between
registered users and to implement billing systems to charge passengers and compensate drivers [7].
These procedures must allow for quick and easy matching of carpoolers’ needs, as well as for assisting
in establishing itineraries, prices and payment methods [8].

Nowadays, the most widespread implementations of ridesharing services rely on a static approach:
the carpoolers post the requests and the offers several hours in advance for a future transportation need,
and shared rides have to be arranged before the trip starts. On the other hand, dynamic ridesharing is a
relatively new type of carpooling: it is a system where an automated process employed by a ridesharing
provider matches up drivers and riders on a very short notice [9], which can range from a few minutes
to a few hours before the departure time. Dynamic ridesharing clearly brings several advantages over
the static ridesharing approach.

This paper focuses on the challenge of a dynamic ridesharing service in urban areas. The major
contributions of this paper are the following:

• A new carpooling platform named CLACSOON is presented [10], which is intended to make
simple the interaction of the clacsooners, i.e., the platform users, to find a trip companion and
interact during all of the phases of the sharing experience. This platform is currently working in
the area of Cagliari, and it is available for the iOS and Android operating systems.

• A novel matching algorithm is proposed, which is a route matching algorithm that has two novel
features with respect to the state-of-the-art: partial ridesharing, according to which the riders can
walk to reach the driver along his/her route when driving to the destination; the possibility to
share the ride when the driver has already started the ride by modeling the mobility to reach the
driver destination.

• Due to the impossibility to control the characteristics of the real users, an emulation system is
deployed to analyze the key parameters that affect the Quality of Experience (QoE) provided to the
users when changing the characteristics of the population. The objective is to have key information
on how to drive the creation of the population of users (through marketing operations) to reach the
desired usage targets. The performance has been evaluated considering the ridesharing success
rate for both driver and passenger, the waiting time and the total system CO2 saved. The results
have been compared with the case for which the novel proposed features were not used, showing
significant improvements.

The remaining of the paper is organized as follows: Section 2 presents relevant past works and
highlights the novelty of the proposed system; Section 3 describes the implemented platform; Section 4
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presents CLACSOON’s matching algorithm; Section 5 discusses the experimental results for the case
study; conclusions and future work are drawn in last section.

2. Past Works and Introduced Innovation

Nowadays, most of the carpooling services implement a “static” approach: when using such a
service, the carpoolers have to post ridesharing requests and offers several hours before their desired
departure time, and the shared ride has to be arranged before the trip starts. This approach is shown to
be effective for mid/long distance trips, while it is not suitable for short distance trips, which often occur
in an urban scenario: in this case, a real-time approach fits better. Dynamic ridesharing is a relatively
new type of carpooling: it is a system where an automated process employed by a ridesharing provider
matches up drivers and riders on a very short notice [9], which can range from a few minutes to a few
hours before departure time. In addition to using communication technologies, dynamic ridesharing
systems must establish a procedure that enables travelers to form ridesharing instantaneously [11].
This type of carpooling generally makes use of three recent technological advances: GPS navigation
devices to determine a driver’s route and arrange the shared ride, smartphones for riders to request
a ride from wherever they happen to be and social networks to establish trust and accountability
between drivers and passengers. These elements are coordinated by a ridesharing provider, which can
match rides using opportune route matching algorithms.

In the following two subsections, we review the past works, and we present the introduced
innovation, respectively.

2.1. Past Works

The idea of dynamic ridesharing is not new, and major initiatives have been tried in the past in
the field of business, for example by Flinc (www.flinc.org), Carma Carpooling (https://www.gocarma.
com/) and Commutr (www.getcommutr.com). Dynamic ridesharing clearly brings several advantages
over the static ridesharing approach, especially in terms of flexibility in satisfying the users needs.
Because of its potential, also several research efforts have been conducted in the last few years, but the
problem of matching ride requests and ride offers at a large scale remains challenging. Several matching
agencies tried different approaches, but what constitutes the best procedure is still a matter of debate [8].
The ridesharing matching problem in the literature is often modeled as an optimization problem [8,11].
A commonly-used objective is to minimize the overall travel distances in the optimization problem
or considering multiple objectives, including the minimization of the overall travel times,
the maximization of the number of ride-matches and the minimization of the system response time.
The main technical challenge is the complexity of the optimization problem and the matching process
itself, along with the complexity of accurately modeling the carpoolers behavior. On the practical side,
one of the main challenges regards the critical mass issue, which is faced by dynamic ridesharing
services, in particular, in their startup phase; this problem consists of the difficulty in achieving
a critical mass of users in order for the service to find an appropriate mate for the users requests,
bringing an adequate matching success rate. This challenge is also related to the QoE perceived
by the users, which depends on factors, such as safety, social discomfort and time flexibility. In
Xing et al. [12], a ridesharing concept for short-distance travel within metropolitan areas is designed
as a multi-agent system to handle spontaneous ridesharing requests of prospective passengers with
transport opportunities available on a short call bases. The work in Arnould et al. [13] illustrates
WiSafeCa (Wireless Traffic Safety Network Between Cars), a Eureka/Celtic-founded European project
that consists of researching and prototyping efficient car-to-car and car-to-infrastructure networking
mechanisms striving to reduce accidents and traffic congestion. In the scope of the project, a dynamic
ridesharing system was designed, in order to serve real-time transport requests. In Agatz et al. [14] is
considered the problem of matching drivers and riders for a dynamic ridesharing scenario, presenting
a simulation study based on travel demand data for the city of Atlanta. The matching problem is
described as the minimization of the total system-wide vehicle miles incurred by users and their
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individual travel costs. The simulation results indicated that the use of sophisticated optimization
methods based on a rolling horizon approach substantially improve the performance of ridesharing
systems over a greedy matching algorithm. In the definition of their study, an important assumption
is that a driver could make only one pickup and one delivery: this constraint makes the problem
easier to solve, but it prevents the driver from serving some riders even if they are on his/her desired
route. Another important assumption for the study was that a shared ride must be agreed before the
start of the driver’s trip; moreover, the dynamics of the positions and the speeds of all of the shared
vehicles are omitted. The work in Herbawi et al. [15] addresses the dynamic ride-matching problem
with time windows, optimizing a multi-criteria objective function. Extending the work proposed by
Agatz, they propose a genetic and insertion-based heuristic algorithm for solving the optimization
problem, also considering the multiple ride problem (i.e., more than one rider for a single driver). The
problem is represented using a maximum-weight bipartite matching model, and the optimization
software CPLEX is used to solve it. In Di Febbraro et al. [16], the proposed ridesharing system
considers the interactions between drivers, riders and the system manager using a model based on
mixed continuous-integer linear programming to maximize the performance of dynamic ridesharing
systems. The dynamics of the positions and the speeds of all of the shared vehicles are omitted for
simplicity, and it is assumed that users can meet only at a priori fixed delivery stations, such as near
bus stops, intersections and the corners of squares. The performance of the proposed model has been
analyzed through a simulation based on the modeling framework for Discrete Event Systems (DES).
In Mallig et al. [17], the authors describe a former implementation of the agent-based travel demand
model mobiTopp, with the aim of realizing a realistic model for ridesharing as an agent-based travel
demand model. The model has the limitation that it currently supports only end-to-end ridesharing,
i.e., only matching between origin-destination (O/D) zones.

Some works have analyzed the benefits of the proposed carpooling solutions. In Cho [18],
the authors present a case study analyzing 12 carpooling services in Europe and the United
States and conclude that interpersonal interactions in the service encounter (which depend on the
application/service interface) play a significant role in the QoE perceived by the users. In Cici et al. [19],
the authors investigate and assess the potentials of ridesharing by developing an algorithm that
matches users characterized by similar mobility patterns on the basis of departure time, O/D locations
and social distance based on data from popular social networks. The results provide an upper bound
to the potential of ridesharing performance, indicating that the decrease in the number of cars in a
city can be as high as about 30% when the users are willing to share a ride with friends of friends.
In Tsao et al. [20], the authors present the potentials of carpooling for reducing traffic congestion in
a hypothetical metropolitan area, assuming a uniform distribution of O/D locations. This model
attempts to measure the potentials of ridesharing based on spatial and temporal factors, but assumes
that only people who live in common home/work zones would consider sharing a ride with one
another. Whereas this study is one of the most comprehensive studies in estimating the ridesharing
performance in terms of traffic reduction, it has made important simplifications that have most probably
underestimated the achievable results with respect to more realistic deployment scenarios [21].

Sharing a ride can also lead to some side effects: for drivers, making a detour to reach the riders’
pick-up and drop-off points could represent a waste of time and money when these points are not close
to the driver’s route, since that behavior increases the total miles traveled by the driver. This drawback
has generally a lower impact when compared to the total savings in CO2 emissions due to the sharing
of the ride, but it points out some fields of improvement for ridesharing systems. For example, this side
effect can be mitigated by a carpooling system that evaluates only pickup points on the driver’s route.

2.2. Proposed Innovation

As it resulted from the previous review, many works have focused on the optimization problem,
but only a few have worked on the modeling of the driver mobility to find better matches. One
common assumption is that a shared ride must be agreed before the starting of the driver’s trip,
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whereas the partial ridesharing (a partial ridesharing [8] happens when the pick-up and drop-off
locations are located on the driver’s original route, either if their origins and destinations are located on
major streets or determined by negotiations) mode is not currently facilitated by matching agencies [8],
and to the best of our knowledge, its benefits have not been investigated in the literature yet.

Based on these considerations, the novel carpooling solution for dynamic ridesharing service
proposed in this paper and named CLACSOON includes the partial ridesharing mode. In this way,
the driver avoids taking a detour whenever possible; therefore, it leads to an increment in the total
system-wide CO2 savings. Clearly, it calls for the riders to walk to reach the driver along his/her
route when driving to the destination. Additionally, by introducing the modeling of the position of the
driver’s vehicle, only the remaining part of the route that a driver has to travel is considered when
evaluating the matching. Therefore, this approach enables the possibility for shared rides to be agreed
on the fly after the starting of the driver’s trip, when a rider happens to be close to the remaining part
of a driver’s route. This approach leads to an increment in the number of total shared rides.

Another important contribution of this paper is that, to evaluate the impact on the performance
of the system changing the population characteristics, an emulation system has been deployed to
generate increasing numbers of users that interact with the CLACSOON platform, and extensive trials
are implemented to analyze some performance indicators, varying the characteristics of the population
in the city of Cagliari (Italy). In particular, the passenger success rate, the driver success rate and the
total system-wide CO2 saved have been evaluated with respect to the characteristics of the population.
The results shows that introducing the aforementioned features in a route matching algorithm leads to
a substantial performance improvement.

3. The CLACSOON System Architecture

The CLACSOON system has been designed and implemented considering an urban scenario
where the aim is to offer a real-time, i.e., dynamic, carpooling service. The objective is to satisfy the
needs of users that have an unplanned (or predicable) need of mobility in the city that could not
be scheduled in advance. Accordingly, the system architecture needed to implement a service that
simplifies and automatizes the provisioning of the carpooling processes, considering also the users
QoE and creating an incisive user persuasion strategy. The main functional requirements to develop
such a service can be briefly described as follows:

• Accounting: to allow the user to access the service. Each user has a profile where various kinds
of information are stored, such as name, age, type of car and received feedback, which are very
important to build the reputation level.

• Request and offer insertion: to allow each user to insert an offer or request a ride. Each ride is
identified by a departure point, an arrival point, time flexibility parameters and a search radius
representing the maximum detour from the scheduled trip.

• Automatic matching: the server dynamically evaluates the possible matching between a ride
(either an offer or request) and the sets of complementary rides.

• Matching notification: if a matching is found, the system notifies the users. Each matching
notification contains the pick-up point, the drop-off point and the expected driver arrival time.
Each user can accept or refuse the notification.

The system has to be used by users in mobility, so the access to the system has to be guaranteed
by mobile devices. Accordingly, the design of the system architecture considers this facility, and the
front-end layer has been designed for mobile devices, considering the major operating systems. As for
the back-end side of the system, it is deployed in the cloud to offer good reliability considering the high
number of expected connections and then to provide good availability and capability features [22]. In
the implementation of the CLACSOON platform, the technology chosen is Google App Engine and its
tools for cloud solutions. Others services of the third parties (e.g., Facebook APIs, Direction APIs) are
used to build the proposed service.
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As already mentioned, the system follows the mobile-cloud paradigm. Figure 1 shows the
major components:

• The mobile client allows the user to access the carpooling service in mobility. Its sensors (e.g., GPS)
are used to simplify the access to the service and to enhance the user experience [23]. For all
communications toward the server, the JSON format is used.

• The cloud application server is the core of the system. It enables the access of users, processes all
requests and offers for rides and calculates the matching between requests and offers.

• The cloud database has the task to store all data useful for the service: user profile, ride offers,
ride requests, trips, payments, feedback and other information.

• The Facebook APIs are used to simplify the process of registration by offering a quick and easy
service to access the system. Using the Facebook social graph, the aim is to increase the social
participation of users.

• A directions provider is used to evaluate the information concerning the route between departure
and destination locations chosen by the user for his/her ride. This information includes travel
directions, estimated path length, estimated travel time and likely speeds derived from road types.

• The push notification services are used to enable the push notification toward the smartphones.
This feature is a milestone to obtain the real-time requirement [24].

The CLACSOON application can be downloaded from the iOS and Android markets.

Figure 1. The CLACSOONsystem: a sketch of the functional blocks.

4. The Route Matching Algorithm

This section describes the CLACSOON’s route matching algorithm and its ridesharing model.
The proposed algorithm contemplates the partial ridesharing mode, i.e., it takes into account the
possibility for a rider to reach the driver along his/her route, thus avoiding that the driver takes
a detour whenever possible. Furthermore, the algorithm implements a method for estimating the
position of the driver’s vehicle in an urban context, which enables the possibility for sharing rides after
the starting of the driver’s trip. During the design of the matching algorithm, we considered a dynamic
ridesharing scenario in which a ridesharing provider receives all of the trip announcements for each
participant. We also assume that the ridesharing provider relies on the availability of a directions
provider, which provides the information concerning the route between a departure and a destination
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location. This information includes travel directions, estimated path length, estimated travel time,
expected speed derived from road types, which may or may not depend on the historical average
speed data over certain time periods. Such a service is provided by many agencies; an example is the
Google Maps Directions API [25], which is a service that calculates directions between locations using
HTTP requests. Bing Map [26] is another map service provider, which calculates and display directions
and routes on the Map with Direction API module or with Bing Map Rest Services. Several alternatives
can also be used for those ridesharing providers who opt for a self-hosted direction provider: a great
example is The Open Source Routing Machine [27], which is a high performance routing engine written
in C++ designed to run on OpenStreetMap data.

Each rider and driver request includes the desired departure and arrival locations. Each ride offer
or request includes a timeout, which has to be intended as the maximum time the user is willing to
wait before finding a mate. Furthermore, each announcement includes a search radius, which has to
be intended as the maximum detour that the driver is willing to make from his/her original route or
the maximum distance the rider is willing to walk to reach the pickup point. With this information,
the proposed service automatically establishes shared rides over time, matching potential drivers with
riders. For the purpose of describing the route matching algorithm, we assume that at a given time t:

• D is the set of drivers;
• P is the set of riders;
• U = D ∪ P is the whole population of the dynamic ridesharing system;
• tDEP

d , tDEP
p are the desired departure time for a driver d and a rider p, respectively;

• Rd is the search radius of the driver d, ∀d ∈ D, indicating the maximum detour from his/her
scheduled trip that the driver is willing to travel;

• Rp is the search radius of the rider p, ∀p ∈ P, indicating the maximum distance the rider is willing
to walk to reach a pickup point.

Furthermore, we assume that:

• ~Dd, ~Dp are the coordinates of the desired departure location for the driver d and
rider p, respectively;

• ~Ad, ~Ap are the coordinates of the desired arrival location for the driver d and the
rider p, respectively;

• ~αd is the desired route for a driver d, which connects ~Dd to ~Ad. This information is provided by
the directions provider and is encoded in a matrix of two columns where each row corresponds to
a point in the path;

• τd is the estimated travel duration of ~αd, provided by the directions provider;
• Vd is the average theoretical speed for ~αd, provided by the directions provider;
• sd(t) is the number of spare seats for a driver d at the time t, and sd(0) is the initial vehicle capacity.

The problem of finding the matching between drivers and riders can be formulated as described
in the following. The matching algorithm has to satisfy the following constraints:

1. The total number of riders in a vehicle must not exceed the number of spare seats specified by
the driver;

2. The entire commuting route must start at the departure and end at the destination locations
specified by the driver;

3. Each rider must be picked up before he/she can be dropped off. This constraint seems obvious,
but it must be made explicit in a carpool matching algorithm.

4. The maximum distance that a rider p has to walk for reaching the pickup point cannot exceed the
search radius Rp;

5. The maximum detour that a driver d has to take with respect to his/her route, for picking up a
rider, cannot exceed the search radius Rd;
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6. The rider and the driver can wait to find a matched mate for a shared ride at most the timeouts
Tp and Td, respectively.

The constraints from 1 to 3 are usual for a commute process [28], while the constraints from 4 to 6
are specific for the proposed dynamic ridesharing system. As mentioned previously, the potential
route of a driver is encoded with a polyline ~αd, which is a matrix with two columns where each row
represents the coordinate of each point in the polyline. Accordingly:

~αd = ∪n−1
i=0~αdi

(1)

where i indexes the points in the route and~αd0 = ~Dd and~αdn−1 = ~Ad. The number of points in this
matrix (n) is clearly variable and depends on the departure and arrival points, as well as on the route
solution proposed by direction providers.

The ridesharing service should be implemented in a way to require the minimal intervention
from the users to maximize usability, but at the same time giving him/her the freedom to chose among
a possible list of mates. This implies that the ridesharing service finds all the matches and notifies the
user with a list of suitable travel companions. The proposed matching algorithm works as follows: the
algorithm first searches for one (or more) suitable matching and then, when the matching is found,
the arrangement of the shared ride is proposed to the participants. The driver and the rider then can
accept or refuse it. In most studies, the objective of the matching algorithm is the maximizing of the
system-wide miles saved, the maximizing of the success rate (the percentage of satisfied drivers and
riders) or the minimizing of the waiting time of drivers and riders. Clearly, these objectives partially
conflict with each other. Depending on the policy of the ridesharing provider, one (or a combination)
of the aforementioned objectives is selected for the implementation of the matching algorithm. In our
solution, we consider a weighting of the length of the shared trip and needed detour. As already stated,
this differentiates with respect to the alternative proposals, as we consider the partial ridesharing
mode and the detour of the riders. The proposed route matching algorithm relies on the following
three sequential functions that are executed:

• Temporal matching: for each new user (either a rider or driver), the system evaluates whether
the a time constraint is satisfied for each possible travel companions, given the timeout T, the
driver’s travel duration and the current shared rides allocation, but without considering any
geographical constraint;

• Geographical matching: this is the evaluation of the matching between a driver and a rider on the
basis of the distance from their paths. This step is performed for each pair (d, p) of drivers and
riders that satisfied the previous matching. This step also takes into account the theoretical future
position of the driver’s vehicle, from the beginning till the end of his/her ride.

• Cost function evaluation: this evaluates the cost Cd,p for a shared ride between each driver d and
rider p that satisfied both the temporal matching and the geographical matching constraints.

The details of these steps will be explained in detail in the following sections.
The list of possible travel companions is then ordered by the value of the cost Cd,p. This result

represents the output of CLACSOON’s matching algorithm. This list is then proposed to riders
and drivers.

4.1. Temporal Matching

For the temporal matching, it is necessary to consider the effect of the timeout (Td and Tp), which is
the maximum time the user is willing to wait to find a mate, and after this amount of time, the ride
request is considered to be expired. For the drivers, it is also important to consider the estimated travel
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duration τd, as after this amount of time, the ride offer is considered to be over. In case the rider starts
the ride after the driver, then the following two conditions must be verified:

tDEP
d ≤ tDEP

p ≤ (tDEP
d + Td) (2)

tDEP
d ≤ tDEP

p ≤ (tDEP
d + τd) (3)

which check that the rider arrives before the driver timeout and before the ending of his/her trip.
Differently, in case the driver starts the ride after the rider, the following condition must be verified:

tDEP
p ≤ (tDEP

d ) ≤ (tDEP
p + Tp) (4)

which check that the driver arrives before the rider timeout.
Each pair (d, r) that satisfies this step is then evaluated in cascade by the geographical

matching algorithm.

4.2. Geographical Matching

Each pair (d, p) that satisfies the temporal matching constraints is evaluated by the geographical
matching algorithm. For this purpose, we propose a method for estimating the driver’s position at
the time t on the basis of his/her destination. Modeling the position of the driver’s vehicle enables
sharing rides even after the starting of the driver’s trip. As mentioned before, ~αd is the desired route
for a driver d, which connects the point ~Dd = ~αd0 with the point ~Ad = ~αdn−1 (Section 4.1).

Recall that n is the number of segments in the polyline. Assuming that τdi
is the travel duration

between the point i and the point i + 1, we can decompose the total travel duration τd as the sum of
the travel duration of each single segment of the route:

τd =
n−1

∑
i=0

τdi
(5)

For simplicity, we can assume that:

τdi
=

τd
n

, ∀i ∈ (0, ..., n− 1) (6)

We then choose to estimate the driver position at the time t = tDEP
d + ∆t as the point of the route

with index Kd(t):

Kd(t) = b
∆t
τd
c · (n− 1) if tDEP

d ≤ t ≤ (tDEP
d + τd) (7)

Given that the constraints discussed in Section 4.1 have just been satisfied, note that this equation
has to be considered in the range tDEP

d ≤ t ≤ (tDEP
d + τd), i.e., the position of the driver is considered

to be undefined before the beginning of the ride and after the ride is over.
The remaining part of the path that a driver d has to travel at a time t can then be expressed as:

~βd(t) = ∪n−1
i=Kd(t)

~αdi
(8)

Accordingly, ~βd(t) is a subset of ~αd, which does not contain the points with index i < Kd(t) that
the driver d should have passed by at time t. In other words, ~βd(t) represents the part of the route
that theoretically the driver has to travel after the time t. When evaluating the matching at the time t
between the offer d and a request p, only the remaining route points ~βd(t) are considered, against the
departure ~Dp and destination ~Ap points of the rider: this feature enables drivers to pick up riders on
the fly, if the pickup point is close to the remaining route points in ~βd(t). This situation is depicted in
Figure 2. For the purpose of describing the geographical matching constraints, we assume that:
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• ∆depd,p(t) is the minimum distance between the set of route points in ~βd(t) and the rider’s
departure ~Ap;

• ∆dstd,p(t) is the minimum distance between the set of route points in ~βd(t) and the rider’s
destination ~Dp;

• ~
β

dep
d (t) and ~βdst

d (t) are the two points on the driver’s route with the minimum distance from ~Dp

and ~Ap, respectively. These points represent the pick-up points on the driver’s route.

Figure 2. Geographical matching: graphical representation.

A first constraint for the matching to be found is that the index of the point ~βdst
d (t) has to be

greater than the index of
~

β
dep
d (t), so that the rider must be picked up before he/she can be dropped off.

To take the partial ridesharing mode into account, when the search radius Rp specified by a rider
allows him/her to reach a departure pickup point on the driver’s route, the system places the pickup

point on the point
~

β
dep
d (t). A similar method is used for the evaluation of the destination pickup point

~βdst
d (t). In this way, this setting avoids the driver taking a detour when possible, and thus, it is expected

that it leads to an increasing of the total system-wide CO2 savings. Depending on the values of the
rider’s and the driver’s search radius, the matching algorithm assigns the departure pickup point
~Pdep(t) and the destination drop-off point ~Pdest(t) with the following method:

~
Pdep

d,p (t) =


~

β
dep
d (t) 0 ≤ ∆depd,p(t) ≤ Rp

~Dp Rp < ∆depd,p(t) < Rd

↑ ∆depd,p(t) > Rd

(9)

~Pdst
d,p (t) =


~βdest
d (t) 0 ≤ ∆dstd,p(t) ≤ Rp

~Ap Rp < ∆dstd,p(t) < Rd

↑ ∆dstd,p(t) > Rd

(10)

The three conditions in both of the previous equations have been derived from the
following motivations:

Condition (1) if the search radius of the rider Rp is greater or equal to the distance ∆depd,p(t) between
his/her departure and the driver’s route, the matching algorithm specifies the location
~

β
dep
d (t) to be the departure pickup point.

Condition (2) if the search radius of the rider Rp is lower than the distance ∆depd,p(t), but the search
radius of the driver Rd is greater or equal to the distance ∆depd,p(t), the pickup point
is assigned to be on the rider’s departure point Dp.

Condition (3) if both Conditions (1) and (2) are not satisfied, a pickup point does not exist, an then,
a matching between p and d does not exist.

An analogous approach is followed in calculating the drop-off point.
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The total driver’s deviation (for simplicity, we consider the deviation to be in a straight line) from
his/her original path can be expressed as:

devp,d(t) = wD
d,p · ∆depd,p(t) + wA

d,p · ∆dstd,p(t) (11)

where wD
d,p is a binary variable set to one if Pdep ≡ Dp, i.e., if a detour from the driver’s original path

is needed. Likewise, wA
d,p is a binary variable set to one if Pdest ≡ Ap and set to zero otherwise. The

last constraint to be satisfied is that the total detour that a driver should take in order to reach the
pick-up and drop-off points cannot be higher than the distance ∆kmp,d covered by the shared route,
i.e., the shared ride provides positive cost savings. If this constraint is not satisfied, there would not be
a benefit for the driver to take the detour in order to share the ride.

devp,d(t) ≤ ∆kmp,d (12)

If both Pdest(t) and Pdep(t) are defined, the matching is assumed to be found.

4.3. Cost Function

For the pairs of offers and requests (d, p), which satisfy the temporal and geographical constraints,
the value of a cost function Cd,p(t) for a shared ride is evaluated.

It takes into account the following two elements: ∆kmp,d, which is the length of the shared ride;
devp,d, which is the length of the needed detour.

The cost function is defined as:

Cd,p(t) = f (devp,d(t), ∆kmp,d) = Θ · devp,d(t)−Ψ · ∆kmp,d (13)

where Θ, Ψ are tuning parameters that respectively determine the importance of the detour from the
original path and with respect to the travel sharing. Accordingly, a list of suitable travel companions is
ordered, which are associated with:

• the departure pickup point Pdep(t)
• the destination pickup point Pdest(t)
• the cost Cd,p(t)

The list of suitable travel companions for a user represents the output of CLACSOON’s matching
algorithm. The user is then left with the option to select the best mates according to his/her personal
interests. In the next section on the performance evaluation, we assume that the user always selects
the mate corresponding to the lowest cost function.

5. Analysis of the Experimental Results

The CLACSOON platform has been implemented, and the relevant service is publicly available
for the major mobile operating systems (iOS and Android). Currently, the service is operating at
a small scale, and it has attracted three thousand users, mostly located within the area of Cagliari.
Since we were facing the critical mass issue, we were interested in analyzing the performance of the
system, in relation with the population characteristics. For this purpose we implemented an emulation
system, as the current population of CLACSOON users is limited and because we were interested in
analyzing the performance with different population characteristics, which cannot be controlled in real
scenarios. The place we selected for the emulation scenario is the city of Cagliari, which is an Italian
municipality with nearly 150,000 inhabitants, with a metropolitan area (including the surrounding
15 municipalities) of more than 420,000 inhabitants [29]. Considering a real area, we were able to
emulate the mobility patterns in real urban conditions, including real roads in the city and real paths
between any departure and destination (e.g., pedestrian zone, one-way roads, limited traffic zones).
Three Key Performance Indicators (KPI) have been analyzed: the number of shared rides, the waiting
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time to find a ride and the average total system-wide CO2 savings. The following subsections describe
the emulation system, present the experimental setup, analyze the achieved performance results and
provide a comparison with alternative approaches.

5.1. Description of the Executed Emulations

In this section, we describe the experimental setup and the emulation system. We implemented
an agent-based emulator that generates the ride offers and requests on behalf of real uses, evaluates
the matching between them and emulates the sharing of rides. The emulator is implemented in Java,
and it is based on the core of the CLACSOON platform (indeed, the matching is exactly the service in
production, but executed in the emulation environment). In our experiments, we ran several scenarios,
each one characterized by a combination of parameter settings as explained in the following. In the
following, we describe the processes we followed for the configuration, setup, run and evaluation
phases in our experiments.

5.1.1. Configuration

During the configuration step, a list of scenarios is generated: each scenario represents the
configuration of a population. During the experiments, we have changed some parameters of the
population to evaluate the effects on the KPIs; these parameters are listed in Table 1. The performed
experiments have been conducted by selecting an area of interest in the city of Cagliari (centered
at: 39.23, 9.14) and with an area (A) of about 64 km2 , which is where the users can operate. This
area is of interest for this study since the majority of CLACSOON’S users mainly operate inside this
boundary. Furthermore, this area is representative of medium-small cities with numerous residential
areas, commercial sites, factories and historic neighborhoods within its metropolitan boundaries.
Figure 3 shows the area selected for this case study where the area of interest is delimited by a black
line. Each run lasts for S hours, during which a total of N users act as either passengers or drivers.
When evaluating the performance of the system with respect to the spatial clacsooners density, we
have varied both the population density (Nk) and the ratio between the number of drivers and the
number of passengers, i.e., Ld/Lp. As shown in the table, N ranges from 600 to 2500, which correspond
to a different population density given the size of the reference geographical area, and the ratio Ld/Lp

ranges from 1/8 to eight. In the performed emulations, we also refer to the timeout T, which ranges
from 1 to 30 min. For simplicity, we assume the same timeout T for each rider and each driver.

Table 1. Values of parameters varied during the experiment.

System Parameters

Time window S 4 h
Total users N from 600 to 2500

Population percentage Nk from 10 to 40 users/km2

Number of drivers Ld Ld/Lp from 1/8 to 8Number of passengers Lp
Temporal rate of ride offers fd from 10 to 600 users/hTemporal rate of ride requests fp

Timeout T From 1 min to 30 min
Search radius of passengers Rp 300 m

Search radius of drivers Rd 1/10 of the travel length
Cost function tuning parameters Ψ, Θ Ψ/Θ = 1

Each scenario represents a combination of the parameters listed in Table 1. To perform the
simulations proposed in this case study, we evaluated the KPIs for three sizes of the population N,
eight levels for the ratio Lp/Ld and eight values for the timeout T, for a total of 192 scenarios.
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Figure 3. The area for the case study.

5.1.2. Setup

The setup step consists of the generation of each member of the population for a single run.
During this step, the total population N is divided into Ld drivers and Lp passengers. The emulator
assigns each user departure and destination locations chosen randomly and uniformly in the selected
area, with the following two constraints:

(1) both locations fall on a street
(2) it is actually possible to travel from the departure to the destination, i.e., a path exists between

these points

Each trip is assigned the shortest path between the departure and destination points, which is
calculated by the directions provider. Generating random paths within this area leads to an average
travel duration of approximately 13 min with a standard deviation of approximately 6 min (Figure 4).
We chose to select randomly and uniformly the starting and the arrival points due to the lack of mobility
models for ridesharing users for the city of Cagliari. A similar simplifying assumption has been made in
Tsao et al. [20], where the authors, due to the lack of data, assumed a uniform distribution of departure
and destination locations in a hypothetical metropolitan area. In Cici et al. [19] and Amey [21] ,
the authors pointed out that this simplifying assumption should lead to an underestimation of the
carpooling performance. Therefore, recent mobility surveys for the city of Cagliari would be needed to
assess more accurately the performance of the proposed solution.

The emulator also assigns to each driver and each rider the desired departure time tDEP
u . The

time interval between two successive departure times is set to have an exponential distribution within
the time window S. If we consider this period and a given number of drivers Ld and of riders Lp, we
obtain an expected time interval between offers µd and an expected time interval between requests µp:

µd =
S
Ld

µp =
S
Lp

(14)
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Figure 4. Average travel duration within the selected area.

5.1.3. Run

Once the population’s details have been set, the run step is executed. Each run for a given scenario
has been repeated for 20 cycles, in order to reduce the width of the confidence interval. In particular,
we checked the 95% confidence interval for one of the most important KPI, i.e., the passenger success
rate, whose results are shown in Figure 5, and we checked that it was very small, so that we almost had
no overlaps among the curves. Specifically, it was lower than 0.01, which was very low. The emulator
models a situation in which a user u joins the population at his/her desired departure time tdep

u ,
simulating the publication of an offer or request through the CLACSOON mobile application. Strictly
after the user u joins the population, the matching algorithm is evaluated between this user and the set
of complementary users: if the user is a driver, the matching is evaluated against a set of riders, and
vice versa. If no matching is found, the user is given a time T to be contacted by another user. When
a new rider joins the population, a set of offers that satisfy the constraints specified by the temporal
matching is retrieved from the database. These offers are then evaluated by the geographical matching
algorithm. If one or more offers satisfy the geographical matching, the value of the cost function is
evaluated for these offers, and the ride is agreed upon with the offer, which leads to less cost. Moreover,
the number of empty seats for the offer is reduced by one, and the ride request is marked as busy, i.e., it
is not possible for other drivers to give a lift for this request. On the other side, when a new driver joins
the population, the list of the existing ride requests is retrieved from the database. Those rides have to
satisfy the constraint of not being busy, i.e., the ride request must not be committed to another driver.
If the aforementioned constraint is satisfied, then the matching between the offer and the request is
evaluated by the temporal matching and the geographical matching algorithm. If a matching is found,
the shared ride is considered to be agreed upon; the ride request is marked as busy; and the spare seats
for the ride offer are decremented by one.



Sustainability 2017, 9, 254 15 of 21

40 users/kmq

20 users/kmq
10 users/kmq

0 5 10 15 20 25 30
timeout [min]

0.0

0.2

0.4

0.6

0.8

1.0

p
a
ss

e
n
g
e
r 

su
cc

e
ss

 r
a
te

Ld/Lp = 1/4 Ld/Lp = 1 Ld/Lp = 4

Figure 5. Passenger success rate.

5.1.4. Evaluation

After the end of a run, the following KPIs are computed:

• Passenger waiting time: the average of the time that the riders that found a match had to wait
before finding that match

• Passenger success rate: the percentage of riders that found a ride
• Driver success rate: the percentage of drivers that shared a ride
• Total system-wide CO2 saved: the sum of the estimation of the CO2 saved for each shared ride

Like the cost function (13) defined in the Section 4.3, the estimation of the total system-wide CO2

saved is based on the following two elements: (i) the length of the shared ride, i.e., the distance that the
riders should have traveled alone if the shared ride was not agreed upon; (ii) the length of the needed
detour that the drivers had to take to reach the pick-up and drop-off point. Therefore, this estimation
takes into account that drivers could drive longer distances to pick up the riders. The results of the
emulations from this case study have been computed as an average of the KPIs obtained from 20
runs for each scenario. As mentioned before in Section 5.1.1, a total number of 192 scenarios has been
executed, leading to a total number of about 4000 runs.

5.2. Experimental Results

The performance in relation with the time distribution of the service utilization has been evaluated
varying the rate of ride offers ( fd) and the rate of ride requests ( fp). The performance has also been
evaluated in relation with the maximum waiting time of the users T.

Figures 5 to 8 show the results according to the mentioned KPIs varying the parameters with the
values indicated in Table 1.
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5.2.1. Passenger Success Rate

Figure 5 shows the passenger success rate, which is the percentage of passengers that find a ride.
This chart shows the trend of this indicator in relation with the timeout, for three levels of the ratio
Ld/Lp and three levels of the population N. The first highlighted trend is that the success rate increases
with the population, which is something that is expected, since if the spatial density of users is low, the
probability to have a matching is small, as well. The growth in relation with the timeout is significant
until the value of T is around 15 min; after this value, any further increase in the timeout does not
have a big impact. This is due to the fact that the random paths generated in the selected area result in
an average travel length of 13 min. This value of T is comparable to the bus transit frequency within the
city of Cagliari. If we consider a threshold in the success rate of 80%, we see that this can be achieved
with a balance between the numbers of drivers and of passengers (i.e., Ld/Lp = 1) if the latter have the
patience to wait for up to 13 min in the case that the clacsooner density is 40 users/km2. Otherwise, if
the percentage of drivers is high, having a ratio Ld/Lp = 4, then the passengers would have to wait
only 6 min. This result tells us that depending on the patience of the customers, a different marketing
action should be followed to reach the needed percentage of drivers in the clacsooner population.

5.2.2. Driver Success Rate

Figure 6 shows the driver success rate. The first highlighted trend is that the success rate increases
when the population increase and when the ratio Ld/Lp decreases (i.e., the greater the number of
riders request a ride, the higher the driver success rate).

40 users/kmq

20 users/kmq
10 users/kmq

0 5 10 15 20 25 30
timeout [min]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d
ri

v
e
r 

su
cc

e
ss

 r
a
te

Ld/Lp = 1/4 Ld/Lp = 1 Ld/Lp = 4

Figure 6. Driver success rate.

Figures 5 and 6 show that, with the same population level, the rider success rate is higher than
the driver success rate. This difference is related to the different nature of these two agents: a single
driver could give a ride to more than one passenger. This situation is more likely to happen if the
number of drivers is higher than the number of riders and when the number of users is high. Moreover,
an increase in the timeout always leads to an increase in the success rate for riders, but for drivers,
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this effect is limited: the driver success rate increases slowly after 15 min. This is due to the fact that
the random paths generated in the selected area result in an average travel length of 13 min. The
emulator models a situation in which riders insert their trip when they arrive in the desired pickup
point, and then, they can wait for a match at most until their waiting time reaches the timeout. Drivers,
as opposed to riders, insert their trip when they are ready to start the trip, and they could obtain a
match at most until their trip is over. Therefore, a further increase in the timeout does not lead to a big
benefit for drivers. Moreover, when Ld becomes higher than Lp and for a high level of population,
there is another important trend. The system results in being unbalanced in favor of the riders, so most
of them can find a ride. The remaining drivers have a low probability to find a passenger, because the
majority of passengers have just agreed to take a ride from a driver.

5.2.3. Passenger Waiting Time

Figure 7 shows the rider’s average waiting time needed to find a ride. The trend is linear and
decreases when the number of drivers increases. If the ratio Ld/Lp is high (i.e., more drivers than riders
are in the system), the waiting time is low and vice versa. In case there are more drivers than riders and
then there are many offers, the probability to find a ride quickly becomes high. Therefore, if the number
of drivers is higher than or equal to the number of passengers, the waiting time increases slowly.
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Figure 7. Passenger waiting time.

This figure does not consider the waiting time of rides that have not found a ride (in fact, a waiting
time for these rides is undefined), so this figure has to be considered in conjunction with Figure 5.

5.2.4. Total System-Wide CO2 Saved

The average success rate and the waiting time represent the performance from the single trip
point of view. By collecting the travel length of every shared ride, we are able to compute the global
system CO2 saved. The result is shown in Figure 8. This chart shows the trend of this indicator in
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relation to the the ratio Ld/Lp, for three levels of the population N and for three levels of the timeout T.
It is important to note that the CO2 saved is a KPI that describes the performance of the whole system.
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Figure 8. Total system-wide CO2 savings.

The CO2 saved is estimated as the product between the total travel shared (evaluated in km) and
the average CO2 emitted by a car (140 g of CO2 per km) [30]. Since this parameter is assumed to be
proportional to the shared travel length, it is also representative of the total cost savings generated by
the carpooling system. The curve reaches the maximum value when the number of riders is close to
the number of drivers, that is when the system is balanced. It increases when the timeout increases, as
well as when the population increases.

Assuming the aforementioned value of CO2 emitted per km, we can compute the value of
emission savings in the time window S used in the simulation. It is notable that with a timeout value
of 10 min and for Lp ≈ Ld, the emission savings in this scenario are about 80 kg for 10 users/km2,
250 kg for 20 users/km2 and 720 kg for 40 users/km2. It is clear that the trend is not linear, but follows
an exponential increase with respect to the population.

5.3. Performance Comparison

Following the approach done in [11], to assess the value of CLACSOON’s matching algorithm,
in this section, we compare its performance with those of an alternative matching algorithm we
developed (named “DUMMY”), which presents the two following simplifications with respect to
CLACSOON’s matching algorithm:

• when a match is found, the pickup and the drop-off points are assigned to be on the rider’s
desired departure ( ~Dp) and destination ( ~Ap) points, respectively.

• a driver cannot accept requests after his/her trip started: each shared ride must be agreed upon
before the starting of the driver’s trip, and the dynamics of the positions and the speeds of the
vehicles are not taken into account

Note that the DUMMY algorithm not only contemplates the identical ridesharing (i.e., when the
departure has to be the same for riders and drivers). Indeed, the DUMMY matching algorithm also
contemplates the presence of intermediate meeting points that can: (i) be on the original route of the
driver; (ii) not be on the way of an original route of the driver, so that a detour would be needed to reach
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the pick-up and drop-off points. The difference with the CLACSOON algorithm is that, when rider’s
desired departure and destination locations are not on the way of the driver’s original route, the driver
should have to take a detour to reach the rider’s departure and destination points. Therefore, the
DUMMY matching algorithm does not contemplate the partial ridesharing mode and prevents drivers
from picking up riders on the fly, even if the pickup points result in the driver’s route, since the shared
ride has to be arranged before the starting of the driver’s trip. With this comparison, we intend to
specifically evaluate the major two novel features introduced by our proposal. The following results
shows the comparison of the indicators for a population density of 40 users/km2. In the following,
if not explicitly stated otherwise, the simulation environment parameters are equal to those listed
in Table 1. Figure 9 clearly demonstrates that the CLACSOON matching algorithm performed better
than the DUMMY matching algorithm in terms of all of the KPIs we computed. Figures 9a–c show
the computed results in relation with the timeout T and for Ld/Lp = 1, i.e., the number of riders
is set to be equal to the number of drivers. For instance, for a timeout of 10 min, the CLACSOON
matching algorithm leads to a decrease in the waiting time of around 55% and an increase in the
driver and passenger success rates of around 4% and 10%, respectively. However, note that the relative
advantage for the success rate decreases with the timeout for both drivers and riders. Figure 9d shows
the total system-wide CO2 saved for a timeout of 10 min, in relation with the ratio Ld/Lp. It is notable
that, for Lp = Ld, the CLACSOON algorithm leads to an increase (+21%) of the CO2 saved, which
corresponds to 120 kg of CO2 emission savings over the value computed for the DUMMY matching
algorithm. For the selected scenario, the overall CO2 that riders would have emitted if each one had
driven his/her car (estimated with respect to the total length of their desired route) is estimated to be
approximately 1150 kg, so a participation rate of 40 users/km2 leads to the 64% of emission savings
for the CLACSOON matching algorithm and the 54% of emission savings for the DUMMY algorithm.
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Figure 9. Comparison with the “DUMMY” matching algorithm.

6. Conclusions and Future Works

In this work, we presented the CLACSOON platform that introduces some novel features with
respected to the state-of-the-art. This platform has been implemented and is working mostly in the area
of Cagliari. We introduced an important novel functionality according to which the route matching
algorithm contemplates the partial ridesharing mode, i.e., riders can walk to reach the driver along
his/her route when driving to the destination, resulting in higher total system-wide CO2 savings.
Moreover, we introduced the novel functionality according to which the matching algorithm models
the position of the driver’s vehicle in an urban context so that shared rides can be agreed upon
after the starting of the driver’s trip. An emulation system has also been implemented to analyze
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the performances of the proposed matching algorithm in a simulated smart urban scenario, with
respect to the characteristics of the users. The performance has been evaluated considering some key
parameters that affect the Quality of Experience (QoE) provided to the users, i.e., ridesharing success
rate for both driver and passenger and waiting time. We have also analyzed the total system CO2

saved. An interesting result consists of the fact that the system shows the best level of performance,
i.e., the maximum of the total system-wide CO2 saved, when the system is balanced, i.e., when the
number of drivers is near or equal to the number of riders. The results have also been compared with
the case that the novel proposed features were not used. We observed that with CLACSOON, in the
case that the users were keen on waiting till 10 min from the service request, it is possible to achieve
a decrease in the waiting time of around 55% and an increase in the driver and passenger success
rates of around 4% and 10%, respectively. Additionally, the proposed features allowed for having
an increase in the reduction of the CO2 emission of more than 10% with respect to the traditional
carpooling service.

The results presented in this paper can be considered to evaluate the requirements to build
a successful urban carpooling service. Future works will be focused on the use of even more real
scenarios. One aspect to be considered is the generation of trips according to mobility surveys or studies
that analyze the travel demand. These data would be needed to further validate the proposed analysis.
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