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Abstract: Cities worldwide have been trying to achieve a sustainable urban form to handle their
rapid urban growth. Many sustainable urban forms have been studied and two of them, the compact
city and the eco city, were chosen in this study as urban form foundations. Based on these forms, four
sustainable city criteria (compactness, compatibility, dependency, and suitability) were considered
as necessary functions for land use optimisation. This study presents a land use optimisation as
a method for achieving a sustainable urban form. Three optimisation methods (particle swarm
optimisation, genetic algorithms, and a local search method) were combined into a single hybrid
optimisation method for land use in Bekasi city, Indonesia. It was also used for examining Bekasi city’s
land-use-plan (2010–2030) after optimising current (2015) and future land use (2030). After current
land use optimisation, the score of sustainable city criteria increased significantly. Three important
centres of land use (commercial, industrial, and residential) were also created through clustering
the results. These centres were slightly different from centres of the city plan zones. Additional
land uses in 2030 were predicted using a nonlinear autoregressive neural network with external
input. Three scenarios were used for allocating these additional land uses including sustainable
development, government policy, and business-as-usual. Future land use allocation in 2030 found
that the sustainable development scenario showed better performance compared to government
policy and business-as-usual scenarios.

Keywords: compact city; eco city; land use zoning; land use optimisation; hybrid optimisation;
multi-criteria analysis; evolutionary algorithm

1. Introduction

Unsustainable city forms have been perceived as a source of environmental problems [1,2].
They directly affects habitats, ecosystems, endangered species, water quality, habitat fragmentation,
car use, open spaces, pollution, noise, global climate, replace natural cover with impervious surfaces,
and other effects [2–5]. Therefore, a city with sustainable development goals (SDGs) has to achieve a
sustainable urban form. Such a city adheres to the sustainable development concept, i.e., development
which caters both to present and future needs [6,7].
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Many sustainable urban forms have been proposed. These include (i) the compact city; (ii) the
eco city; (iii) neo-traditional development; and (iv) urban containment [2]. The compact city and eco
city were chosen in this study as a foundation to achieve a sustainable urban form within the study
area, Bekasi city, Indonesia. The eco city was also included as a base model in this study since the
sustainability of the compact city is still being debated [8]. Based on the compact and eco city models,
four criteria were chosen, compactness, compatibility, dependency and suitability, to determine the
sustainability score for the city when optimising urban land use (LU). These criteria are similar to those
of a previous study on current LU allocation [9]. Although difficult to change an existing city form
with newly optimised form, some activities dealing with urban structure and land use pattern can be
implemented to achieve sustainable urban form as in the current study. Some studies implemented
sustainable urban development and urban intensification concepts for those activities [3,10–13]. In the
current study, the optimisation process accounted also for future LU.

Simple LU zoning has been implemented worldwide. These processes allocate each LU to
appropriate locations based on their classes. In contrast, Alexander [14] criticised the LU zoning
because of its tree formation instead of semi-lattice that makes the city unnatural and difficult to grow.
Semi-lattice with inter-connections among LUs makes a city more natural, easy to grow and sustainable.
Thus, Alexander suggested the planner calculating all LU relations instead of just proposing the LU
zones based on the group of LUs. However, the semi-lattice concept of natural city is still under debate
and difficult to manually calculate. The current study proposed a tool and method for calculating the
sustainability score of all LU relationships while automatically generating a sustainable urban form
using LU optimisation as an alternative to traditional methods. Additionally, the current study can
be used for examining policy regarding sustainability since the study area has already implemented
LU zoning in its city plan (2010–2030). A zoning system is affected by the street-block structure
that sometimes creates problems. Since the city government has already established the street-block
structure, the proposed model excluded it and only optimised other specific LUs.

The current study optimised both current LU and future LU through a transformation and an
allocation model respectively. Whereas the transformation model created a suggested LU zone, the
allocation model allocated newly predicted LUs in the future. In allocation model three exploratory
scenarios were used: (i) a sustainable development scenario (SD); (ii) a government policy scenario
(GP); and (iii) a business-as-usual scenario (BAU).

The main part of the current study is a LU optimisation model. Many techniques have been
used and developed as candidates for LU optimisation methods such as fuzzy logic [15], genetic
algorithms (GA) [15–20], particle swam optimization (PSO) [9,21–23], and simulated annealing
(SA) [24]. These heuristic methods have advantages in handling discontinuities, non-linear or stochastic
problems [25]. Nowadays, there is a trend to use hybrid methods that combine several optimisation
methods into a single and more powerful one [26–28]. In the current study, the PSO, GA and local
search optimisation methods were combined into a hybrid method for LU optimisation.

The specific objectives of the current study were: (1) to do an exploratory analysis of LU
optimisation models and their use to achieve a sustainable urban form; (2) analysis of current LU
optimisation with comparison to the Bekasi city plan (2010–2030); and (3) to develop future allocation of
newly predicted LU through the devised modelling approach to examine different allocation scenarios
in the study area. By achieving these objectives, the current study intended to fill the research gap
about LU optimisation usage for achieving a sustainable urban form.

2. Data and Methodology

2.1. Study Area

The study area, Bekasi city, is located to the east of Jakarta province, with Bekasi regency on the
east and north, and Bogor regency on the south (Figure 1). This city is part of the Jakarta Metropolitan
Region (JMR) with an area of 210.49 km2. More than 90 per cent of the land is residential and the
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remaining is for commercial, industrial, education, agricultural, and other uses [29]. Agricultural
production is limited due to the lack of cropland. Therefore, agricultural products must be obtained
from other regions. Commercial and market places supply the basic needs of people [29].
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Figure 1. Study area: (A) map of Bekasi city; (B) population growth in the study area from 2003 to 2015
(Bureau of Statistics 2015); and (C) existing LU.

Obtaining basic needs is a problem that is worsened by rapid population growth (Figure 1B).
The population of more than 2.7 million in 2015 (population density 12,827/km2), increases slightly
every year due to the birth rate and migration [30]. Serving people with proper housing, a liveable



Sustainability 2017, 9, 221 4 of 18

environment, and good roads are the main tasks of city government. Fortunately, Bekasi city is
relatively flat (less than 2 per cent grade) and geologically suitable for housing, large buildings, and
roads [31]. Toll roads across this city ease access to other regions but create harmful air and sound
pollution nearby. Other types of pollutions (water and soil pollution) also happen in Bantargebang
sub-district as it is the central waste disposal of Bekasi and the capital city, Jakarta.

Since the area is relatively flat, low lying regions are prone to flooding in the rainy season from
November to February [32]. This problem is further compounded by its location next to Bogor regency
which has a higher elevation and more rainfall [31]. The local government has been struggling to
minimize flooding by managing rivers, wetlands, and LUs.

2.2. Dataset

In addition to direct surveying, a variety of datasets were used, namely, Bing basemap on
ArcGIS, Google Earth imagery (30 m spatial resolution), commercial sites, official government sites,
thematic maps from the Geospatial Information Bureau of Indonesia (BIG), the yellow pages, and
other spatial and non-spatial data sources. In this study, ten LU classes was chosen following
the United States Geological Survey (USGS) standards [33] in point vector dataset: (1) commercial
buildings; (2) industrial buildings; (3) elementary schools; (4) middle schools; (5) colleges; (6) medical
facilities; (7) sports areas; (8) parks; (9) low density residential areas; and (10) high density residential
areas. The residential area class was divided into high and low-density residential classes because
of their different characteristics. As an example, regarding compatibility aspect between two LUs,
a high-density residential LU usually conflict with another high-density residential LU but compatible
with the low-density residential LU.

The land use and land cover (LULC) map from BIG is difficult to use for classifying built-up areas
such as commercial, residential, and other LU classes. Hence, we classified each LU class manually
using GIS tools based on available data sources. However, remote sensing data from USGS (August
2015) was used to validate current built-up LU data. For the residential LU class, an approximation
model was used. Instead of one point for one building, we used one point for a 100 m radius with 150 to
200 buildings for high density residential areas and 10 to 150 buildings for low density residential areas.
This is similar to lowering the resolution in raster dataset and such an approximation in modelling is
common to enable more efficient computation [34].

Other thematic maps—roads, rivers, recreation areas, flood zones, open spaces, land price, and
polluted areas (air, noise and soil) were used for suitability analysis. The locations of polluted areas
were adapted from earlier works which showed regions near toll roads and central business as
pollution centres [35].

For optimising future land use in 2030, historical imagery from Google Earth was used to see LU
changes over periods of three consecutive years (2003, 2006, 2009, 2012, and 2015). This historical data
was used for predicting future LU (2030).

2.3. Optimisation Module

This study intended to examine the feasibility of LU optimisation for achieving a sustainable
urban form. Two robust evolutionary algorithms were used, particle swarm optimisation (PSO) and
a genetic algorithm (GA). They were combined into a hybrid algorithm. Another method, a local
search, was also employed to refine the final results. This hybrid algorithm was used to optimise the
fitness function, which was created from four sustainability city criteria using an aggregating function
method as hybrid multi-criteria evolutionary algorithm (HMCEA). This optimisation module adopted
a constrained optimisation problem, a kind of optimisation with several restricted ranges or regions as
constraints [36].

Figure 2A shows the HMCEA procedure for optimising both current (Figure 2B) and future LUs
(Figure 2C). While the current LU optimisation was used for all LUs within the study area, future LU
optimisation was only used for the predicted new LUs. As in other studies [9,23], the optimisation
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used the current LUs as the initial PSO particles. Future LU optimisation used random initial LUs
before optimisation process.Sustainability 2017, 9, 221  5 of 18 

A Land Use Class

PSO Optimisation

Higher Fitness 
Score

Lower Fitness 
Score

Sorting Based on Fitness Score

GA Optimisation

Merging Result

Local Search Optimisation

Optimisation Result

PSO Stage

GA Stage

Local Search 
Stage

C
ur

re
nt

 L
an

d 
U

se

La
nd

 U
se

 Z
on

in
g

O
pt

im
is

in
g

C
lu

st
er

in
g

N
ew

 L
an

d 
U

se
s 

Pr
ed

ic
tio

n 

In
iti

al
 L

oc
at

io
n 

(R
an

do
m

)

O
pt

im
is

in
g

Scenario

O
pt

im
is

at
io

n 
R

es
ul

t

(A) (C)

Current 
Optimum-
land-use 

New 
Optimum-
land-use 

(B)

 
Figure 2. Diagrams showing (A) HMCEA as optimisation module; (B) optimising current land use 
and clustering; (C) optimising new land uses. 

The first stage was PSO, which is a fast optimisation method that mimics a flock of birds or a 
school of fish (called particles) searching for food [37]. Earlier studies showed that PSO is faster than 
GA but less accurate [9,21,23]. A small initial weight might be used to increase accuracy, but it lowers 
the searching distance of particles and weakened their ability to jump over a wide constraint. One 
way to overcome this is excluding the particles with lower fitness scores [38]. This cannot be 
implemented in the current study since every particle represented a particular land use. However, 
instead of deleting the particles with lower fitness scores, half of them were optimised in the next 
stage using GA [39]. Without the moving characteristic in PSO, GA uses crossover and, especially, 
mutation, to jump over wide constraint regions. Additionally, computation is faster because it only 
optimises half of LUs from the PSO stage. At the end of this stage, the result is merged again with the 
particles with higher fitness scores from the PSO stage before continuing to the next stage. 

The last stage was a local search method that refined the results by searching some locations 
around every optimised LU for the possibility of finding the more optimal result. Previous studies 
showed the benefit of integrating GA with a local search [40,41]. In this study, a triangle pattern 
search method was used. It checked three locations around every result location (250 m coverage). 

After the local search stage, the optimisation process continued for other LU classes before 
reaching a maximum number of iterations as a stop condition. Increasing the fitness score of every 
LU class also increased the total fitness score. PSO, GA, local search, and the GIS conversion module 
in Matlab software (Version 7.7 Release 2008b, Mathworks, Natick, MA, USA) were used and 
integrated. 

HMCEA was used for optimising both current and future LUs. Figure 2B shows the current LU 
optimisation for creating cluster-based centres of LU classes that can also be used to propose LU 
zones. This optimisation used empty and allowable LUs within the study area as constraints. 
Constraints for future LU optimisation were based on a scenario that is discussed below. 
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Figure 2. Diagrams showing (A) HMCEA as optimisation module; (B) optimising current land use and
clustering; (C) optimising new land uses.

The first stage was PSO, which is a fast optimisation method that mimics a flock of birds or a
school of fish (called particles) searching for food [37]. Earlier studies showed that PSO is faster than
GA but less accurate [9,21,23]. A small initial weight might be used to increase accuracy, but it lowers
the searching distance of particles and weakened their ability to jump over a wide constraint. One way
to overcome this is excluding the particles with lower fitness scores [38]. This cannot be implemented
in the current study since every particle represented a particular land use. However, instead of deleting
the particles with lower fitness scores, half of them were optimised in the next stage using GA [39].
Without the moving characteristic in PSO, GA uses crossover and, especially, mutation, to jump over
wide constraint regions. Additionally, computation is faster because it only optimises half of LUs from
the PSO stage. At the end of this stage, the result is merged again with the particles with higher fitness
scores from the PSO stage before continuing to the next stage.

The last stage was a local search method that refined the results by searching some locations
around every optimised LU for the possibility of finding the more optimal result. Previous studies
showed the benefit of integrating GA with a local search [40,41]. In this study, a triangle pattern search
method was used. It checked three locations around every result location (250 m coverage).

After the local search stage, the optimisation process continued for other LU classes before
reaching a maximum number of iterations as a stop condition. Increasing the fitness score of every LU
class also increased the total fitness score. PSO, GA, local search, and the GIS conversion module in
Matlab software (Version 7.7 Release 2008b, Mathworks, Natick, MA, USA) were used and integrated.

HMCEA was used for optimising both current and future LUs. Figure 2B shows the current LU
optimisation for creating cluster-based centres of LU classes that can also be used to propose LU zones.
This optimisation used empty and allowable LUs within the study area as constraints. Constraints for
future LU optimisation were based on a scenario that is discussed below.
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2.4. Criteria Functions

LU optimisation is a kind of LU transformation. It needs some conversions between LU
classes [42]. Other studies included resistance-to-change or conversion cost factors in their criteria to
manage the conversion problem [17,23]. Relocating a building is difficult not only in Bekasi city but
also in most of the regions in Indonesia. The current study did not use conversion cost factor, so every
LU freely searched for the optimum location. LU composition suggested from LU optimisation was
difficult for implementation. However, some important centres created through clustering the result
can be used as LU zoning suggestion and an instrument for analysing the sustainability of the city LU
plan (2010–2030).

In the current study, four criteria functions necessary for sustainable urban form were considered
when modelling the problem. The first criterion is compactness based on the compact city form. Many
studies have shown that this criterion will minimise travel distances and fuel consumption [4,43–45].
However, other studies suggested addition of mixed use areas to avoid social inequality, environment
problems, and low quality of life [8]. The second criterion was compatibility, a criterion for avoiding
conflicting between two LU classes and minimising the negative effects. In the current study,
compatibility would work together with the third criterion, dependency. Whereas compatibility
described the conflicting of two land uses, dependency described the attracting of two land uses.
They were chosen as additional criteria to ensure mixed use areas (will be discussed in detail in the
next section). The last criterion was suitability. This was based on the eco city form to increase the
quality of life by implementing suitability analysis for every land use class [2,7,46]. HMCEA was
used for maximizing compactness, compatibility, dependency, and suitability of four criteria functions
(F1, F2, F3, and F4) as defined in Equations (1)–(4).

F1 : Maximize

(
1
n

(
n

∑
i=1

Compactness

))
(1)

F2 : Maximize

(
1
n

(
n

∑
i=1

1
ni

ni

∑
j=1

(
Compij

)))
(2)

F3 : Maximize

(
1
n

(
n

∑
i=1

1
ni

ni

∑
j=1

(
Depij

)))
(3)

F4 : Maximize

(
1
n

(
n

∑
i=1

Suitability Score

))
(4)

where n is the number of LUs in the study area, i and j are the current LU and its neighbour respectively.
Compactness, Compij, Depij, and Suitability Score are criteria values discussed in the following sections.

2.4.1. Compactness

There are three aspects of compact city: density, mix of uses, and intensification [8]. In the
current study, compactness intended to gain the density and to avoid urban sprawl. Other criteria
(compatibility and dependency) intended to enhance another aspect, mix of uses.

The scattered nature of urban sprawl can be both costly and unsustainable [47]. Therefore,
compactness criterion was used to reduce the scattered of sprawl. It based on the fact that some LU
classes such as residential, industrial, and commercial are preferred to be in the vicinity of similar
LUs. The optimisation module used compactness to attract other similar LUs, especially in scattered
locations. Equation (5) was used to calculate compactness [9,47].

Compactness =
1
h

n

∑
i=1

Ii (5)
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where I equals one if a land use is the same as a neighbour; n is the number of LUs in class i; h is the
number of all LU inside the effectual region as shown in Figure 3. If all LUs inside region R1 have the
same class, the compactness score is maximum (one), but the other compact city criteria (compatibility
and dependency) force to enhance the mix of uses (in optimisation process) through mixing with other
appropriated LU classes in this region. This situation will decrease the compactness score but increase
overall optimum score after aggregation with other criteria.
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Figure 3. The influence region of a LU to the others. (A) Effectual Region; and (B) Fuzzy area between
R1 and R2.

The choice of R1 and R2 were based on previous studies [45] in which it was found that at a
distance of 5 to 15 km, the influence (e.g., economic, health, socio-cultural) of its neighbour was not
significant. In this study, 5 km distance was chosen for R1 and 6 km distance was chosen for R2. If a
neighbour was located between 5 km and 6 km, a fuzzy set factor was used (Equation (6)) and assumed
β = 1 (linear) for more efficient calculation [9,48].

uA
(
dij
)
=


1, dij ≤ dmin

ij(
dmax

ij −dij

dmax
ij −dmin

ij

)β

, dmin
ij ≤ dij ≤

0, dij ≥ dmax
ij

dmax
ij (6)

where uA is a membership function value (from 0 to 1) scored from the distance to its neighbour, dij;
i and j are the LU under consideration and its neighbour respectively; dmin

ij is minimum distance of the
effectual region; dmax

ij is maximum distance of the effectual region. The effectual region was used not
only for determining I variable but also the h variable in Equation (5). Compatibility and dependency
criteria (which are highly correlated to compactness criterion in supporting the mixed use of compact
city form) also used Figure 3 and Equation (6) for scoring.

2.4.2. Compatibility and Dependency

A previous study [8] showed that although compact city has been accepted as a sustainable
urban form, without mixed use areas, the effect of minimal travel distance will not be significant.
People who live in a city interact with more than one LU class to work, learn, and for other social
activities. Therefore, to achieve a sustainable urban form, one LU class needs other classes. However,
the influence of one class upon another must be considered since it is possible to create negative effects.
In the current study, compatibility, i.e., the degree to which there is a coexistence among LU classes
without a significant negative impacts, was required as criteria functions [9,49]. Dependency, which is
the amount of satisfaction with positive effects among land use classes, was also used [9].
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To describe the compatibility and dependency between LUs, the Delphi method was used as a
framework for creating compatibility and dependency matrices. This method is an iterative process to
achieve consensus among a group of experts on a particular topic and is especially useful in situations
where no standard criteria exist for evaluation [50]. Two-round Delphi survey was chosen and the
questionnaire was sent to 20 research participants (potential users, local government staff, lecturers,
and experts within the study area). Before scoring compatibility and dependency between two LU
classes, the questionnaire first explained to the research participants that two attracting LUs should
have high dependency score and vice versa. However, between two conflicting LUs, they should have
the low compatibility score and vice versa. The first-round responses were discussed, shared, and used
as a basis for second-round. The second-round questionnaire was released to the research participants
and when completed, returned for analysis. The participants were given the opportunity to change
or expand their round-one response based on previous discussion and other participants’ answer.
Various participants with their various scores might cause there were exist some LU classes having the
same scores both for compatibility and dependency after averaging. However, the results reflected
the characteristic of Bekasi city as the study area (Table 1). The levels considered for compatibility
and dependency of LUs are vhgh, high, med, low, and vlow which represented values of very high,
high, medium, low, and very low, respectively. In the implementation, these variables were converted
to numerical values of 0.428, 0.275, 0.176, 0.081, and 0.041, respectively, by following the Analytic
Hierarchy Process (AHP) conversion standard before putting them in matrix form for calculating
fitness scores [51]. Equations (7) and (8) were used for calculating the compatibility (Compij) and
dependency (Depij) of a LU.

Compij = Compcicj × µA
(
dij
)

(7)

Depij = Depcicj × µA
(
dij
)

(8)

where µA
(
dij
)

is membership function based on distance of a LU to its neighbor using a fuzzy set
(Equation (6) and Figure 3). Compcicj and Depcicj are compatibility and dependency scores, respectively,
based on Table 1. For example, if an industrial class LU has an elementary-school-LU neighbour with
distance lower than R1, it has compatibility score of vlow (0.041) based on Table 1 (shown in bold).

Table 1. Compatibility and Dependency Scores from Survey.

A. Compatibility (Comp)

LU Class 1 Com El Schl Indust Mid Schl Colg Med Sport Park Res_low Res_High

Commercial vhgh vlow high low high low vhgh vhgh vhgh vhgh
Elementary school vlow vlow 2 vhgh vhgh vhgh vhgh vhgh vhgh vhgh

Industrial vhgh vlow high vhgh vhgh vhgh vlow vlow
Middle school med vhgh vhgh vhgh vhgh vhgh vhgh

College med vhgh vhgh vhgh vhgh vhgh
Medical vlow vlow vhgh vhgh vhgh

Sport vlow vhgh vhgh vhgh
Park vhgh vhgh vhgh

resident_low vhgh vhgh
resident_high vlow

B. Dependency (Dep)

LU Class 1 Com El Schl Indust Mid Schl Colg Med Sport Park Res_Low Res_High

Commercial vhgh vlow vhgh low high vhgh vhgh vhgh vhgh vhgh
Elementary school vlow vlow vhgh high vhgh vhgh vhgh vhgh vhgh

Industrial vhgh high vhgh vhgh med vhgh low vlow
Middle school vlow vhgh vhgh vhgh vhgh vhgh vhgh

College vlow vhgh vhgh vhgh vhgh vhgh
Medical vhgh vhgh vhgh vhgh vhgh

Sport vlow vhgh vhgh vhgh
Park vhgh vhgh vhgh

resident_low vlow vhgh
resident_high vlow

1 Com, El schl., Indust, Mid schl, Colg, Med, Res_low, and Res_high are commercial area, elementary school,
industrial, middle school, college, medical, low density residential, and high density residential, respectively;
2 A sample shows the very low compatibility between elementary school and Industrial area.
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2.4.3. Suitability

A sustainable urban form is complex and considers travel distance, fuel consumption, and
other compact city characteristics [3]. This type of form should be managed to avoid environmental
and ecological degradation [2]. Hence, suitability analysis that considers other important aspects
(environment, access, and disaster risk, among others) must be used in LU optimisation to achieve
another kind of sustainable urban form, the eco-city. Figure 4 shows the process to create a
suitable region.
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(A) residential areas; and (B) commercial, industrial, health, and educational areas.

Six thematic maps were used: distance from a pollution source, distance to a road, distance
to floodplain, distance to an open space, distance to a lake/recreational area, and land price.
Weighted ratios from each thematic map were gathered from a survey and used in an overlay process.
The pairwise comparison with AHP method was used in the survey to generate weighted overlay ratio.
Nine experts (planners, lecturers, and local government staff) were chosen as research participants to
fill the questionnaire. The expert choice application was used to find the weighted overlay ratios of
Figure 4A,B. Both inconsistency scores were below 0.1 that proved the weighted overlay ratios validity
for implementation (based on AHP references) [51,52]. The weighted overlay ratio of Figure 4A for
distance to pollution, flood zone, recreation, open space, main road, and land price were 0.37, 0.275,
0.112, 0.107, 0.073, and 0.064, respectively. The weighted overlay ratio of Figure 4B for distance to roads
and flood risk were 0.77 and 0.23, respectively. Three regions were created (low suitability, medium
suitability, and high suitability) for residential areas (Figure 4A) and for commercial, industrial, health,
and educational areas (Figure 4B). The suitability analysis in Figure 4 only considered the static factors
and used other criteria, i.e., compatibility and dependency, to handle the dynamic factors (the location
of residential, commercial, industrial, medical, etc.) that would probably move when the optimisation
process run. In the current study, the scores for high, medium, and low for suitability regions were
0.428, 0.176, and 0.041, respectively.

To calculate a suitability score, every LU was checked to determine whether it was inside a low,
medium, or high suitability region. An in-polygon algorithm in Matlab software was chosen to do these
calculations [53,54]. For example, if a residential LU is inside a medium region after an in-polygon
algorithm process, the suitability score is 0.176.

2.5. Multi-Criteria and Constraint Handling

For handling multiple criteria, the current study used the aggregating function method [28].
This method is appropriate when used for comparing many scenarios. An aggregating function, F,
used a weight ratio for calculating total fitness in optimisation problem (Equations (9) and (10)),
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F = max
k

∑
i=1

wiFi(x) (9)

H = Inside Allowable Location (10)

where wi ≥ 0 are the weighting coefficients representing the relative importance of the k criteria
functions; Fi is the criteria function of criterion i from Equations (1) to (4) and H is constraint handling
based on LU class and scenario. The weighted ratio was normalised using Equation (11).

k

∑
i=1

wi = 1 (11)

As in previous research, a survey of experts was conducted to determine the appropriate weighted
ratios of the criteria function [17,23]. In the current study, the weighted ratio from the survey was
checked to ensure that no criterion dominated another. If there is no dominant criterion in a weighted
ratio, it is feasible for use. In the current study, a Pareto-front optimal set was used to test each
weighted ratio.

To create a Pareto-front optimal set, HMCEA runs several times with different weighted ratios.
Every weighted ratio had one total score and four criteria scores. After normalising criteria scores, the
Pareto-front function in Matlab software was used for sorting the non-dominant weighted ratios from
the dominant ones. The resulting set became a Pareto-front optimal set as a base for checking each
new weighted ratio to determine if it was dominant or non-dominant.

Constraint handling is also important since this study adopted constraint-based optimisation.
Previous studies [42] faced difficulties handling multiple constraints in GA. Research by [9] used
mapping of continuous particles to discrete forms to avoid some constraints in PSO. In the current
study, a death penalty was used that forced every violated candidate to its previous location. It was
chosen since it is adequate, fast and simple [36]. The penalty function was adopted an in-polygon
function in Matlab. This is an algorithm to check whether a tested point location is inside or outside a
polygon [53,54]. Constraints used in this study were based on LU class and scenario.

2.6. Scenario

Three scenarios were used for allocating predicted new LUs in 2030. These were government
policy (GP), sustainable development (SD) and business-as-usual (BAU). The scenarios were different
in regard to criteria function, constraints and weighted ratios (Table 2).

Table 2. Scenarios for LU allocation in 2030.

No Specs Scenario Criteria for
Optimisation Constraint Weight Ratio

(Comp:Dep:Compactness:Suitability)

1. Government Policy
(GP) All criteria LU zone in city plan

(2010–2030)
0.402, 0.237, 0.115, and 0.247

(from survey)

2. Sustainable
Development (SD) All criteria

Empty locations with open
space (20%) and special

location for industrial zones
following GP constraint

0.402, 0.237, 0.115, and 0.247
(from survey)

3. Business-as-usual
(BAU)

All criteria except
suitability Empty and allowable locations 0.533, 0.314, 0.153, and 0

(excluding suitability from survey)

First, the GP scenario was based on the Bekasi city LU plan (2030) which adopted a LU zoning
system [32]. This LU zoning describes the control of specific LU classes including commercial,
industrial, and residential areas [32,55]. From these zones, constraints were created for commercial,
industrial and residential classes (Figure 5A). This scenario used criteria functions similar to the SD
scenario, but only locating LUs according to appropriate zones. Secondly, the SD scenario used all
criteria functions that were sustainable development factors with two regions kept from new LU as
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constraints: the open space areas and industrial zones as constraints. In this study, open space (20 per
cent of total city area) was chosen from low suitability regions. For health issue considerations, the
SD scenario also adopted the industrial zones of GP constraint, which was only used for industrial
classes (Figure 5B). Finally, BAU scenario used empty LUs as constraints. This scenario purely used
the compact city criteria (compactness, compatibility, and dependency) without suitability criterion
(eco city criteria). Without a suitability criterion, this scenario depicts real conditions in this city
where environmental factors are usually ignored (pollution, floods, etc.) when choosing LU locations
(Figure 5C).

Using parameters in Table 2, HMCEA was run for allocating new LUs in 2030. These three
scenarios were used for analysing the effect of sustainable city criteria in optimisation and ensuring
that optimisation would occur in the future.
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2.7. Prediction of New LU (2030)

This study not only optimised the current LU but also optimised new LUs in the future
(2030) using an allocation model. This is a model that allocates every new LU to an empty and
allowable location [42]. Additional LUs in 2030 were predicted based on historical data using
a nonlinear autoregressive neural network with external input (NARXNET) module in Matlab
software. This module was based on Multilayer Perceptron Neural Network (MLPNN) that had
better performance in predicting non-linear data than other conventional methods [5]. In the current
study, the NARXNET module used one hidden layer with 10 neurons and 2 delays. Delay in NARXNET
is a parameter that uses prior trend to be trained for prediction. Previous LU data in time-series format
and population projection as external input were trained and validated in Matlab before used to predict
additional LUs in 2030. The selection of prediction year (2030) was based on the fact that the local
development authorities have prepared a land-use plan (2010–2030).

3. Results and Discussion

3.1. Pareto-Front Optimal Set

The Pareto-front optimal set was used in the current study to ensure that all criteria participated
in LU optimisation process. Figure 6 shows a Pareto-front optimal set (contained more than sixty
weight ratios) that also contains weighted ratio from the survey. Since the weighted ratio from survey
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was the member of Pareto optimal set, there was no dominant criterion in this ratio and sufficient for
simulation. Figure 6 also shows that there were conflicts between criteria. In these cases, one criterion
score was increasing while the others were decreasing. Compatibility and dependency criteria were
not conflict with each other where both criteria scores were either increasing or decreasing. Since there
is no conflict between compatibility and dependency criteria, one of these criteria is allowable to be
excluded without affecting the result and create a three-dimensional chart as shown in Figure 6 (3D plot
of three criteria). Excluding dependency is recommended since its weight is smaller than compatibility.
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3.2. Current LU Optimisation

After checking its Pareto-optimality, a weighted ratio from survey data was used for optimising
the current LU. The constraint of current LU optimisation was every empty and allowable location
within Bekasi city. It restricted HMCEA to search optimum location outside Bekasi city and protected
areas for new LUs (roads, lakes, rivers, etc.). To run the HMCEA, the existing LUs (Figure 1C) and
suitability regions (Figure 6) were imported from ArcGIS. For ecological conservation reasons, the park
class was unchanged but was still used in scoring. More than six thousand LU points were optimised
until the total fitness score reached its saturation.

Figure 7 shows an increase in the total fitness score from 2.68 to 2.785 (3.92 per cent). This current
LU optimisation was ideal since it ignored conversion cost or resistance to change factors. Despite this,
it might be difficult or impossible to follow. However, the optimised LUs can be used to depict the
spread of each of the LU classes. It also can be used to show the LU class centres for examining the
Bekasi city LU plan (2010–2030).

Figure 8A shows the optimised LUs and that they are more compact than they initially were
(Figure 1C). The simple fuzzy c-means clustering (FCM) method in Matlab software was used for
clustering three important LU classes in the city plan, i.e., the residential, commercial, and industrial
classes. Figure 8B shows three high and low density centres of the residential class. This residential
class became denser and was located inside the high density residential zone called for by government
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policy. The residential centres might be appropriate for vertical buildings, which has been stated in
the city plan (vertical building should be done in the high density region) [32]. Figure 8C shows six
commercial centres with one centre that is a more densely commercial LU. The denser LUs can be used
as a central business district and the others as sub-central business districts. Though these plans might
be difficult or impossible to implement, the centres can be used for guiding the LU zones.
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3.3. LU Allocation in 2030

Table 3 shows the prediction results using the NARXNET module for allocation in 2030.
The number of LUs tended to gradually increase except for parks and the low density residential class.
Additional LU predictions in 2030 (as shown in Table 3 in italic) will be optimised based on three
scenarios using HMCEA.

Table 3. LU growth projection with population as an external input.

No LU Class 1
Year

2003 2006 2009 2012 2015 2018 2021 2024 2027 2030 2

1 Com 245 276 309 325 344 355 367 375 385 433 (89)
2 Medical 87 92 101 107 118 121 126 130 135 151 (33)
3 Sport 19 23 24 24 26 27 28 30 32 35 (9)
4 HD Res 2122 2217 2262 2282 2326 2379 2412 2420 2434 2677 (351)
5 Industrial 118 131 139 149 154 167 174 190 201 228 (74)
6 LD Res 1446 1481 1580 1539 1537 1362 1191 1028 871 478
7 College 35 35 37 38 38 40 39 40 41 46 (8)
8 Mid Sch 202 203 203 206 207 210 211 211 212 222 (15)
9 Elem Sch 270 270 272 272 273 271 272 273 2721 276 (3)

10 Park 1904 1904 1887 1858 1772 1805 1775 1767 1747 1669
Population (millions) 1.88 2.08 2.32 2.52 2.73 3.01 3.13 3.40 3.53 3.76

1 Com, HD Res, LD Res, Mid Sch, and Elem Sch represent commercial, high density residential, low density
residential, middle school, and elementary school respectively; 2 Numbers in italic shows the additional LUs in
2030 from 2015.

Figure 9 shows fitness scores of the three scenarios after 38 optimisation runs. In 2015 all fitness
scores were similar (2.68) and decreased when additional LUs were randomly added. HMCEA
optimised LUs until it reached the saturation value with the fitness scores for GP, SD, and BAU
scenarios of 2.676, 2.683, and 2.643, respectively. Figure 9 also shows that additional LUs tend to lower
the fitness scores, although LU optimisation has been implemented as a signal for city government to
control LU growth, except the SD scenario (0.11 per cent above the initial fitness score in 2015).
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The BAU scenario only used purely compact city criteria (excluding suitability criterion) in LU
optimisation and had smallest fitness score since the final process suitability was also used in scoring.
GP and SD scenarios had the same use of criteria functions, but the GP scenario had limited locations
for LU candidates because it must follow LU zoning. This might be the source of its lower fitness
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score. After LU optimisation, the result was exported from Matlab into a shapefile for analysis of the
optimisation results using a GIS tool.

As shown in Figure 10, the SD scenario had not only a higher fitness score but also wider open
spaces. New residential LUs spread in south-west region can be considered as a high density residential
zone in next city plan (2030–2050).
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3.4. The Influence of Compact City, Eco City and LU Zoning in Optimisation

The current study only used two kinds of sustainable urban form as a foundation: compact
city and eco city. However, these forms were successfully used for LU optimisation with their
four indicators as criteria function. From the compact city form, compactness, compatibility, and
dependency criteria were used not only for increasing the density of the LUs but also ensuring the
diversity of LUs in a region. This situation would reduce the fuel consumption and make people walk
or use other green transportations.

Eco-city form needs a suitability analysis to check the suitability of an LU regarding the
environment factors such as pollution, water, vegetation, disaster risk, etc. With the ratio of 0.247, the
suitability criterion has a significant impact on the sustainability score in the study area. BAU scenario
had lower sustainable score than the other scenarios because it did not use suitability criterion in its
criteria function (Figure 9). SD scenario only had slight advantage compared to GP scenario which
adopted LU zoning. Zones acted as constraints that limit the searching area in optimisation. It caused
the lower sustainable score compared to SD scenario. However, since the LU zones within the study
area was created after suitability analysis by city planners [32], the effect of limited searching area
was not too significant. Figure 10 suggested the allocation of future new LUs because of LU growth
based on three scenarios that useful for planning. Maintaining the open space and park, locating the
vertical building, new high-density residential areas, and new industrial location are the main task of
city planners for the next city plan (2030–2050).

3.5. Limitations

The current study has some limitations. Firstly, despite this research only used four criteria for
LU optimisation, they have represented the compact city and eco city indicators. However, additional
criteria might be useful to add. Secondly, the HMCEA has successfully handled ten LU classes. Some
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more specific classes might be involved in optimisation for illustrating the optimised LUs in detail.
For example, commercial areas might be divided into modern market, traditional market, services,
etc. Thirdly, the current research did not consider the street-block structure as LU class since they
have already been established around Bekasi city. Fourthly, residential LU approximation in this study
might reduce the accuracy. Therefore, additional LU optimisation for higher resolution scale (below
1:20,000 scales) or sub-district region might be useful. Finally, optimising and analysing the other
regions around Bekasi city (Bogor and Bekasi regency) should be conducted since they might affect
Bekasi city, especially for residential LU class.

4. Conclusions

This study has shown that LU optimisation can be used to achieve a sustainable urban structure as
a path to a sustainable form. Despite difficult to follow the optimisation result, current LU optimisation
found centres of important LU classes within the study area that can be used for analysing the current
city plan (2010–2030). Four sustainable city criteria were successfully optimised using HMCEA for
the present (2015) and future LU (2030). Future LU optimisation allocated new LUs in 2030 and can
be used as a tool for revising and preparing the next city plan (2030–2050). The SD scenario, which
only used sustainable city criteria, showed a better result compared to GP (combined with LU zoning)
and BAU scenarios (without suitability criterion). Although the sustainability of the compact city is
still being debated, its combination with the other sustainable urban forms might be more reliable.
The results of proposed LU optimisation could help planners in considering the relations among LUs
since they are difficult to calculate manually. Additionally, the results can be used to quantitatively
analyse other urban forms (centrism or decentrism) or other kinds of regions such as peri-urban, rural,
desert, and forests.
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