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Abstract: Power generation industry is the key industry of carbon dioxide (CO2) emission in China.
Assessing its future CO2 emissions is of great significance to the formulation and implementation of
energy saving and emission reduction policies. Based on the Stochastic Impacts by Regression on
Population, Affluence and Technology model (STIRPAT), the influencing factors analysis model of CO2

emission of power generation industry is established. The ridge regression (RR) method is used to
estimate the historical data. In addition, a wavelet neural network (WNN) prediction model based
on Cuckoo Search algorithm optimized by Gauss (GCS) is put forward to predict the factors in the
STIRPAT model. Then, the predicted values are substituted into the regression model, and the CO2

emission estimation values of the power generation industry in China are obtained. It’s concluded
that population, per capita Gross Domestic Product (GDP), standard coal consumption and thermal
power specific gravity are the key factors affecting the CO2 emission from the power generation industry.
Besides, the GCS-WNN prediction model has higher prediction accuracy, comparing with other models.
Moreover, with the development of science and technology in the future, the CO2 emission growth in
the power generation industry will gradually slow down according to the prediction results.

Keywords: CO2; STIRPAT; power generation industry; wavelet neural network; Gauss optimization
cuckoo algorithm

1. Introduction

According to the International Energy Agency, even though the global economy continued
to grow in 2016, carbon dioxide (CO2) emissions remained stable with no significant increase
since 2015. This is closely related to the development of energy-saving technologies and the continuous
development of clean energy. In 2016, the proportion of thermal power generation in China dropped
to 74.4%. Besides, the proportion of low carbon power generation, such as hydropower, wind power,
has gradually increased. According to the “13th Five-Year Plan” of power industry released by National
Energy Administration of China, it is estimated that by 2020, clean energy power generation will
further occupy space for thermal power generation and thus reduce CO2 emissions [1]. Electrical
energy, as a kind of clean energy, do not produce any CO2 during use and transportation. But in
the production and transmission and distribution facilities construction process, there will be CO2

emissions, and mainly concentrated in the production process [2].
In order to improve the accuracy of CO2 emission prediction in power generation industry and

help to draw up more scientific carbon emission policy, it is necessary to establish a more precise CO2

emission prediction model for power generation industry. Some scholars predict the CO2 emission
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from the power generation side from the perspective of the whole life cycle [3]. They consider the CO2

emissions, not only from the power plants in the production process, but also from the construction
of the power plants to the scrapped ones. In addition, the Stochastic Impacts by Regression on
Population, Affluence and Technology (STIRPAT) model is applied to the analysis of the impact of CO2

emissions [4–7]. The STIRPAT model attributes the change in CO2 emissions to the combined effect of
three factors: population size, economic level and level of technological development [8–10]. After the
CO2 emission, population, per capita Gross Domestic Product (GDP), the corresponding level of
technology data were regressed and fitted, the regression model of CO2 emission factors in this region
can be obtained. This model can scientifically and quantitatively reflect the impact of each major factor
on CO2 emissions [11]. However, in regression estimation of the model, the common least-squares
regression is prone to multiple collinear defects. This leads to poor regression results and difficulties
in achieving expectations. The use of ridge regression can reduce the effect of multicollinearity to
a certain extent [12]. Many scholars have conducted research on the choice of prediction model.
Yue Y et al. apply the Back Propagation (BP) neural network model to detect and monitor land
degradation [13]. Kumar U et al. apply Grey-Markov model, Grey-Model with rolling mechanism,
and singular spectrum analysis (SSA) to forecast the consumption of conventional energy in India [14].
The GM-ARIMA model, the GM (1, 1) model, and the ARIMA model are used to predict the energy
demand of Shandong province [15]. A model to predict the strength of RSC is established using a
least squares-support vector machine (LS-SVM) through grid search algorithm and Support Vector
Machine (SVM) model [16]. However, the original algorithm of the above model cannot meet the
precision demand of modern prediction. More and more optimization algorithms are also applied
to the parameter optimization of prediction models [17–20]. The Wavelet Neural Network (WNN)
model is proposed for the prediction of micro-grids [21]. On the basis of adding Cuckoo Search (CS)
algorithm to optimize, it can further improve the prediction accuracy [22].

To sum up, the research scope of the existing research is relatively narrow. Additionally, the
above models have not been well integrated into problem-solving. What is more, the existing CO2

emission prediction model cannot take many factors into account, and the precision is not high enough.
This paper combines STIRPAT model with intelligent algorithm innovatively. At the meantime,
influence factors of CO2 emission from power generation industry are analyzed based on STIRPAT
model. On the basis of the established model, GCS-WNN model is used to predict the influence factors.
And the future CO2 emission expectation on the power generation industry is got by plugging the
forecasted result into the STIRPAT model.

2. Materials and Methods

2.1. STIRPAT Model

The IPAT model was first proposed by Professor Elich at Stanford University in the United
States in the 1970s [23]. This model studies the factors that affect the environment. They believe that
population size (P), per capita wealth (A) and technology level (T) are the most important factors
affecting the environment (I), and the formula I = PAT is proposed [24].

Of course, there are many factors that affect the environment, but other factors except the
above-mentioned are not the most important and direct. Those factors can indirectly affect the
environment through direct factors such as population size, per capita wealth and technological
level [25].

However, due to the limitation of the IPAT model, the variables in the model vary linearly with
the proportions. In 1994, York et al. proposed the Stochastic Impacts by Regression on Population,
Affluence and Technology (STIRPAT) model based on the IPAT [26,27]. The STIRPAT model preserves
the multiplication structure of the IPAT model, taking population, wealth and technology as the key
factors affecting the environment. The STIRPAT model equation is as follows:

I = aPb AcTde (1)
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where I represents the impact on the environment, P means population size, A means wealth,
T represents technical factors, and e is model error [28]. Before using the model, the logarithm
of the two sides of the equal sign is obtained:

ln I = a + b ln P + c ln A + d ln T + e (2)

2.2. Ridge Regression

Ridge regression (RR) is a biased estimation regression method that is used exclusively for
collinearity data analysis [29]. In essence, it is an improved least square estimation method. RR is a
more realistic and reliable regression method to get the regression coefficient by giving up unbiased
characteristics, losing some information and reducing accuracy [30]. The fitting of RR to ill conditioned
data is better than that of least squares [31]. For the multivariate linear regression model Y = Xβ + ε,
the least-squares estimator of parameter β is:

β̂ = (X′X)
−1X′Y (3)

However, when the multicollinearity exists, the least square parameter estimation is singular.
Some characteristic roots are close to 0, and there is a large deviation between the estimated values
and the observed ones. Thus, the traditional least squares estimation is not reliable enough. And RR
adjusts the estimate to:

β̂(k) = (X′X + kI)−1X′Y (4)

where I represents the unit matrix, k is the ridge parameter. When k = 0, the ridge estimate β̂(0) is the
least-squares estimation. When k varies between [0, ∞), β̂(k) is a function of the ridge parameter k.
Multiple function curves are plotted in a graph as a ridge plot. Finally, the k value which makes the
β̂(k) value stable is chosen as the ridge parameter.

2.3. Wavelet Neural Network Prediction Model

Wavelet Neural Network (WNN) is a new type of feed-forward network, which combines
the wavelet transform with neural networks and uses the nonlinear wavelet base function as the
transfer function in the hidden layer, which is able to realize signals forward-propagation and
error back-propagation simultaneously [32,33]. The wavelet function is obtained by the translation
and expansion of its mother wavelet, and the signal can be decomposed into a series of wavelet
functions [34]. After shifting the base wavelet function ψ(t) by τ, multiply it with the target signal at
different scales, namely:

fx(a, τ) =
1√
a

∫ ∞

−∞
x(t)ψ(

t− τ

a
)dt, a > 0 (5)

where τ represents the parallel movement of the target, a refers to adjusting the distance from the
target. The graph of WNN structure is illustrated in Figure 1.
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Where x1, x2, . . . , xn represent the input value of WNN, y1, y2, . . . , ym represent the output value
of WNN, weight values are wij and wjk. The output of the hidden layer is:

h(j) = hj


k
∑

i=1
wijxi − bj

aj

, j = 1, 2, · · · , l (6)

The output of the hidden layer node j is h(j), wij is the weight of the input and the hidden layer,
the translation factor of the wavelet basis function hj is expressed by bj, and the scaling factor is
expressed by aj. The output layer is calculated as:

y(k) =
l

∑
j=1

wjkh(j), k = 1, 2, · · · , m (7)

where wjk is the weight of the input layer and the hidden layer.
WNN is also able to keep the neural network close to the expected data output by gradient

modifying parameters of the base wavelet function and the neural network weights [35]. Assume that
the network error is e, the expected output is yn(k), and the actual prediction value is y(k), namely,

e =
m

∑
k=1

yn(k)− y(k) (8)

Then the following equations can be obtained.

∆wi+1 = −µ
∂e

∂wi (9)

∆bi+1 = −µ
∂e
∂bi (10)

∆ai+1 = −µ
∂e
∂ai (11)

where µ represents the learning rate, and the revised parameters can be obtained by plugging µ into
the following formulas.

wi+1 = wi + ∆wi+1 (12)

bi+1 = bi + ∆bi+1 (13)

ai+1 = ai + ∆ai+1 (14)

2.4. Gauss Optimized Cuckoo Search Algorithm

2.4.1. Cuckoo Search Algorithm

The Cuckoo Search (CS) algorithm can search the optimization much faster and more accurately
by simulating the cuckoo searching for the random walking process of the egg laying hosts [36].
According to Yang et al.’s research, the Cuckoo Search algorithm has the following three rules [37]:

(1) The number of eggs produced by a cuckoo per time is 1.
(2) The host bird’s nest where high-quality eggs are located is the optimal solution and will be

retained for the next generation.
(3) The number of host nests is certain, and the probability that cuckoo eggs are found by nest

owners is Pa ∈ [0, 1].
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During the search, cuckoo’s flight search path follows the Lévy distribution [38,39], namely:

x(t+1)
i = x(t)i + α⊕ L(λ), i = 1, 2, · · · , n (15)

In the formula, x(t+1)
i and x(t)i are the bird’s nest positions of the (t + 1)-th and the t-th generation,

n is the number of cuckoo, ⊕ is the dot multiplication and L(λ) is the Lévy flight path. The relation
between searching path and time is as follows:

L(λ) ∼ u = t−λ(1 < λ ≤ 3) (16)

2.4.2. Gauss Optimization

In the traditional CS algorithm, the probability of finding cuckoo eggs and the step size α of
position updating are fixed values, which leads to the problems of the weak global search ability, slow
convergence speed and low precision of the algorithm [40]. Therefore, an improved cuckoo algorithm
is proposed in this paper to update the values of Pa and α dynamically. According to references, where
the updating process is as follows:

Pa(t) = Pamax −
t(Pamax − Pamin)

N
(17)

α(t) = αmaxe
ln( αmax

αmin
)×t

N (18)

In the formula, t and N are the number of current iterations and the total number of iterations,
Pamax and Pamin are the maximum and minimum values of the detection probability, αmax and αmin are
the maximum and minimum step coefficients, respectively.

However, due to the lack of search vitality and slow speed of CS algorithm, the optimization
ability of CS algorithm can be improved effectively by adding Gauss perturbation. Assuming that
the optimal location of the nest x(i)i , (i = 1, 2, · · · , n), is obtained after the calculation of t times CS

iterations. In order to prevent the next iteration of x(i)i and maintain the Gaussian disturbance, the next

phase of x(i)i is searched. Supposed that the matrix pt = [x(t)1 , x(t)2 , · · · , x(t)n ]
r

is made up of the better

position x(i)i of the bird’s nest, x(i)i is a d-dimensional vector, and the dimension of pt is d × n. Matrix
pt combined with Gaussian perturbation is the basic step of GCS algorithm [41], namely:

pt = pt + a⊕ ε (19)

where ε is a random matrix with the same order of pt, which follows N(0, 1) distribution and a is
constant. In the search for a better nest position vitality at the same time, the position of the bird’s nest
can be overextended easily because of the large random range of ε.

Therefore, the selection of suitable a is particularly important. After obtaining a reasonable set of
pt
′ and comparing it with each nest in pt, only a better nest position is reserved to obtain a better set of

nest positions pt
′.

2.5. The Prediction Model of RR-STIRPAT-GCS-WNN

The emission of CO2 in power generation industry is mainly affected by population, per capita
GDP, standard coal consumption, proportion of thermal power and other factors. The forecasting steps
are as follow:

(1) Data collecting and processing

Collect the historical data of population, per capita GDP, standard coal consumption, proportion
of thermal power from 1996–2016.
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(2) Establish regression model

Use the logarithm of historical data to establish regression model between the influencing factors
and the CO2 emission in power generation industry based on STIRPAT by ridge regression method.

(3) Prediction model training

Initialize parameters of prediction model. The input layer node is set as 2, while the hidden layer
node is 2× 2 + 1 = 5, and the output layer node is 1. The weight value, translation factor and expansion
factor of the wavelet base are randomly generated. In this study, the learning rate is set as 0.1, while
the number of iterations is 500, and the prediction accuracy is 0.99.

Then train the prediction model by plugging the historical data into the model and search the
best parameter by using the Gauss Optimized Cuckoo Search Algorithm. Firstly, set the Nnest (number
of birds’ nest) as 30, while Pa (probability of bird’s eggs by bird’s nest owner) is 0.2, and N (number
of iterations) is 200. After that, randomly generate Nnest bird nest location W = (W1, W2, ..., Nnest) T.
And each bird nest Wi has s parameters (s = the number of weights between input layer and hidden
layer + the number of weights between hidden layer and output layer + the number of translation
factors + the number of expansion factors). The predicted values of each bird’s nest were calculated,
and the nest which has the smallest error in the 30 nests is found, marked as Wbest. Then Wbest retain to
the next generation.

(4) Prediction of CO2 Emission

Use the RR-STIRPAT-GCS-WNN model to forecast the CO2 Emission in Power generation industry
based on the historical data of population, per capita GDP, standard coal consumption and proportion
of thermal power. The flow chart of this model is shown in the Figure 2.

Sustainability 2017, 9, 2377  6 of 15 

(1) Data collecting and processing 

Collect the historical data of population, per capita GDP, standard coal consumption, proportion 
of thermal power from 1996–2016. 

(2) Establish regression model 

Use the logarithm of historical data to establish regression model between the influencing factors 
and the CO2 emission in power generation industry based on STIRPAT by ridge regression method.  

(3) Prediction model training 

Initialize parameters of prediction model. The input layer node is set as 2, while the hidden layer 
node is 2 × 2 + 1 = 5, and the output layer node is 1. The weight value, translation factor and expansion 
factor of the wavelet base are randomly generated. In this study, the learning rate is set as 0.1, while 
the number of iterations is 500, and the prediction accuracy is 0.99.  

Then train the prediction model by plugging the historical data into the model and search the 
best parameter by using the Gauss Optimized Cuckoo Search Algorithm. Firstly, set the Nnest (number 
of birds’ nest) as 30, while Pa (probability of bird’s eggs by bird’s nest owner) is 0.2, and N (number 
of iterations) is 200. After that, randomly generate Nnest bird nest location W = (W1, W2, ..., Nnest) T. And 
each bird nest Wi has s parameters (s = the number of weights between input layer and hidden layer 
+ the number of weights between hidden layer and output layer + the number of translation factors 
+ the number of expansion factors). The predicted values of each bird’s nest were calculated, and the 
nest which has the smallest error in the 30 nests is found, marked as Wbest. Then Wbest retain to the next 
generation. 

(4) Prediction of CO2 Emission 

Use the RR-STIRPAT-GCS-WNN model to forecast the CO2 Emission in Power generation 
industry based on the historical data of population, per capita GDP, standard coal consumption and 
proportion of thermal power. The flow chart of this model is shown in the Figure 2.  

START

Historical data

Data preprocess

P A T1 T2

Data prediction 

P` A` T1` T2`

RR-STIRPAT

Prediction results 
of CO2 emission

END

Initialization of 
WNN model

 Generate a group of bird's 
nest positions Wi randomly

Calculate the prediction  
values under parameters of 

different bird nest 

Retain nest position 
Wbest with smaller 

error

Obtain W` by adding the 
Gaussian distribution vector 

to the more optimal nest 
position

Set the nest position 
with smaller error  as 
Wbest by comparison

Update the nest 
position 

according to 
formula (17) 

Achieve the 
precision target?

NO

Optimal parameters 
of WNN model 

YES

Ridge Regression

Data prediction process

 
Figure 2. The flow chart of ridge regression Stochastic Impacts by Regression on Population, 
Affluence and Technology Gauss Cuckoo Search Wavelet Neural Network (RR-STIRPAT-GCS-
WNN) model. 

Figure 2. The flow chart of ridge regression Stochastic Impacts by Regression on Population, Affluence
and Technology Gauss Cuckoo Search Wavelet Neural Network (RR-STIRPAT-GCS-WNN) model.



Sustainability 2017, 9, 2377 7 of 15

3. Results

3.1. Analysis on Influencing Factors of CO2 Emission in Power Generation Industry

Based on the scholars’ research on the influencing factors of CO2 emission in power generation
industry and the basic framework of STIRPAT model, 4 factors, such as population scale (million
people), per capita GDP (yuan), standard coal consumption (g/kWh), and thermal power specific
gravity (%), are considered as the key factors affecting the CO2 emission from the power generation
industry. The above factors are introduced into the STIRPAT model:

ln I = a + b ln P + c ln A + d ln T1 + e ln T2 + f (20)

where I represents CO2 annual emissions, P means population size, A is per capita GDP, T1 is power
supply standard coal consumption, T2 is proportion of thermal power, b, c, d, e are various coefficients.
According to the concept of elasticity, b, c, d and e represent the elastic coefficients of each index when
both sides of the equation take partial derivatives at the same time. The raw data is shown in Table 1.

Table 1. Raw data.

Year CO2 Annual Emissions
(million tons)

Population
(million people)

Per Capita
GDP (yuan)

Standard Coal
Consumption (g/kWh)

Proportion of
Thermal Power

1995 915.36 1211.21 5091 412 0.795
1996 1005.78 1223.89 5898 410 0.813
1997 1022.69 1236.26 6481 408 0.815
1998 1021.78 1247.61 6860 404 0.795
1999 1053.64 1257.86 7229 399 0.798
2000 1082.86 1267.43 7942 392 0.822
2001 1145.20 1276.27 8717 385 0.799
2002 1300.08 1284.53 9506 383 0.809
2003 1542.09 1292.27 10,666 380 0.827
2004 1822.60 1299.88 12,487 376 0.815
2005 2036.69 1307.56 14,368 370 0.819
2006 2321.18 1314.48 16,738 367 0.827
2007 2538.77 1321.29 20,505 356 0.830
2008 2625.22 1328.02 24,121 345 0.805
2009 2793.57 1334.50 26,222 340 0.803
2010 3099.39 1340.91 30,876 333 0.792
2011 3537.78 1347.35 36,403 329 0.813
2012 3600.12 1354.04 40,007 326 0.781
2013 3749.21 1360.72 43,852 321 0.789
2014 3904.66 1367.82 47,203 318 0.752
2015 4042.31 1374.62 50,251 318 0.737
2016 4162.96 1382.71 53,817 312 0.716

According to the data in the table, after taking the logarithm of the indicators, SPSS software is
used to achieve the least squares regression model based on STIRPAT. The regression results are shown
in Tables 2–4.

Table 2. Model Summary.

Model R R2 Adjusted R2 Std. Error of the Estimate

1 0.996 0.992 0.991 0.05326

Table 3. ANOVA.

Model Sum of Squares df Mean Square F Significance (Sig.)

1
Regression 6.299 4 1.575 555.098 0.000
Residual 0.048 17 0.003

Total 6.347 21
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Table 4. Coefficients.

Model
Unstandardized Coefficients Standardized Coefficients

t Sig.
Collinearity Statistics

B Std. Error Beta Tolerance VIF

1

(Constant) −16.678 21.648 −0.770 0.452
ln P −0.547 1.529 −0.039 −0.358 0.725 0.038 26.232
ln A 1.227 0.205 1.770 5.995 0.000 0.005 194.998
ln T1 4.020 1.665 0.695 2.413 0.027 0.005 185.319
ln T2 1.191 0.424 0.081 2.813 0.012 0.533 1.878

According to the regression results, the regression coefficient of the model is 0.992, the adjustment
coefficient is 0.991, and the F value is 555.098. It shows that the equation passed the significance test
and the fitting effect is good. However, the variance expansion factor VIF is greater than 10 except for
ln T2, indicating the possibility of multicollinearity. Therefore, the collinearity tests were performed,
and the results are shown in Table 5.

Table 5. Collinearity diagnosis.

Model Dimension Eigenvalue Condition Index
Variance Proportions

(Constant) ln P ln A ln T1 ln T2

1

1 4.976 1.000 0.00 0.00 0.00 0.00 0.00
2 0.020 15.721 0.00 0.00 0.00 0.00 0.48
3 0.004 36.975 0.00 0.00 0.01 0.00 0.33
4 9.050 × 10−7 2344.946 0.03 0.15 0.98 0.79 0.03
5 1.718 × 10−7 5382.577 0.97 0.85 0.01 0.21 0.15

According to the result of collinearity diagnosis, 4 of the 5 eigenvalues are close to 0, the maximum
condition number is 5382.577. It is shown that the equation has multicollinearity characteristics.
In order to solve the problem of multicollinearity without reducing the number of variables, the ridge
regression method is applied to solve the multiple collinearity considering the few variables of the
model. The ridge trace is shown in Figure 3.
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It can be seen from the above figure that when k = 0.4, the ridge parameter is basically stable,
at this time R2 is still relatively large. Therefore, k = 0.4 is determined as ridge parameter for regression.
Ridge regression results are shown in Tables 6–8.
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Table 6. Ridge Regression with k = 0.4.

Mult R R2 Adjusted R2 SE

0.9801579272 0.9607095623 0.9514647534 0.1211139063

Table 7. ANOVA.

df SS MS F Value Sig. F

Regress 4.000 6.097 1.524 103.9188127 0.0000000
Residual 17.000 0.249 0.015

Table 8. Variables in the Equation.

B SE(B) Beta B/SE(B)

ln P 3.92423625 0.30690079 0.27792333 12.78666051
ln A 0.21204247 0.01169894 0.30586681 18.12492455
ln T1 −1.65055241 0.09696411 −0.28521636 −17.02230296
ln T2 −0.16815311 0.51870654 −0.01150223 −0.32417772

Constant −26.39759673 3.47936456 0.00000000 −7.58690166

As can be seen from the above table, R2 = 0.9607 and F = 103.9188 at k = 0.4, the equation passes
the significance test and no longer exists multicollinearity. It shows that the model established by ridge
regression is reasonable, and the regression equation is as follows:

ln I = 3.9242 ln P + 0.212 ln A− 1.6506 ln T1 − 0.1682 ln T2 − 26.3976 (21)

3.2. Prediction of CO2 Emission in Power Generation Industry

3.2.1. Prediction of Influencing Factors Based on GCS-WNN

Based on the historical data of population, per capita GDP, standard coal consumption and proportion
of thermal power from 1995 to 2016, historical data were trained and predicted by using GCS-WNN model,
WNN model and GCS-SVM model respectively. The prediction results are shown in Figure 4.

By comparing the model predictions in Figure 4, it can be seen that the prediction accuracy of
the GCS-WNN model is the highest among all the indicators, which is basically consistent with the
original data. Therefore, the GCS-WNN model can be used to predict the future population, per capita
GDP, standard coal consumption, proportion of thermal power and other indicators.

The prediction results of CO2 emission were obtained by plugging the predicted values of each
influencing factor into the established RR-STIRPAT model. The prediction results are shown in the Figure 5.
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According to the Figures 5 and 6, the prediction accuracy of GCS-WNN model is the highest,
which has best fitting effect with the original data. It shows that the RR-STIRPAT-GCS-WNN model is
accurate and scientific in the prediction of CO2 emission.
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3.2.2. Prediction of CO2 Emission Based on RR-STIRPAT Model

On the basis of historical data, GCS-WNN is used to predict 2018–2022 years population, per
capita GDP, standard coal consumption, proportion of thermal power and other indicators. The results
are shown in Table 9.

Table 9. Prediction results of influencing factors.

Year Population
(million people)

Per Capita
GDP (yuan)

Standard Coal
Consumption (g/kWh)

Proportion of
Thermal Power

2018 1379.12 59,894 307.4795 0.6879
2019 1380.15 61,761 304.9642 0.6698
2020 1381.56 64,597 301.4681 0.6514
2021 1383.69 66,717 299.1497 0.6498
2022 1385.14 69,486 297.3476 0.6389
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The prediction results of CO2 emissions in power generation industry in 2018–2022 years could
be obtained by plugging the results of each factor into the RR-STIRPAT model. The prediction results
are shown in Table 10 and Figure 7.

Table 10. Prediction of CO2 emission.

Year CO2 (Unit: million tons)

2018 4347.48
2019 4468.63
2020 4638.16
2021 4760.55
2022 4883.71
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It can be seen from the Table 10 and Figure 7 that during the period of 2018–2022, the CO2

emissions from the power generation industry will still keep rising. However, the growth rate of CO2

emission will continue to decline due to the slowdown of population growth, the drop of standard
coal consumption and the decrease of the proportion of thermal power in the future.

4. Discussion and Conclusions

Greenhouse gas emissions, represented by CO2, have led to a rise in global temperatures. Power
generation industry is one of the key industries of CO2 emissions. To achieve the purpose of controlling
CO2 emissions, it is necessary to scientifically and quantitatively predict the CO2 emissions of power
generation industry.

(1) The CO2 emission of power generation industry is affected by many factors. It is concluded that
the key factors that directly affect CO2 emissions are population, per capita GDP, standard coal
consumption and proportion of thermal power.

(2) Based on the STIRPAT model, the CO2 emission factors analysis model of power generation
industry is established. Besides, the collinearity test of the model shows that if the ordinary least
squares algorithm is applied, the multicollinearity will be serious. However, the ridge regression
method can solve this problem to a certain extent.

(3) The WNN model is used to predict the influencing factors. In order to improve the convergence
speed and prediction accuracy of the model, Gauss optimized cuckoo search algorithm is added
into the model parameter optimization. Compared with other models, it is found that the
optimized model has higher prediction accuracy.
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(4) The GCS-WNN model is used to predict the population, per capita GDP, standard coal
consumption and the proportion of thermal power in the past 2018–2022 years. The predicted
results of each factor are plugged into the RR-STIRPAT model, and finally the CO2 emission
prediction value of 2018–2022 years power generation industry is obtained. It is predicted that the
CO2 emission from the power generation industry will increase gradually in the next five years.
However, with the slowdown of population growth and the development of power generation
technology, CO2 emissions in power generation industry will grow slower and slower.

The advantages of the prediction model in this paper includes that the prediction precision is
much higher and more scientific factors are taken into account. But limited to the availability of data,
the factors considered in this study are not all-round, which also restricts the application of intelligent
algorithms. In future research, we will continue to explore more accurate prediction methods and
propose more scientific prediction models.
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