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Abstract: This study presents data envelopment analysis (DEA)-based systematic and simultaneous
performance measures for research and business development (R&BD) and internal processes.
In particular, we focus on the relationship between the research and development (R&D) process and
business development (BD) process in evaluating R&BD overall performance, and provide effective
guidelines for relatively underperforming decision-making units to help them establish an optimal
strategy to increase their performance. To that end, we develop a two-stage network DEA model
based on performance measures by defining variables and transforming R&D and BD performances
into a serial network structure. In addition, based on the proposed method, we present a practical
application of R&BD performance measurement for Korean public organizations, specifically public
research institutes and universities.
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1. Introduction

Technological innovation is an essential element for evaluating an organization’s national and
business superiority in modern society, in which new products and services are widely developed
through technological innovation activities such as development and the procurement of new
technologies (Mojaveri et al. [1] and Roxas et al. [2]). In this environment, domestic and overseas
research and development (R&D) investments have been gradually increasing to pursue more reading
technological innovations. Companies’ R&D strategies maximize the return on investment in R&D by
managing individual projects as a portfolio. However, due to the rapid development of technology
and customer needs, product requirements are becoming more advanced, and product life is rapidly
decreasing. As a result, research and business development (R&BD) has emerged for overcoming
the current status of R&D. R&BD is a system that examines the feasibility of a project from the initial
stage of R&D and sets up and adjusts the research direction for each stage until a product can finally
be commercialized. Before the introduction of the R&BD concept, there were the concepts of the
early market and the mass market. Early adapters who emphasized innovation led the early market,
and businesses developed advanced technologies and products based on the customer’s perspective.
On the other hand, general customers who valued practicality led the mass market. Before entering
a market, companies first look at whether there is an unfulfilled demand. In the research market,
for example, even the countless existing technologies cannot help companies fulfill the demand.
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Therefore, it is necessary to establish an R&BD strategy that reflects customer-oriented needs from a
company’s technology center.

The development of R&D performance evaluation is one of many important areas for effective
and efficient R&D investments, and a variety of performance evaluation indexes and techniques have
been developed and utilized (Kerssens-van Drongelen et al. [3]). Researchers have widely studied
R&D performance evaluation based on multiple R&D inputs and outputs, and to this end, widely
utilized Charnes et al.’s concept of data envelopment analysis (DEA) [4]. DEA is a linear programming
methodology that evaluates the relative performances of decision-making units (DMUs) using a set of
inputs to produce a set of outputs. With DEA, each DMU is evaluated by comparing its performance
with those of other DMUs in its peer group. Several DEA-based R&D performance evaluations have
been studied. Anderson et al. [5] proposed a DEA-based relative performance assessment model and
benchmarking methodology for UK university technology transfer offices. Wang and Huang [6] used
the production framework associated with DEA to measure the relative efficiency of R&D, with R&D
capital stocks and manpower as input variables, and patents and publications as output variables.
Sharma and Thomas [7] provided a DEA-based relative R&D performance model using input variables
such as domestic expenditure and the number of researchers, and output variables such as patents
granted to residents. In their study, Japan, Korea, and China were selected as the most efficient countries
under the constant return to scale (CRS) model, and Japan, Korea, China, India, Slovenia, and Hungary
were selected as the most efficient countries under the variable return to scale (VRS) model. Hsu and
Hsueh [8] provided a three-stage DEA model that measures R&D productivity at the national level
to provide R&D policy implications that reflect the operational level of DMUs. In order to measure
R&D productivity for the R&D policies of Asian countries, the research categorized the 27 countries
into four groups: inventors, merchandisers, academicians, and duds, and identified the characteristics
with respect to R&D performance. Lee et al. [9] measured and compared the performances of national
R&D programs utilizing a network DEA model. They provided policy implications for national R&D
programs by removing the bias caused by organization scale to identify the strengths and weaknesses
of each organization. For discrimination, the centrality value for each frontier organization provided
the base. Kim [10] analyzed the productivity of universities in technology transfer using multiple
input–output combinations and DEA, and found that the universities’ technology transfer rate was
relatively efficient in terms of input-to-output quantities. The data indicated that an increasing number
of commercial outputs had made a positive shift in their productivity, and therefore, universities may
stimulate commercial activities.

However, the above-mentioned studies on DEA-based R&D and R&BD performance evaluation
have a limitation in that they did not consider the economic value that the technology transfer created
and business development (BD) (which refers to commercialization), which is the ultimate goal of
R&D. Rather, the studies focused primarily on visible outputs such as patents and papers in evaluating
R&D performance (Jeon and Lee [11]). Sexton et al. [12] mentioned that the entire period’s evaluation,
from the R&D to the BD phase, is very much required for R&D performance evaluation, and Bozeman
et al. [13] emphasized that R&D performance measurement may be extended to include technology
transfer and BD owing to their significance and the demand for them. In particular, Min [14] mentioned
that the stabilization of a BD system is quite important due to limited R&D resources, and therefore,
BD performance evaluation, including R&D results, is essential when considering the overall R&D
process from research to commercialization. Commercialization in R&D is defined as the activities that
develop and procure new technologies and launch a new business to make products and/or charge
engineering fees; this entire process is the so-called R&BD.

Kim and Lim [15] defined R&BD as a process that monitors the diffusion speed of research results,
determines whether additional R&D is required, and are the R&D and BD-related activities that
focus on business improvement. To evaluate R&BD, the indexes must include the general indexes of
R&D such as papers and patents, as well as the evaluation indexes, according to the BD point of view.
Of course, the literature on the technology transfer and the performance evaluation of BD has attempted
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to analyze efficiency according to economic performance from the R&BD point of view, which includes
technical fees and new business launches. Jeon and Lee [11] proposed a DEA-based three-stage model
of R&BD performance that captures commercialization outcomes and conventional R&D performance
and covers the following three stages: the efficiency stage, the effectiveness stage, and the productivity
stage. Although Jeon and Lee [11] attempted to analyze R&BD performance through considering
technological transfers and commercialization, they did not use a systematic approach that considered
technological transfers and commercialization simultaneously when evaluating R&BD performance;
instead, they simply considered them individually.

As Kim and Lim [15] mentioned, R&BD generally consists of two internal processes (i.e., a R&D
process as technology securement, and a BD process as commercialization), and thus, a systematic
approach that considers the relationship between the internal processes simultaneously can facilitate
a more practical R&BD performance evaluation. To address this issue, this study provides
DEA-based systematic and simultaneous performance measures for R&BD and internal processes.
In particular, it considers the relationship between the R&D and BD processes in evaluating overall
R&BD performance, and provides effective performance improvement guidelines for relatively
underperforming DMUs to help them establish an optimal strategy in order to increase their
performance. Additionally, it shows how efficiently R&D inputs contribute to R&BD performance
in terms of the R&D process, and how efficiently R&D outputs contribute to R&BD performance
in terms of the BD process. To this end, this study develops a two-stage network DEA-based
performance measure by defining variables and transforming R&D and BD performance into a
serial network structure. Note that the aim of this research is to suggest the application of the
network DEA model for simultaneous performance measures for R&BD and internal processes, rather
than study DEA methodology. Using data from Korean public organizations, specifically public
research institutes and universities, we show how to measure R&BD performance in a way that
considers the relationship between the R&D and BD processes simultaneously. Although Jeon and
Lee [11] dealt with DEA-based R&BD performance evaluation, they did not address the relationship
between R&D and BD performance. Especially, although Guan and Chen [16] provided a model
that considered both R&D and commercialization processes simultaneously when evaluating China’s
high-tech innovations, they did not measure the contributions of R&D inputs and outputs in terms
of the R&D and BD processes, respectively, and did not provide effective performance improvement
guidelines for relatively underperforming DMUs to help them establish an optimal strategy to increase
their performance. The rest of this paper is organized as follows. Section 2 presents the R&BD
performance measurement model, which has input, output, and intermediate variables based on
the two-stage network DEA. Section 3 shows a practical application of the R&BD performance
measurement for Korean public organizations, specifically public research institutes and universities,
using the proposed method. Section 4 summarizes our work.

2. R&BD Performance Measurement Model

2.1. Two-Stage Structure of R&BD Performance Measure

As Guan and Wang [17], Hsu and Hseuh [8], and Liu and Lu [18] noted, R&D performance
evaluation focuses on how efficiently R&D inputs (researchers, budget, etc.) are allocated to secure
R&D outputs (patents, papers, etc.). In addition, as Jeon and Lee [11] noted, R&BD focuses on how
well the R&D outputs are commercialized, such as for profit or royalty generation (hereafter referred
to as BD outcome). Accordingly, there are correlations among the R&D inputs, R&D outputs, and BD
outcomes. Moreover, from the performance evaluation perspective, fewer R&D inputs and higher
R&D outputs are the preferred means of improving R&D performance, while fewer R&D outputs
and higher BD outcomes are the preferred means of improving BD performance. In this respect,
although allocating more R&D inputs can result in more R&D outputs, it will worsen R&D performance.
Further, more R&D outputs can result in higher BD outcomes, but will worsen BD performance.
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This study constructed an R&BD diagram, as shown in Figure 1, as a conceptual framework for
interpreting the R&BD performance evaluation. As Figure 1 describes, R&BD focuses on the upstream
technology securement and downstream commercialization sub-processes from the performance
perspective. Specifically, the upstream technology securement sub-process from the R&D inputs to
the R&D outputs (i.e., intermediate outputs in terms of the whole R&BD process) is the first stage
(stage one). The stage one operation is related to such activities as researching, developing, learning
by doing, or importing, and it is linked with the second stage (stage two), that is, the downstream
commercialization sub-process from the R&D outputs to the BD outcomes. The stage two operation
supports such economic activities as marketing and manufacturing. Note that the two sub-processes
are related, rather than independent, since they are connected by the R&D outputs. This means
that the intermediate R&D outputs have a double identity in their role in R&BD as the outputs in
the first sub-process and the inputs in the second sub-process (Guan and Chen [19]). In this sense,
the integrated conceptual framework not only leads us to assign primary importance to the upstream
indigenous R&D performance, but also reminds us to attach particular importance to the downstream
commercialization performance in the economic sense.
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Based on Figure 1, we argue that R&BD performance aims to increase R&D outputs at lower
R&D inputs, and at the same time, increase BD outcomes for the given R&D outputs. Thus, in terms
of performance, the performance in stage one is evaluated by how efficiently the researchers or
budgets are utilized to secure new technologies such as papers and patents, and the performance
in stage two is evaluated by how well the new technologies from the technology securement are
commercialized. In other words, stage one deals with the performance issue of R&D inputs and
intermediate R&D outputs for the securement of technology, and stage two deals with the performance
issue of intermediate R&D outputs and BD outcomes for commercialization.

R&BD concentrates on the transformation performance from the R&D inputs directly to the BD
outcomes. Note that technology securement is only an upstream sub-process, so a better performance in
technology securement alone cannot guarantee a better performance in R&BD. The R&BD performance
can improve only when both sub-processes work well. Thus, a performance measure model
must simultaneously describe the inclusive relationship between the R&BD process and the two
sub-processes, as well as the relationship between the two sub-processes.

The term performance is used in a variety of ways. In order to evaluate the R&BD performance,
this study utilized DEA, which was initially developed by Charnes, Cooper, and Rhodes [4]. DEA and
the stochastic frontier are two popular approaches to the evaluation of technical efficiency. DEA is a
linear programming methodology that evaluates the relative efficiencies of DMUs using a set of inputs
to produce a set of outputs. The technique envelopes observed production possibilities to obtain an
empirical frontier, and measures efficiency as the distance to the frontier. The primary advantage
of this approach is its non-parametric nature; therefore, it is not necessary to have strict normality
assumptions about the data and errors when trying parametric analysis. DEA can handle multiple
inputs and outputs, and does not need to predefine the functional relationship between inputs and
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outputs. Nevertheless, econometricians have argued that the approach produces biased estimates in
the presence of measurement error and other statistical noise [20]. The principal reasons for skepticism
regarding the traditional standard DEA on the part of economists are follows. Traditional standard
DEA is a non-parametric method; no production, cost, or profit function is estimated from the data.
This precludes evaluating marginal products, partial elasticities, marginal costs, or elasticities of
substitution from a fitted model. Consequentially, one cannot derive the usual conclusions about
the technology, which are possible from a parametric functional form. Most importantly, being
non-statistical in nature, the linear programing (LP) solution of a DEA problem produces no standard
errors and leaves no room for hypothesis testing. In traditional standard DEA, any deviation from
the frontier is treated as inefficiency, and there is no provision for random shocks. By contrast, the far
more popular stochastic frontier model explicitly allows the frontier to move up or down because
of random shocks. Additionally, a parametric frontier yields elasticities and other measures of the
technology that are useful for marginal analysis. As mentioned in Ray [21], the lack of standard
errors for the DEA efficiency measures stems from the stochastic properties of inefficiency-constrained
estimators not being well established in the econometric literature. However, there are several research
studies underway to address the weakness of the DEA model. Banker [22] conceptualized a convex
and monotonic non-parametric frontier with a one-sided disturbance term, and showed that the
DEA estimator converges in distribution with the maximum likelihood estimators. Simar [23] and
Simar and Wilson [24,25] combined bootstrapping with DEA to generate empirical distributions of
the efficiency measures of individual firms. This has generated a lot of interest in the profession,
and one may expect the DEA model to incorporate the bootstrapping option in the near future.
Simar and Wilson [26] described a data-generating process (DGP) that is logically consistent with
the regression of non-parametric DEA efficiency estimates on some covariates in a second stage.
They then proposed single and double bootstrap procedures; both permit valid inference, and the
double bootstrap procedure improves statistical efficiency in the second-stage regression. The use of
traditional standard DEA in evaluating a more realistic and accurate efficiency may be controversial
among researchers of parametric and non-parametric methods due to the characteristics of DEA.
Nevertheless, due to its advantages, DEA has been theoretically extended and very widely applied
in various fields, including: education (Ahn [27]; Beasley [28]), aviation (Schefezyk [29]), health care
(Pina and Torres [30]), inventory and manufacturing (Park et al. [31]; Park et al. [32]; Park et al. [33]),
etc. In addition, as mentioned earlier, there are quite a number of studies that utilize the DEA model in
evaluating R&D and R&BD performance. For more details on the DEA model, refer to Charnes et al. [4].

However, the traditional standard DEA model treats DMUs as a black box, and cannot incorporate
multiple sub-processes into an integrated measurement framework. The divisional and independent
measurement of process performance using traditional standard DEA destroys the integrity and
linkage between sub-process performances. Thus, this study utilized the network DEA, which takes
intermediate factors into account when evaluating performance. The network DEA model is an
extension of the traditional standard DEA model in which each DMU is comprised of two or many
sub-DMUs (or internal processes) connected in parallel, as shown in Figure 1. The objective of the
network DEA model is to evaluate the relative performance of each DMU and each of its sub-DMUs.
In particular, this study applied the two-stage relational network DEA model introduced by Kao and
Hwang [34] to evaluate R&BD performance. The main reason for applying the two-stage relational
network DEA model is that this model can help measure the technical performance of the R&BD and the
two sub-processes in an integrated analytical framework, in the sense that the overall and sub-process
performances are estimated simultaneously. In Figure 1, the R&D input and BD outcome are regarded
as the input and output, respectively, and the R&D output is treated as an intermediate factor. For the
performance evaluation, we assumed that all of the R&D inputs are positively related to R&D output
production, and that all of the R&D outputs are positively related to the BD outcome generation.
We show that the R&DB performance of DMU k, which has m R&D inputs, xi (i = 1, 2, . . . , m), t R&D
outputs, lq (q = 1, 2, . . . , t), and s BD outcomes, yr (r = 1, 2, . . . , s), is measured based on how efficiently
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the R&D inputs are used to produce the BD outcomes, and, at the same time, how efficiently the R&D
inputs are used to provide a high quality and quantity of R&D outputs, and how efficiently the R&D
outputs contribute to the commercialization. Here, ur is the weight given to the r-th BD outcomes, vi is
the weight given to the i-th R&D input, wq is the weight given to the q-th R&D outputs, and n is the
number of DMUs.

Based on the two-stage relational network DEA model, the R&BD performance evaluation is
calculated as

θk = max
s
∑

r=1
uryrk

s.t.
m
∑

i=1
vixik = 1,

s
∑

r=1
uryrj −

m
∑

i=1
vixij + sj = 0, j = 1, . . . , n

t
∑

q=1
wqlqj −

m
∑

i=1
vixij + s(C1)

j = 0, j = 1, . . . , n

s
∑

r=1
uryrj −

t
∑

q=1
wqlqj + s(C2)

j = 0, j = 1, . . . , n

vi, ur, wq ≥ ε

(1)

where Sj*, Sj
(C1)*, and Sj

(C2)* are the slack variables associated with second, third and fourth constraints,
respectively. Model (1) is based on the input-oriented CCR (Charnes, Cooper and Rhodes) model in
DEA. As in Kao and Hwang’s [34] two-stage relational network DEA model, the same weights were
assigned to the R&D output variables, lq. Second constraint represents the R&BD performance of
the j-th DMU. Third and fourth constraints represent the R&BD performance in the technology
securement and commercialization stages, respectively. As in the two-stage relational network
DEA model, we can validate the performance decomposition principle, according to which the
multiplication of third and fourth constraints is equal to second constraint, that is, sk* = sk

(C1)* + sk
(C2)*.

Note that we utilized this performance decomposition principle to analyze the influences of technology
securement and commercialization on R&DB performance. Let vi*, ur*, and wq* be the optimal weights
assessed by Model (1). The performance of the k-th DMU in the R&DB, technology securement stage,
and commercialization stage can be revised as Models (2)–(4), respectively.

E∗
k =

s

∑
r=1

u∗
r yrk/

m

∑
i=1

v∗i xik = 1 − s∗k (2)

E(C1)∗
k =

t

∑
q=1

w∗
q lqk/

m

∑
i=1

v∗i xik = 1 − (s(C1)∗
k /

m

∑
i=1

v∗i xik) (3)

E(C2)
k =

s

∑
r=1

u∗
r yrk/

t

∑
q=1

w∗
q lqk = 1 −

(
s(C2)∗

k /
t

∑
q=1

w∗
q lqk

)
(4)

If the performance score of Ek
(C1)* is 1, the DMU is considered to have achieved a best-practice

status in the technology securement stage. If the performance score of Ek
(C2*) is 1, the DMU is said to

have obtained a best-practice status in the commercialization stage. By contrast, ( s(C1)∗
k /

m
∑

i=1
v∗i xik ) and(

s(C2)∗
k /

t
∑

q=1
w∗

q lqk

)
indicate underperformance in the technology securement and commercialization

stages, respectively. Based on the performance decomposition principle in the two-stage relational
network DEA model, we obtained two equations, Ek* = Ek

(C1) × Ek
(C2) and sk*= sk

(C1)* + sk
(C2)*,

respectively. Ek = Ek
(C1) × Ek

(C2) signifies that the multiplication of Models (3) and (4) equals Model (2),
and sk* = sk

(C1)* + sk
(C2)* signifies that the sum of third and fourth constraints equals second constraint.
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From Models (2)–(4), we substituted (1 − E∗
k ), (1 − E(C1)∗

k )
m
∑

i=1
v∗i xik, and (1 − E(C2)∗

k )
t

∑
q=1

w∗
q lqk for sk*,

sk
(C1)*, and sk

(C2)*, respectively. Since sk* = sk
(C1)* + sk

(C2)*, it can be said that the underperformance
of the k-th DMU can be distributed to the technology securement and commercialization stages in
(sk

(C1)*/sk*) and (sk
(C2)*/sk*) proportions, respectively. If (sk

(C1)*/sk*) and (sk
(C2)*/sk*) are assumed to

be IA(C1) and IA(C2), respectively, IA(C1) and IA(C2) can be obtained as

IA(C1)
k =

(
(1 − E(C1)∗

k )
m

∑
i=1

v∗i xik/(1 − E∗
k )

)
(5)

IA(C2) =

(
(1 − E(C2)∗

k )
t

∑
q=1

w∗
q lqk/(1 − E∗

k )

)
(6)

The performance proportions signify relative values, which can be utilized as the evaluation
ratings for the underperformance of R&D inputs in technology securement and the underperformance
of R&D outputs in commercialization. For example, using the proportion (1 − IA(C1)), we can determine
how well the R&D inputs contribute to R&DB performance in terms of technology securement,
and likewise, using the relative proportion (1 − IA(C2)), we can determine how well the R&D outputs
contribute to R&BD performance in terms of commercialization. A proportion that is close to 1
indicates a significant contribution to R&BD performance. In other words, since R&BD performance is
calculated as the product of performances in the technology securement and commercialization stages,
it is more effective to improve the R&BD performance by focusing on improving the process that has a
lower contribution.

2.2. R&BD Performance Improvement

Since the approach of this study is based on DEA, we can provide information on whether the
underperforming DMUs improve their performance in each stage. For a simple illustration of this
approach, we calculated the R&BD performance and performance improvement using the sample
data shown in Table 1. The sample data consist of data for seven DMUs, and each DMU consumes
two R&D inputs and yields one R&D output and one BD outcome. The R&BD performance results,
which include the R&BD performance by the proposed method, and include Ej

(C1), Ej
(C2), IA(C1),

and IA(C2), are summarized starting from the sixth column in Table 1. We find that the R&BD
performance is calculated by the multiplication of the technology securement stage (Ej

(C1)) and
commercialization stage (Ej

(C2)). Only two DMUs, A and B, are best-practice DMUs in the technology
securement stage, and two others, A and C, are best-practice DMUs in the commercialization stage.
We see that DMU A, which has a relatively high performance in both stages, also achieved the highest
R&BD performance. Although DMUs B and C are best-practice DMUs in the technology securement
and commercialization stages, respectively, they cannot be best-practice DMUs in R&BD performance,
because they have a relatively low performance in the commercialization and technology securement
stages, respectively.

For example, DMU C has a relatively lower performance in the technology securement stage.
However, it can achieve best-practice status by either (a) increasing its R&D output; or (b) decreasing
its R&D inputs. If DMU C chooses to improve its performance by (a), it might no longer be a
best-practice DMU in the commercialization stage because the R&D output, which is the input of the
commercialization stage, has increased. Note that the R&D inputs and BD outcome are linked by the
R&D output. Thus, in order to improve the performance in both stages, we focused on reducing the
R&D inputs and increasing the BD outcome while maintaining the R&D output. In other words, we
can calculate how much R&D inputs and BD outcome need to improve by using the R&D output given
by Model (7), which is the envelopment-type version of Model (1). l∗qj is obtained by w∗

qjiqj, where
w∗

qj is the q-th optimal weights for the BD outcome calculated in Model (1), τ∗
k is the efficiency score,

and λj, ωj, and πj are the dual variables.
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τ∗
k = minτk

s.t.
n
∑

j=1

(
λj + ωj

)
yrj − SR+

r = yrk, r = 1, . . . , s

n
∑

j=1

(
λj + πj

)
xij + SR−

i = τxik, i = 1, . . . , m;

n
∑

j=1

(
πj − ωj

)
l∗qj = 0, q = 1, . . . , t;

πj, ωj, λj ≥ 0 j = 1, . . . , n

(7)

Through Model (7), we can obtain guidelines on how much R&D inputs have to decrease or
BD outcomes have to increase in order to improve the performances of underperforming DMUs,
specifically in the setting ∆−xik = xik(1 − τ∗) + SR−∗

i , ∆+yrk = yrk + SR+∗
r , where ∆− and ∆+ indicate

the negative and positive amounts of inputs and outputs, respectively, that need to be improved. If the
inefficient DMU G reduces each of its R&D inputs (X1 and X2) by 40, and increases its BD outcome (Q2)
by 20, it can achieve best-practice status in R&BD performance with a score of 1. As we mentioned in
Section 2.1, (1 − IA(C1)) and (1 − IA(C2)) are relative values that contribute to the R&BD performance,
and it is more effective to improve the R&BD performance by preferentially improving the performance
of the process with the smaller value. Consider DMU G, where (1 − IA(C1)) is relatively smaller than
(1 − IA(C2)) in Table 1. Table 2 shows the sensitivity analysis for DMU G to improve its performance
with a BD outcome that is fixed and an R&D input that decreases by 10, or an R&D input that is
fixed and a BD outcome that increases by 10. We found no performance improvement from the point
where R&D inputs decrease by 40 from the existing value, and the BD outcomes increase by 20 from
the existing value. This result is the same as the above-mentioned result that DMU G reduces R&D
inputs by 40 and increases BD outcomes by 20 to achieve best-practice status in R&BD performance.
In addition, we saw that the R&BD performance improvement is greater when R&D inputs improve
more than the BD outcomes, which suggests that it is more effective to improve R&BD performance by
preferentially improving R&D input performance.

Table 1. Sample data. DMU: decision-making units.

DMU
R&D

Inputs
R&D

Output
BD

Outcome Results

X1 X2 Y1 Q2
R&BD

Performance Ej
(C1) Ej

(C2) (1 − IA(C1)) (1 − IA(C2))

A 20 40 100 170 1.00 1.00 1.00 1.00 1.00
B 40 20 100 120 0.71 1.00 0.71 1.00 0.00
C 30 60 100 170 0.67 0.67 1.00 0.00 1.00
D 50 60 100 150 0.48 0.55 0.88 0.12 0.88
E 60 30 100 100 0.39 0.67 0.59 0.45 0.55
F 60 40 100 130 0.46 0.60 0.76 0.26 0.74
G 70 70 100 150 0.38 0.43 0.88 0.08 0.92

Table 2. Sensitivity analysis for DMU G to improve performance.

X1 X2 R&BD Performance Q2 R&BD Performance

70 70 0.378 150 0.378
60 60 0.441 160 0.403
50 50 0.529 170 0.429
40 40 0.662 180 0.429
30 30 0.882 190 0.429
20 20 0.882 200 0.429
10 10 0.882 210 0.429
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3. Empirical Study

3.1. Objective and Variables

For the case study, we applied our proposed method to 49 research organizations, specifically
public research institutes and universities in the Republic of Korea (we used the public technology
transfer and commercialization data collected by the Ministry of Trade, Industry and Energy in 2013 as
inputs, intermediates, and outputs). In the case study, we considered 34 universities and 15 research
institutes. Of the 34 universities included in the case study, 13 were national universities and 21 were
private universities. Of the 15 research institutes, 10 were managed by the Ministry of Science, ICT,
and Future Planning, three were managed by the Ministry of Trade, Industry, and Energy, and two were
managed by the Ministry of Oceans and Fisheries. Each research institute was regarded as a DMU.
Generally, researchers and research expenses are invested for R&D, and technologies are secured in the
form of patents and papers; the secured technologies create economic values, such as royalty income,
technology transfer—which is called transfer of technology (TOT)—and commercialization. Referring
to the studies of Bonaccorsi et al. [35], Meng et al. [36] and Liu and Lu [18], we selected the number
of researchers and R&D costs as R&BD inputs, the number of secured technologies as intermediates,
and the number of technology transfers, royalties, and foundations as R&BD outputs. The data reflect
the following selected performance measures.

Inputs:

(a) Number of Researchers (NR): Total number of researchers involved in R&D
(b) R&D Costs (RC): Total cost of R&D, including labor costs, material purchases, and activity costs (

USV Symbol Macro(s) Description
2097 ₗ \textsubscript{l}

\textlinferior
LATIN SUBSCRIPT SMALL LETTER L

2098 ₘ \textsubscript{m}
\textminferior

LATIN SUBSCRIPT SMALL LETTER M

2099 ₙ \textsubscript{n}
\textninferior

LATIN SUBSCRIPT SMALL LETTER N

209A ₚ \textsubscript{p}
\textpinferior

LATIN SUBSCRIPT SMALL LETTER P

209B ₛ \textsubscript{s}
\textsinferior

LATIN SUBSCRIPT SMALL LETTER S

209C ₜ \textsubscript{t}
\texttinferior

LATIN SUBSCRIPT SMALL LETTER T

20A1 ₡ \textcolonmonetary COLON SIGN

20A4 ₤ \textlira LIRA SIGN

20A6 ₦ \textnaira NAIRA SIGN

20A7 ₧ \textpeseta PESETA SIGN

20A9 ₩ \textwon WON SIGN

20AB ₫ \textdong DONG SIGN

20AC € \texteuro EURO SIGN

20B0 ₰ \textDeleatur GERMAN PENNY SIGN

20B1 ₱ \textpeso PESO SIGN

20B2 ₲ \textguarani GUARANI SIGN

2103 ℃ \textcelsius DEGREE CELSIUS

210F ℏ \hbar
\texthslash

PLANCK CONSTANT OVER TWO PI

2111 ℑ \textIm BLACK-LETTER CAPITAL I

2113 ℓ \textell SCRIPT SMALL L

2116 № \textnumero NUMERO SIGN

2117 ℗ \textcircledP SOUND RECORDING COPYRIGHT

2118 ℘ \textwp SCRIPT CAPITAL P

211C ℜ \textRe BLACK-LETTER CAPITAL R

211E ℞ \textrecipe PRESCRIPTION TAKE

2120 ℠ \textservicemark SERVICE MARK

2122 ™ \texttrademark TRADE MARK SIGN

2126 Ω \textohm OHM SIGN

2127 ℧ \textmho INVERTED OHM SIGN

2129 ℩ \textriota TURNED GREEK SMALL LETTER IOTA

212B Å \textangstrom ANGSTROM SIGN

212E ℮ \textestimated ESTIMATED SYMBOL

2132 Ⅎ \textFinv TURNED CAPITAL F

2135 ℵ \textaleph ALEF SYMBOL

2136 ℶ \textbeth BET SYMBOL

2137 ℷ \textgimel GIMEL SYMBOL

2138 ℸ \textdaleth DALET SYMBOL

213B ℻ \textfax FACSIMILE SIGN

2141 ⅁ \textGame TURNED SANS-SERIF CAPITAL G

214B ⅋ \textinvamp TURNED AMPERSAND

2150 ⅐ \textoneseventh VULGAR FRACTION ONE SEVENTH

2151 ⅑ \textoneninth VULGAR FRACTION ONE NINTH

2152 ⅒ \textonetenth VULGAR FRACTION ONE TENTH

2153 ⅓ \textonethird VULGAR FRACTION ONE THIRD

2154 ⅔ \texttwothirds VULGAR FRACTION TWO THIRDS

2155 ⅕ \textonefifth VULGAR FRACTION ONE FIFTH

2156 ⅖ \texttwofifths VULGAR FRACTION TWO FIFTHS

2157 ⅗ \textthreefifths VULGAR FRACTION THREE FIFTHS

2158 ⅘ \textfourfifths VULGAR FRACTION FOUR FIFTHS

36

)

Outputs:

(a) Number of Technology Transfers (NTT): Total number of technology transfers or contracts for the
transfer of secured technology

(b) Royalties (RT): Total amount of royalty income
(c) Number of Foundations (NF): Total number of start-ups

Intermediate:

(a) Number of Secured Technologies (NST): Total number of secured technologies such as patents,
utility models, and papers

Since DEA analysis is a relative evaluation among DMUs, a sufficient number of DMUs compared
to the number of input and output factors have to be considered for a more accurate evaluation. In the
study of Bonaccorsi et al. [35], the minimum number of DMUs recommended for reasonable efficiency
evaluation are n ≥ m × s, and n ≥ max{3 × (m + s), m × s}, where n is the minimum number of DMUs
required, m is the number of input factors, and s is the number of output factors. This research takes
into account two inputs, three outputs, and one intermediate. Thus, more than 15 DMUs should be
considered to meet the recommended number of DMUs. The number of DMUs for accurate evaluation
is satisfied with 49 DMUs.

The input, intermediate, and output data are presented in Table A1, and their descriptive statistics
are listed in Table A2 of Appendix A.

3.2. Analysis Result

We first compared the R&BD performance scores from the conventional DEA model and the
proposed model, and the performance results are shown in Table 3. Performances A and B signify
the performance scores from the conventional DEA model—in which NR and RC were used as
inputs and NTT, RT, and NF were used as outputs without intermediates—and the proposed model,
respectively. To calculate Performance A, NR and RC were used as inputs, whereas NTT, RT, and NF
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were used as outputs. In Performance A, DMUs 20, 27, 28, 31, and 32 were identified as the relatively
most overperforming research organizations (performance score is 1), and the remaining 44 DMUs
were identified as relatively underperforming. On the other hand, in Performance B, there were no
best-practice DMUs (for which the performance score is 1), but DMUs 27 and 31 had relatively higher
performance scores, and they could be classified as a relatively overperforming group (scores for
Performance B were over 0.900). In particular, DMUs 31 and 32 could be classified as best-practice
DMUs in Performance A. However, although DMU 31 also had a relatively higher R&BD performance
for Performance B, with a score of 0.945, DMU 32 had a relatively lower R&BD performance for
Performance B, with a score of 0.091 due to inefficient internal processes.

Figure 2 shows the difference between performances A and B. Although performances A and
B had similar performance patterns, the scores for Performance B were generally lower than those
for Performance A (the average scores for performances A and B were 0.375 and 0.166, respectively).
In addition, five DMUs were considered to have achieved a best-practice status, which has the
performance score of 1, in Performance A, but no DMUs were classified as best-practice in Performance
B. The reason for the results shown in Figure 2 is that the proposed model measures performance more
strictly than the conventional DEA model, through simultaneously considering both the technology
securement and commercialization stages. More specifically, Performance B is obtained by multiplying
the performance of the technology securement stage by the performance of the commercialization
stage. Performance B can be 1 only if both of the performance scores of the technology stage and the
commercialization stage are 1. Although performances A and B had similar performance patterns,
several DMUs had significant changes in performance scores. For example, although DMUs 28 and
32 were regarded as best-practice DMUs in Performance A, with performance scores of 1, they had
relatively low scores for Performance B, of 0.360 and 0.091, respectively.

Table 3. Comparison of the performance scores of A and B.

DMU 1 2 3 4 5 6 7 8 9 10

Performance A 0.073 0.146 0.162 0.527 0.180 0.202 0.210 0.325 0.632 0.173
Performance B 0.024 0.044 0.065 0.115 0.062 0.089 0.076 0.171 0.179 0.075

DMU 11 12 13 14 15 16 17 18 19 20

Performance A 0.817 0.327 0.228 0.166 0.236 0.145 0.164 0.973 0.639 1.000
Performance B 0.175 0.139 0.082 0.060 0.061 0.071 0.083 0.383 0.334 0.599

DMU 21 22 23 24 25 26 27 28 29 30

Performance A 0.364 0.079 0.243 0.339 0.244 0.186 1.000 1.000 0.149 0.170
Performance B 0.144 0.034 0.064 0.076 0.043 0.073 0.900 0.360 0.055 0.122

DMU 31 32 33 34 35 36 37 38 39 40

Performance A 1.000 1.000 0.280 0.384 0.134 0.130 0.325 0.306 0.133 0.200
Performance B 0.945 0.091 0.179 0.090 0.057 0.036 0.132 0.138 0.022 0.084

DMU 41 42 43 44 45 46 47 48 49

Performance A 0.479 0.352 0.740 0.305 0.461 0.399 0.139 0.296 0.202
Performance B 0.283 0.214 0.305 0.124 0.262 0.173 0.055 0.102 0.072

Table 4 shows the performances scores from the technology securement and commercialization
stages and their contributions to the R&BD performance. For example, with regard to DMU 4,
which had a relatively lower R&BD performance (with a score of 0.115), Ej

(C1) is greater than
Ej

(C2), and consequently, we can say that performance improvement in technology securement is
important, but the strategy for performance improvement in the commercialization stage needs to
be prioritized as well. We then looked at the R&BD performance scores of DMUs 31 and 32 again.
DMU 31 had a relatively higher R&BD performance score with 0.945, and DMU 32 had a relatively
lower R&BD performance score with 0.091; nonetheless, both DMUs 31 and 32 were classified as
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best-practice DMUs in Performance A, as shown in Table 3. The reason for this difference in their
R&BD performances is that DMU 31 had relatively higher performance scores in both the technology
securement and commercialization stages, but DMU 32 had relatively lower performance scores
in the technology securement stage, with 0.091, even though it had the highest performance score
in the commercialization stage, with 1. That is, DMU 32 had a low R&BD performance due to
a relatively lower performance in the technology securement stage. For DMU 32 to improve its
R&BD performance, it should focus on developing an effective strategy to increase R&D performance.
The average performance scores of the technology securement and commercialization stages were
0.385 and 0.391, respectively. From the performance proportions (1 − IA(C1) and 1 − IA(C2)) in Table 4,
we found that the average performance in the commercialization stage contributed to the R&BD
performance slightly more than the average performance in the technology securement stage.
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Figure 3 shows the DMUs located on a two-dimensional plane with two axes according to
their technology securement and commercialization performances. DMUs were classified as high
and low based on the average performances in the technology securement and commercialization
stages (the average performance scores of the technology securement and commercialization stages
for x axis and y axis were 0.385 and 0.391, respectively). The A area is a set of DMUs with
relatively high performances in the commercialization and relatively low performances in technology
securement. The B area is a set of DMUs with high performances in both technology securement
and commercialization. The C area is a set of DMUs with low performances in both technology
securement and commercialization. The D area is a set of DMUs with relatively high performances
in technology securement and relatively low performances in commercialization. Only eight DMUs
(16.3% of the total DMUs) had performance scores greater than the average in both the technology
securement and commercialization stages, and 25 DMUs (51% of the total DMUs) had performance
scores less than the average in both the technology securement and commercialization stages. In other
words, more than 50% of the DMUs fall into the underperforming group, which has relatively low
performances in both technology securement and commercialization. If DMUs in the A area try
to improve their technology securement performances first, their R&DB performance can improve
effectively. In contrast, the DMUs in the D area can improve their R&DB performance effectively by
focusing on improving their commercialization performance.

Underperforming DMUs are able to improve their performance in each stage. Through Model (7),
we can obtain guidelines on how much inputs have to decrease or outputs have to increase in order to
improve the performance of underperforming DMUs. Table 5 provides guidelines for the 10 relatively
most underperforming DMUs. As indicated in the table, if DMU 39 reduces its inputs (NR and RC) by
two and 10, respectively, and increases its outputs (NTT and RT) by two and 273, respectively, it will
achieve best-practice status in its R&BD performance.
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Table 5. Guidelines for performance improvement of the 10 most underperforming DMUs.

DMU ∆−NR ∆−RC ∆+NTT ∆+RT ∆+NF

39 2 10 2 273 -
1 1 7 - 200 -
22 2 14 - 574 -
36 1 6 - 288 -
25 16 103 - 0 -
2 1 9 - 46 -
29 3 21 11 0 -
47 4 27 46 0 -
35 4 26 - 695 -
14 6 36 - 909 -

4. Conclusions

R&BD generally consists of two internal processes, that is, the R&D process as technology
securement and the BD process as commercialization. For a practical R&BD performance evaluation,
a systematic approach that considers the relationship between the R&D and BD processes in
evaluating R&BD performance is crucial. To this end, in this study, we proposed a two-stage
network DEA-based systematic and simultaneous performance evaluation for R&BD that considered
the relationship between its internal processes, such as R&D and BD processes, and provided
effective performance improvement guidelines for relatively underperforming DMUs to help them
establish an optimal strategy to increase their performance. We selected the number of researchers
and R&D costs as R&BD inputs, the number of technology transfers, royalties, and foundations
as R&BD outputs, and the number of secured technologies as intermediates (outputs of the R&D
process and inputs of the BD process). We then compared the R&BD performance scores from the
conventional DEA model and the proposed model, and showed that although both performance
scores have similar patterns, the performance scores from the proposed model were generally
lower than those from the conventional DEA model, as the proposed model measures performance
more strictly than the conventional DEA model by simultaneously considering the technology
securement and commercialization stages. In addition, we showed that the average performance in
the commercialization stage of the BD process contributes to the overall R&BD performance slightly
more than the average performance in the technology securement stage of the R&D process, and we
provided effective performance improvement guidelines for underperforming DMUs. Consequently,
we showed that the proposed method can be used as the basic approach for establishing public
strategies for fostering R&BD.

Despite its valuable contributions, this study also has several limitations, which can be addressed
in future research. First, we analyzed public research institutes and universities through an integrated
evaluation of R&BD performance; however, this study lacks a specific and strategic plan for achieving
improved performances. This study focused on the applicability of the two-stage network DEA,
and we hope to present specific benchmark objectives in future research. Second, we did not perform a
comparative analysis of performance differences among the groups based on the characteristics of the
individual public research institutions and universities. Finally, we were unable to take into account
the probabilistic volatility of the resource data or analyze the factors affecting R&BD performance
for more robust performance evaluation and benchmarking; future research can address this issue by
securing additional data.
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Abbreviations

The following abbreviations are used in this manuscript:

DEA Data Envelopment Analysis
R&D Research and Development
BD Business Development
R&BD Research and Business Development

Appendix A

Table A1. The input, intermediate, and output data for 49 research organizations. NR: Number
of researchers; RC: R&D costs; NST: Number of secured technologies; NTT: Number of technology
transfers; RT: Royalties; NF: Number of foundations.

DMUs
Inputs Intermediate Outputs

NR RC NST NTT RT NF

1 853 57,458 329 16 142 2
2 1445 58,178 497 28 565 1
3 850 49,844 283 40 129 1
4 1169 71,337 652 81 2553 10
5 3615 268,472 2762 184 3055 2
6 234 8875 58 10 23 1
7 2949 120,537 611 109 1022 20
8 532 156,407 698 117 3266 1
9 376 88,064 172 62 3941 1
10 450 43,453 130 34 280 1
11 64 1931 20 1 104 1
12 1645 87,393 694 145 1096 8
13 547 123,945 286 46 1968 1
14 2742 175,195 726 119 1699 2
15 704 19,359 171 15 68 6
16 2232 58,658 356 52 361 1
17 3454 72,719 478 76 620 1
18 123 10,260 227 46 390 1
19 639 106,092 1410 235 4022 1
20 2256 541,183 4984 1654 36,364 5
21 1528 65,694 487 109 1421 4
22 1331 131,787 438 46 433 1
23 1180 143,141 778 76 1179 10
24 853 67,543 513 54 1162 9
25 4713 467,657 1675 187 3911 42
26 7566 128,581 736 116 1452 2
27 89 558 16 8 15 3
28 276 102,329 409 102 7264 2
29 613 283,471 481 54 1417 2
30 674 6795 48 12 5 1
31 417 179,700 1450 716 7100 1
32 91 14,053 18 10 28 5
33 563 116,099 909 125 1,546 1
34 4467 182,476 861 168 4787 4
35 3718 104,900 664 71 843 5
36 444 31,605 298 14 10 2
37 544 50,921 392 75 289 2
38 233 8364 70 14 109 2
39 730 62,623 310 16 99 4
40 2662 114,102 845 113 1106 2
41 241 43,285 236 87 210 2
42 219 37,697 160 56 495 1
43 311 15,465 166 59 44 1
44 294 15,742 111 23 218 2
45 259 42,877 302 78 922 2
46 491 246,054 896 125 4788 1
47 705 211,998 518 45 1988 1
48 1698 179,774 931 160 3563 4
49 3538 237,000 1050 190 2898 2
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Table A2. The descriptive statistics of input, intermediate and output data for 49 research organizations.

Resource Max. Min. Ave. Std. Dev.

Inputs NR 7566 64 1374 1539.93
RC 541,183 558 110,442 110,654.27

Intermediate NST 4984 16 639 806.40

Outputs
NTT 1654 0 122 247.86
RT 36,364 5 2265 5290.35
NF 42 1 4 6.54
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