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Abstract: In cities’ policy-making, it is a hot issue to grasp the determinants of carbon dioxide
emission in Chinese cities. And the common method is to use the STIRPAT model, where its
coefficients represent the influence intensity of each determinants of carbon emission. However,
less work discusses estimation accuracy, especially in the framework of non-normal distribution and
heterogeneity among cities’ emission. To improve the estimation accuracy, this paper employs a
new method to estimate the STIRPAT model. The method uses a mixture of Asymmetric Laplace
distributions (ALDs) to approximate the true distribution of the error term. Meantime, a designed
two-layer EM algorithm is used to obtain estimators. We test the robustness via the comparison
results of five different models. We find that the ALDs Mixture Model is more reliable the others.
Further, a significant Kuznets curve relationship is identified in China.

Keywords: carbon emission; ALDs mixture model; EM algorithm; heterogeneity; Chinese cities

1. Introduction

A bottom-up approach is employed to reduce emission according to The Paris Climate Conference
2015 (COP21) agreement. This approach asks city governments to identify their own environmental
issues, to submit their own individualised plans for reducing or limiting emissions and to provide the
link with national level environmental policies. To reveal the underlying specific drivers of city-level
carbon emissions, studies on the determinants of carbon emissions at city level are rapidly increasing.
IPAT (Human Impact, Population, Affluence and Technology) or STIRPAT (Stochastic Impacts by
Regression on Population, Affluence and Technology) model is the most popular one to address this
issue. The STIRPAT model assumes a linear form, which is easy for estimation and interpretation.
It links human activities in the form of driving factors to their impacts on environment and indicates
intensity of each factor [1,2]. There are many statistical models and the estimation methods to resolve
the IPAT or STIRPAT model, including PLS (Partial Least Square) method [3,4], panel data model [5],
linear mixed model [1], LMDI (Log-Mean Divisia Index) method [6], scenario analysis [7,8] and
structural decomposition analysis [9]. However, how to choose and improve estimation methods of
these models when employing the STIRPAT model? This paper aims at the estimation problem of
STIRPAT model. A reliable estimation is vital because it decides targets, path, finance and other key
aspects of environmental policies. In this context, we discuss what factors do contribute to the carbon
emission and develop models to specify the factors’ influencing intensities.

Here we take data of 11-year period from 76 Chinese cities as an empirical example to investigate
the above-mentioned concerns. China has been the largest carbon emitter in the world since 2007 [10].
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In 2014, China accounted for almost 27% of overall global emissions (IEA world energy statistics 2016).
China’s carbon mitigation is very important for arriving at the aim of world’s carbon reduction. China
promises to achieve a peak in carbon emissions and decrease its carbon intensity by 30% compared
to 2014 before 2030. In China, cities are the cells of carbon mitigation policy making and execution.
The Environmental Protection Law of the People’s Republic of China argues that cities should consider
environmental protection in their social developments plans. It is noted that there are significant
disparities in carbon emission per capita for 76 Chinese cities which may not be subject to normal
distribution. Thus, the paper will analyze the data characteristics of 76 Chinese cities’ emission and
build the best statistical estimation method to analyze STIRPAT model. Many works do efforts to find
an optimal solution by obtaining an accurate coefficient estimate.

As mentioned before, policy making usually requires a conditional mean estimate with accuracy.
But heterogeneity and non-normality brings challenges to common estimation methods. Fortunately,
composite quantile regression (CQR) , which is proposed by Zou and Yuan [11], is a useful approach to
solve the problem. The CQR estimation not only requires no specific distribution assumption for the
error term, but also provides a more efficient estimator. Then in 2017, an improved CQR estimation
named as ALDs mixture model is introduced [12]. It assumes that the error term follows a finite mixture
of asymmetric Laplace distributions (ALDs), and then develops two-layer EM (Expectation-Maximum)
algorithm to obtain the estimators, which shows higher performance. Thus, we will adopt the ALDs
mixture model and related estimation procedure to obtain the estimators of interested in this paper.

In model specification, a squared logarithm GDP per capita is added to identify the existence of an
Environmental Kuznets Curve (EKC) relationship at city level in China. EKC curve is firstly proposed
by Grossman and Krueger in 1991 [13] when they analyzed the potential environmental benefits of the
North American Free Trade Agreement (NAFTA). According to them, economic growth, rather than a
threat, will lead to environmental improvement, and the turning point appears in the high stage of
income level. Such a non-linear conclusion which is usually in form of a squared logarithm GDP per
capita has been largely accepted by early economists [14,15]. Models with squared terms directly show
the ’turning point’ of income, where emissions or concentrations are at peak [16]. Therefore, it is of
vital importance that the coefficient of the quadratic term is estimated accurately. This paper works to
obtain more accurate estimators of coefficients. Therefore, it is able to accurately learn whether there
exists an EKC relationship at city level in China.

In Section 2, we illustrate models we use in this paper. In the section, the STIRPAT model
specification and the ALDs mixture model are introduced. Then data is described with basic statistics
in Section 3. Section 4 gives out the empirical result. And to prove the reliability of the ALDs mixture
model, we do model comparison in Section 5. At the end, the conclusion and a short discussion about
policy making are given.

2. Model

2.1. An STIRPAT Model with EKC Setting

STIRPAT is one of the most popular model in ecology research. It is proposed by Dietz and
Rosa [17] and works as a mathematical generalization of traditional IPAT model. The model uses
driving factors to measure the human activity’s impact (I) on environment. In the field of carbon
emission, scholars use it to estimate factor intensities. A basic specification has three ones: population
(P), affluence (A) and technology (T). It can be written in a non-logarithm form: Ii = aPb

i Ac
i Td

i ei.
This makes good on theoretical analysis, but researchers usually use its logarithm form to do estimate.

ln I = a + b(ln P) + c(ln A) + d(ln T) + e (1)

Selectin of indicator variables for I, P, A and T is important. In I’s determinant, both total amount
of carbon emission and carbon emission per capita are used. It is intuitive to use the former, the total
amount of carbon emission, out of its convenience. Wang et al. [18] use total carbon emission to indicate
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the impact of I at province level. At city level, the total amount is also use by Zhu and Peng’s work [19].
However, in the work by Hao et al. [20], this variable is criticized out of the influence of population
scale, and it is substituted by carbon emission per capita. In a recent work by Zheng et al. [1], carbon
emission per capita is also used. Following these discussions, we select carbon emission per capita to
indicate the I.

In the field, the population factor is usually decomposed into scale and structure. Annual average
population and urbanization ratio are commonly used separately for the both [20,21]. Meanwhile,
other variables are also tested but they are special for specific issues. For instance, Zhu and Peng [19]
add proportion of working age population and household size to the population factor to do further
research. In this paper, we follow the common setting and use the annual average population
and urbanization ratio. In variable selection of the technology factor, industrialization and energy
structure are used by scholars. Yet, they are used separately in different works. Su et al. [22] apply
industrialization rate and energy structure when Dong et al. [23] only use the former. Similarly,
Li et al. [24] use only the industrialization rate in their study. Referring to Zheng et al. [1], we have the
both in our STIRPAT model. As to the affluence factor, GDP per capita is commonly applied [22,24,25].
Then, we add a quadratic term of logarithm GDP per capita to identify a Chinese Kuznets curve at city
level. A significant negative estimator of the GDP per capita shows an invert “U” shape curve.

2.2. An ALDs Mixture Model

Here we briefly describe the ALDs mixture model proposed in Wang and Xiang [12], then apply
it to perform the STIRPAT analysis on carbon emission via 76 cities in China during 2002–2012.
An asymmetric Laplace distribution (ALD) proposed by Koenker and Machado [26] is a generalization
of Laplace distribution (LD). Specifically, denote ALD(µ, σ, τ) as the ALD with the location parameter
µ ∈ R, scale parameter σ > 0 and asymmetric (skewness) parameter 0 < τ < 1, and its probability
density function is given by

f (ω; µ, σ, τ) =
τ(1− τ)

σ
exp

(
− ρτ(

ω− µ

σ
)
)

, ω ∈ R (2)

where ρτ(t) = t(τ − I(t < 0)) is the check function with I(·) denoting the usual indicator function.
ALD is common in quantile regressions, and this three-parameter distribution is useful for estimating
quantile and quantile regression. See Yu and Zhang [27] for a summary of its properties and extensions.
Using the unifying bridge existing between the CQR estimation and the ALD, Wang and Xiang [12]
proposed the ALDs mixture model, which could be formulated as:

Y = XT β + ε, ε ∼
K

∑
k=1

πk ALD(bk,
σ

ψk
, τk), (3)

where Y is the response, X is an p-vector of independent variables, β = (β1, · · · , βp)T is an p-vector
of unknown parameters, and ε is the error term following K-component mixture of the ALDs, with
the notations being τk = k

K+1 , and ψ2
k = κ2

k + ν2
k with κk = 1−2τk

τk(1−τk)
and ν2

k = 2
τk(1−τk)

. Here, K is the
number of ALD components, πks are weights of each ALD distribution and summarized to 1, and τk is
the skewness defined as τk =

k
K+1 . That is, τks are actually equally spaced quantiles as recommended

in Zou and Yuan [11]. The ALDs mixture model asks for centralized or normalized variables, which
means there is no intercept in model (3).

Specifically, in model (3), let the response Y be lncarp, and the independent variables
X = (lngdpp, lnapop, lnurb, lnind, lnenc, (lngdpp)2)T (Refer to the definitions of each variable in
Table 1), then the model proposed in this paper is formulated as

lncarp = β1lngdpp + β2lnapop + β3lnurb + β4lnind + β5lnenc + β6(lngdpp)2 + ε, (4)
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where the error term ε ∼ ∑K
k=1 πk ALD(bk, σ

ψk
, τk). Here we adopt the two-layer EM algorithm proposed

in Wang and Xiang [12] to obtain the estimators for these unknown parameters. For more details of the
proposed ALDs mixture model and its implementation algorithm, please refer to the work of Wang
and Xiang [12].

3. Data

Data in this work is a balanced panel setting, which covers 76 cities in China and has an 11-year
period. All are acquired from yearbooks of the 76 cities. Further, the amount of data, 836 observations,
provides enough freedom degree for at most 20 parameters. Definitions of each variable could be
found in Table 1.

Table 1. Variable Definitions.

Variables Definition Measurement

lncarp Logarithm of per capita carbon emissions Tons per capita

lngdpp Logarithm of GDP divided by population
Yuan per capita

(2002 Beijing price)
lnapop Logarithm of average annual resident population Ten thousand people
lnurb Logarithm of percent of the urban population in resident population -
lnenc Logarithm of share of coal consumption in energy consumption -
lnind Logarithm of share of valued added in secondary industry -

(lngdpp)2 Quadratic term of ln gdpp Yuan per capita
squared

In the model, lncarp works as the dependent variable. It indicates the carbon emission per capita
accounted by special procedures [1]. we calculate the carbon emission of each city by adding the carbon
emission embodied in energy consumption, major industrial productions, urban garbage disposal and
substracting the carbon emission sinked by grass land [1,28]. For more details, descriptive statistics
are tabulated in Table 2. Here lngdpp bases on the constant price of Beijing in 2002. And lnapop uses
average annual resident population which follows the new official statistical caliber after 2008. The new
one considers more about population mobility. In the setting of lnurb, the ratio of urban population
is selected as an descriptor. The other two variables, lnenc and lnind are also ratios. The former is
accounted with a conversion [1] and it reflects the use of coal in energy consumption. Considering
the role of second industry in carbon emission, lnind is designed as the logarithm percentage of
secondary industry.

When doing estimate by the ALDs Mixture Model, each variable is demeaned. However,
in quantile regressions, this limit does not exist. The ALDs method is a conditional mean estimation.
Then such a setting does not matter in the condition that we focus most on the estimator of β. Moreover,
a density histogram of lncarp is demonstrated in Figure 1, from which we can see that it is non-normal
distributed, and we will verify it further via normality tests in Section .

Table 2. Descriptive Statistics.

Items lngdpp lnapop lnurb lnenc lnind (lngdpp)2

Minimum 7.990 3.900 −3.270 −9.130 −1.590 4.319
25% percentile 9.220 5.800 −1.270 −0.590 −0.810 4.935
Median 9.680 6.200 −0.820 −0.340 −0.670 5.153
Mean 9.691 6.175 −0.891 −0.425 −0.706 5.153
Standard deviation 0.653 0.653 0.653 0.653 0.653 0.653
75% percentile 10.180 6.590 −0.530 −0.160 −0.570 5.384
Maximum 11.240 7.980 0.000 1.860 −0.030 5.854
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Figure 1. Distribution of lncarp.

4. Empirical Results

4.1. Normality Test

Here we illustrate the motivation of the proposed method. As we know, normality assumption
is important for the ordinary least square (OLS) method. If it violated, the results obtained by OLS,
i.e., the t test and F tests, will be unreliable. First, we show the distribution of lncarp via normal Q-Q
(quantile-quantile) plot in Figure 2, where the black circles mark relative positions of sample quantiles
to theoretical ones and points on the red line indicate an equal of the both. There exists obvious
deviation of the normal Q-Q plot from a straight line, which shows abnormal behaviors at tails.
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Figure 2. Normal Q-Q Plot of lncarp.

Moreover, we perform 5 popular normality tests described in [29]: Anderson-Darling
test, Cramer-Von Mises test, Lilliefors (Kolmogorov-Smirnov) test, Pearson Chi-Square test and
Shapiro-Francia test (see in Table 3). All tests have a p-value fast smaller than 0.05, which indicates a
abnormal distribution of data. Thus, the results based on the normality assumption, including OLS
and panel methods, will be unreliable. This motivates us to consider new estimation method.
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Table 3. Normality tests on lncarp.

Test Statistics p-Value

Anderson-Darling Test 4.851514 0.0000
Cramer-Von Mises Test 0.621861 0.0000
Lilliefors (Kolmogorov-Smirnov) Test 0.049977 0.0000
Pearson Chi-Square Test 57.32536 0.0001
Shapiro-Francia Test 0.931959 0.0000

4.2. Result of the ALD Method

The number of components, K, is important for the ALDs mixture regression model and an
optimal K will make a trade-off between the goodness of fit and model complexity. Here we adopt the
heuristic information criterion called ABIC proposed in [12] to determine the number of components
K. Specifically, the ABIC is defined as

ABIC(K) = −2lobs(θ̂K, b̂K;O) + (2K + p) ln n
n

, (5)

where lobs(θK, bK;O) = ∑n
i=1 log (∑K

k=1
πkψkτk(1−τk)

σ ) exp (−ρτk (
ψk(Y−XT β−bk)

σ )) is the log-likelihood
function evaluated at the estimators θ̂K and b̂K; θ̂K = (π̂T , β̂T , σ̂)T and b̂K = (b̂1, ..., b̂K)

T ; 2K + p is the
number of independent parameters; and O = {Xi, Yu}n

i=1 is the observed data. An optimal K comes
when the information value in (5) goes to minimum, i.e.,

K̂opt = arg min
K

ABIC(K).

For the model (4) and the data described in Section 4.2, Figure 3 shows the ABIC values against
different K, where each value is marked by circle and a trend by K is shown with line. It indicates that
the optimal K is 12.
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Figure 3. ABIC values against different K.

When K is selected, estimators can be acquired by the two-layer EM algorithm [12]. We use
R software to do this work, then perform statistical inferences through bootstrap. As mentioned
before, we have twenty parameters to be estimated, where the dataset has over 830 observations.
The algorithm converges before 10,000th iteration comes. The empirical results are listed in Table 4,
where estimates and their standard errors (in parentheses) are provided. The same presentation can be
found in the other tables.



Sustainability 2017, 9, 2237 7 of 13

Table 4. Estimates of the ALDs mixture model.

Variable β

lngdpp 0.9644
(1.2023)

***

lnapop −0.2082
(0.0933)

***

lnurb 0.3314
(0.1493)

***

lnenc 0.2619
(0.1727)

***

lnind 2.3551
(0.3692)

***

(lngdpp)2 −0.0325
(0.0588)

***

R2 0.3683
σ̂ 0.7667

Notes: 1. p < 0.01 ‘***‘, p < 0.05 ‘**‘, p < 0.1 ‘*‘; 2. Standard errors are provided in parentheses.

From Table 4, all estimators are significant. R squared shows that the STIRPAT model can explain
36.8% city carbon emission. The three percentiles, lnurb, lnenc and lnind, have positive coefficients,
which means positive influence. However, the intensity of lnind is much greater than that of the other
two. It means that each percent growth of production industry can increase more carbon emission
than the other two factors. lngdpp shows a positive coefficient and its quadratic term has a negative
one, proving an invert “U” shape Kuznets curve in Chinese cities. The quadratic form leads to a peak
of carbon emission.

We also report the estimates for the mixing probability π and the corresponding location parameter
b for each ALD component in Table 5. Further, we have the residual histogram in Figure 4. It indicates
a non-normal distribution with two peaks. The red curve is the distribution of estimated ALDs mixture.
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Figure 4. Residual distribution and ALDs mixture distribution.
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Table 5. Estimators of ALD components.

τ π b

0.0769 1.94× 10−8 −1.0811
0.1538 4.15× 10−2 −0.852
0.2308 7.36× 10−8 −0.7009
0.3077 9.53× 10−8 −0.6997
0.3846 3.38× 10−1 −0.6654
0.4615 3.04× 10−8 −0.2435
0.5385 1.32× 10−4 −0.0939
0.6154 3.92× 10−8 0.6791
0.6923 4.96× 10−1 0.7286
0.7692 1.16× 10−4 0.6901
0.8462 1.24× 10−1 0.6954
0.9231 1.16× 10−8 1.0314

5. Model Comparison

To see whether the ALDs mixture model is more reliable than others, we compare it with 5 different
estimations: OLS, LAD, Panel model with fixed individual effects, QR and CQR. Estimation accuracy
of each is criticized or discussed through violations of error assumption and other reasons. Then we
discuss improved properties of the ALDs mixture model. We depart the comparison into 2 stages.

5.1. ALDs Mixture Model vs. OLS, LAD and Panel Model with Fixed Individual Effects

On the first stage, the ALDs mixture model is compared with OLS, LAD and panel model with
fixed individual effects which are common in literatures mentioned. We still use R software to estimate
and list detailed estimators with inferences in Table 6. Standard errors (S.E.) are also provided beneath
each coefficient.

Table 6. Comparison with OLS, LAD and panel model.

OLS Fixed Effect LAD ALD K = 12Variable Coefficients Coefficients Coefficients Coefficients

lngdpp −2.179
(1.1410)

** 1.622
(0.3613)

*** −1.234
(1.2551)

0.964
(1.2023)

***

lnapop −0.058
(0.0545)

−0.046
(0.1172)

−0.196
(0.0595)

*** −0.208
(0.0933)

***

lnurb 0.480
(0.0799)

*** 0.141
(0.0361)

*** 0.655
(0.1180)

*** 0.331
(0.1493)

***

lnenc 0.313
(0.0560)

*** 0.081
(0.0339)

** −0.082
(0.1155)

0.261
(0.1727)

***

lnind 2.889
(0.1716)

*** 0.656
(0.0957)

*** 1.946
(0.3354)

*** 2.355
(0.3692)

***

(lngdpp)2 0.121
(0.0587)

** −0.053
(0.0188)

*** 0.073
(0.0634)

−0.032
(0.0588)

***

Notes: 1. p < 0.01 ‘***‘, p < 0.05 ‘**‘, p < 0.1 ‘*‘; 2. Standard errors are provided in parentheses.

We discuss each estimates in Table 6. The OLS, as a benchmark, ranks first. There has been a short
discussion about this estimation in empirical result section. We test the normality assumption there and
prove an inefficiency of t tests and F test. Such an inefficiency leads to a poor reliability of the estimation
result. Because we cannot make a right confidence in coefficients, there is no guarantee of estimation
accuracy. If we step into the second method, the panel model with fixed individual effects, the same
problem exists. They use effect terms, varying coefficients etc. to deal with heterogeneity. However,
no matter what type a panel model has, all these ones share a common normality assumption of the
final error without effects. Thus, a violation similar to what in OLS will lead to a similar inefficiency of
inferences in spite of the exact type of a panel model.

To obtain a comparability with previous works, we use a panel model with fixed individual effects
like what in [1] to do normality tests. Table 7 demonstrates the results of the same five tests used in
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the empirical result section. We can see each of them rejects the null hypothesis that there is a normal
distribution. Then in the same way as in the discussion about OLS, panel models are unreliable here.

Table 7. Normality tests on panel model.

Test Statistics p-Value

Anderson-Darling Test 7.1695 0.0000
Cramer-Von Mises Test 1.2134 0.0000

Lilliefors (Kolmogorov-Smirnov) Test 0.0669 0.0000
Pearson Chi-Square Test 73.4737 0.0000

Shapiro-Francia Test 0.9492 0.0000

The least absolute deviation (LAD) is known for its robustness especially in thick tail situations
even with infinite variance. It is also listed here to see its effectiveness. Distinct from the previous two,
LAD does not require a normality assumption but only one that the median is able to represent the
whole error distribution. A visual inspection of whether such a representativeness met can be obtained
from Figure 4. The figure clearly indicates a “valley” around the median at −0.098. When considering
the two peaks mentioned before, the reliability of LAD deserves a serious doubt. Besides, another
criticism on LAD says that it is not a conditional mean estimate but describes the median. And what
we do in this work is to find an improvement of the former. But the LAD is still able to work as
a benchmark.

From discussion above, we can see the results of OLS, LAD, and panel models are unreliable.
But things goes different in the ALDs mixture model. The ALDs mixture model does not require a
normal error distribution but a mixture of ALDs. Besides, its result is a conditional mean estimate
but not a median one just like that in LAD. As well not similar to ALD, such a mixture allows
higher plasticity, where plural components are estimated and weighted to approximate the real error.
Then the model is able to match various types of distributions even those without a regular form.
When computed with the two-layer EM algorithm, the ALDs mixture model has efficient estimators
and efficient inferences. Relative proof and Monte Carlo trails can be found in [12]. Therefore, when
compared with the other four methods, the ALDs method is more reliable here and has a better
estimation accuracy.

5.2. ALDs Mixture Model vs. QR and CQR

On the second stage, we compare the ALDs mixture model with quantile regressions (QR) and
composite quantile regression (CQR). Similar to panel models, quantile regressions are widely used to
inspect local behaviours at different quantile levels. A fact is that quantile regressions are indeed not
conditional mean estimate but useful benchmarks. Because there is a natural logic that if a behaviour
appears at each local position then it could be observed at the average level. The logic is applied here
to prove the reliability of the ALDs mixture model.

We do quantile regressions at an often-used group of quantile levels from 0.1 to 0.9 by 0.2. Table 8
demonstrates detailed estimation results with inferences. On the results of lngdpp, we can see all
coefficients positive and significant while each that of (lngdpp)2 is negative and shows significance as
well. A more intuitive inspection can be obtained in Figure 5. Combined with the first stage discussion,
the results of QR prove the reliability of the ALDs mixture model in a different way.

The last estimation to compare with the ALDs mixture model is the CQR method. As mentioned
before, the former is a generalization of the latter. We use cqrReg package in R to do CQR estimate and
the coefficients with inferences by bootstrap are shown in Table 9. In the computation of the likelihood
optimization, the alternating direction method of multipliers (ADMM) is used. In the table, we can see
a highly similar result compared with that of the ALDs method in Table 4. Although we do not know
the true value of the intensities, we are able to say that the ALDs mixture model works at least as good
as the CQR method.
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Table 8. Quantile Regression Result.

Variables τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

lngdpp 1.1615
(0.2041)

*** 0.8314
(0.1508)

*** 0.9248
(0.1533)

*** 0.9336
(0.0723)

*** 1.0673
(0.1147)

***

lnapop −0.1848
(0.0963)

∗ −0.0772
(0.1017)

−0.2801
(0.0780)

*** −0.3285
(0.0328)

*** −0.3063
(0.1153)

***

lnurb 0.3521
(0.1850)

∗ 0.5344
(0.1203)

*** 0.5800
(0.1351)

*** 0.4168
(0.0977)

*** 0.3338
(0.1419)

**

lnenc 0.8111
(0.1123)

*** 0.2063
(0.2340)

−0.1872
(0.1020)

*** −0.0342
(0.0533)

*** 0.2154
(0.0905)

**

lnind 3.5585
(0.3893)

*** 2.4306
(0.3322)

*** 1.8876
(0.3349)

∗ 2.0771
(0.1498)

1.4560
(0.4942)

***

(lngdpp)2 −0.0622
(0.0170)

*** −0.0385
(0.0114)

*** −0.0357
(0.0127)

*** −0.0287
(0.0061)

*** −0.0418
(0.0098)

***

Notes: 1. p < 0.01 ‘***‘, p < 0.05 ‘**‘, p < 0.1 ‘*‘; 2. Standard errors are provided in parentheses.
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Figure 5. Estimators varying with quantile level in quantile regressions.

Table 9. Estimation results of Composite Quantile Regression.

Variable β

lngdpp 1.251
(0.6808)

***

lnapop −0.2054
(0.0688)

***

lnurb 0.4375
(0.1121)

***

lnenc 0.0691
(0.0976)

***

lnind 2.1622
(0.2969)

***

(lngdpp)2 −0.0531
(0.0356)

***

Notes: 1. p < 0.01 ‘***‘, p < 0.05 ‘**‘, p < 0.1 ‘*‘; 2. Standard errors are provided in parentheses.
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6. Discussion

The ALDs mixture model indicates existence of a Chinese Kuznets curve in cities. It helps to learn
a peak of carbon emission in China. With our Chinese cities’ dataset from 2002 to 2012, we launch
at a 2012 Chinese GDP per capita level at 31,171 yuan (2002 Beijing constant price) [1] and the ALD
method’s result shows a symmetry axis at ln 14.837. It means an 8.7% GDP per capita growth if the
country wants to reach the peak in 2030.

Meanwhile, we compare the results of other research to those of this paper. In 2017, Mi et al. [30]
use IMEC (Integrated Model of Economy and Climate) model to do forecasting. They say China will
reach an emission peak at 11.20 Gt (1Gt = 1× 109 tons) in 2026. In another work by Li et al. [24],
three scenarios are applied. These scenarios based on STIRPAT model lead to a similar result that
China is able to achieve the goal in a range from 2024 to 2030. Similar to this, Ren and Xia [31] as well
use scenario method to insight into this topic. They employ Markov chains distinct from STIRPAT
model. However, their work tells us that China will stand on a razor’s edge in 2030. The country needs
to do more to avoid a default. When compared, our result performs coherent.

Corresponding to the peak estimation, discussion about policy making matters. Fan et al. [32] talk
about heterogeneity of carbon emission in policy-making. Huang and Meng [25] use spatial method to
look into it further. In this paper, we use ALDs mixture model to obtain a more accurate estimation.
The result characterizes carbon emission at an entirety level. It is helpful when environmental policies
work as part of the unified structural reformation in China. Xu et al. [33] analyze this Chinese structural
reformation in carbon-creating industries. They warn a policy’s inefficiency at city level when there is
no carbon trading market (CTM) or other designed new policies. A factor-flowing market at city level
can improve the situation. Figure 6 shows that different cities stand distinctly on the distribution. Each
color differentiates one city from another. This corresponds with Xu, Chen and Chen’s result. Then we
can say that there should be more policy autonomy left to cities in the future.
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Figure 6. Residual distribution dyed by city tags.

7. Conclusions

This paper aims to obtain a more accurate estimator of a STIRPAT model. Further, a quadratic term
of logarithm GDP per capita is added to identify the Kuznets curve in Chinese cities. We employ an
ALDs mixture model to do estimate then solve the model with a two-layer EM algorithm. The empirical
result supports the existence of EKC in Chinese cities. Further, we do model comparison to validate our
result, which shows the efficiency of the ALD method. The method works as good as other estimations
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and greater than some of them. At the end, a discussion about policy-making suggests more focuses
on heterogeneity in cities. Because of the heterogeneity, different cities have different economy-carbon
types. When making decisions, cities should have more autonomy to adapt their specific characters for
a better development. On the other hand, GDP is still the main factor of carbon deduction in China.
A more green growth driven by technology innovation, economic structural transformation etc. can
help cites reach their peaks more rapidly.
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The following abbreviations are used in this manuscript:

ALD Asymmetric Laplace Distribution
CQR Composite Quantile Regression
EKC Environmental Kuznets Curve
LAD Least Absolute Derivation
OLS Ordinary Least Square
QR Quantile Regression
STIRPAT Stochastic Impacts by Regression on Population, Affluence, and Technology
IPAT Human Impact, Population, Affluence and Technology
EM Expectation-Maximum
PLS Partial Least Square
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