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Abstract: The water utility sector is subject to stringent legislation, seeking to address both
the evolution of practices within the chemical/pharmaceutical industry, and the safeguarding
of environmental protection, and which is informed by stakeholder views. Growing public
environmental awareness is balanced by fair apportionment of liability within-sector. This highly
complex and dynamic context poses challenges for water utilities seeking to manage the diverse
chemicals arising from disparate sources reaching Wastewater Treatment Plants, including residential,
commercial, and industrial points of origin, and diffuse sources including agricultural and hard
surface water run-off. Effluents contain broad ranges of organic and inorganic compounds, herbicides,
pesticides, phosphorus, pharmaceuticals, and chemicals of emerging concern. These potential
pollutants can be in dissolved form, or arise in association with organic matter, the associated
risks posing significant environmental challenges. This paper examines how the adoption of
new Big Data tools and computational technologies can offer great advantage to the water utility
sector in addressing this challenge. Big Data approaches facilitate improved understanding and
insight of these challenges, by industry, regulator, and public alike. We discuss how Big Data
approaches can be used to improve the outputs of tools currently in use by the water industry, such as
SAGIS (Source Apportionment GIS system), helping to reveal new relationships between chemicals,
the environment, and human health, and in turn provide better understanding of contaminants in
wastewater (origin, pathways, and persistence). We highlight how the sector can draw upon Big Data
tools to add value to legacy datasets, such as the Chemicals Investigation Programme in the UK,
combined with contemporary data sources, extending the lifespan of data, focusing monitoring
strategies, and helping users adapt and plan more efficiently. Despite the relative maturity of the
Big Data technology and adoption in many wider sectors, uptake within the water utility sector
remains limited to date. By contrast with the extensive range of applications of Big Data in in other
sectors, highlight is drawn to how improvements are required to achieve the full potential of this
technology in the water utility industry.

Keywords: water; pollutants; Chemicals Investigation Programme; Water Framework Directive;
SAGIS; environmental risk

1. Introduction

The context and environment surrounding the water utility sector is complex and
dynamic. Continuing evolution of the chemical/pharmaceutical industry, diversity of stakeholders,
the continuous changes in the political context, and economic fluctuation represent just some of the
key drivers. Additionally, there is a growing public awareness of environmental issues, leading to a
perceived need for a fair apportionment of liability within the water industry, which in turn has led to
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more stringent legislation and enforcement [1–3]. This poses serious challenges within water utilities,
especially when addressing potential pollutants reaching the Wastewater Treatment Plants (WWTPs),
with chemicals in the waste stream being diverse in nature, and disparate in sources.

The sources of effluents treated by WWTPs include residential, commercial and industrial points
of origin, as well as diffuse sources such as agricultural and hard surface (e.g., urban, amenity and
industrial) runoff. Consequently, effluents arising contain a wide range of organic and inorganic
pollutants, such as herbicides, pesticides, phosphorous, pharmaceuticals, and a new generation
of chemicals of emerging concern (e.g., PBDE (PolyBrominated Diphenyl Ethers), in use as flame
retardants) [3–5]. These compounds can be present either in dissolved form, or in association with
organic matter [6], and the associated risks pose significant environmental and removal challenges.

A key concern facing water utilities and regulators is therefore the understanding of the complex
sources, pathways, and behaviour of such contaminants arriving at the WWTPs, in order to support
evidence-based decision making and investment planning. This has resulted in industry-wide
initiatives, such as the Chemicals Investigation Programme (CIP) in the UK [7]. The CIP seeks
to provide a baseline for monitoring the chemicals considered likely to reach water treatment
plants, thus providing insight into the behaviour, sources, and control measures applicable to them.
Such approaches draw together a broad spectrum of data sources and types, used to inform the
modelling approaches.

This paper examines the challenges associated with the applicability of existing computational
analytical approaches, applied to such data sources, which may currently be limiting the value of
the information that can be derived. The term Big Data is taken to relate to a collection of hardware
and software tools designed specifically to address complexity inherent in data. These tools are able
to manipulate concurrently substantive datasets characterized by their different volumes, varieties,
velocities, and veracities, which are difficult to process and manage using traditional data management
techniques. The need to process data with one or more of these characteristics forms the core of Big Data
science, colloquially referred to as the “4 Vs” [8]. We consider how adoption of a new generation of
Big Data tools and techniques, specifically designed to be able to handle complex datasets, could prove
beneficial within the water utility sector. This paper also discusses how Big Data approaches can help to
establish new relationships between chemicals, the environment, and human health, providing a better
understanding of the contaminants in wastewater (origin, pathways, and persistence). We highlight
how the water industry is seeking to utilize Big Data approaches to add value to, and extend the
utility of, existing legacy datasets, combined with other contemporary data sources, so extending the
lifespan of extant data held. We focus on investment planning and monitoring strategies, helping users
adapt and plan more efficiently, for example to changes in water legislation, to the shared benefit of
all stakeholders.

From a review of the literature, only a limited reported usage of advanced Big Data techniques was
apparent within the water utility sector, with few examples reported of direct use [9–11], and with these
being limited to concerns over the storage and handling alone of large volumes of data. The integration
of the other tenets of Big Data, such as the integration of data sources with different levels of variety,
velocity, and veracity [8,12], or the utilization and analysis of unstructured data, seems to remain
relatively unexplored in the industry to-date. Due to both the nature and relative novelty of the
technologies considered, many of the references used in this article arise from practitioner and
grey literature.

2. Big Data and the Water Sector

Big Data is becoming ubiquitous today, offering a wide range of opportunities and innovation, in
addition to improvements in analytical insights. Big Data techniques embrace and extend traditional
informatics approaches, allowing a level of data processing that would traditionally have been
unachievable. Rising complexity in new sources of data derive in part from associated reduction in
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the costs of both the generation and storage of data over the last decade, which in turn has led to the
creation, and growing ease of access to substantive datasets [13].

Modern information, generated and handled by organizations and corporations cannot be
compared with the period before the turn of the 21st Century. In 2012, Oracle predicted a global increase
of data generation of 40% per year, growing exponentially from an approximated 0.2 ZB of data held
in 2008 to an estimated 44 ZB in 2020 [14–16]. To emphasize this shift in data generation, Eric Schmidt,
the then Executive Chairman of Google, noted: “Every two days, we create as much information as
we did from the dawn of civilization up until 2003” (Technomy Conference, Lake Tahoe, CA, USA,
4 August 2010). The growing willingness of private and public-sector organizations to grant
access to the data they hold, encouraging its widespread use, in many occasions free of charge,
is facilitating access to an amount of information never possible in the past, for example open
data initiatives via web portals such as data.gov (USA) and data.gov.uk (UK). However, the increase
in volume and sources has been accompanied at the same time by an increasing complexity
impacting on the efficient use of this data. Big Data is still an emerging science that is in constant
evolution, but its successful use has greatly accelerated the processing of data and improved decision
making. It already has proven value in Medicine [17,18], Natural Sciences [19,20], Engineering [21],
Social Sciences [22], and Legislative [9,23] fields. Examples may be drawn from the visual analysis of
air quality [19], the cost-effective allocation of CO2 emissions [24], the evaluation and identification
of cost-effective acid mine drainage management [25], the forecasting of risk in criminal justice
decision [26], the reduction of readmission risk in hospital patients [27], and the improvement of city
governments services [28].

The water utility sector has all the necessary components in place for a widespread application of
Big Data technology, from the control and improvement of potable water quality to the management
of wastewaters. The sector has access to vast stores of data concerning water quality, e.g., dissolved
substances, climate, consumer preference information and usage patterns, and catchment-based
land use activities to name a few. Being able to effectively manage, transform, fuse, and analyse
these datasets as a whole could result in a competitive advantage and a decrease in the uncertainty
surrounding decision making. However, the level of uptake seems to be lower than in other sectors,
where Big Data and machine learning are now used extensively in supporting evidence-based
decision making.

2.1. Development and Expansion of the Big Data Technology

Big Data technology receives considerable public interest. One implication is that the
computational technologies available are being developed in a sustained and prolific manner. Big Data
techniques have significantly reduced the cost and infrastructure requirements arising due to the
development of implicit techniques, allowing the horizontal scalability of resources. This horizontal
scalability consists of the distribution of computational processes along different processing “threads”,
which are allocated to multiple machines working collectively and simultaneously in parallel.
The adoption of concurrent, cheaper and less technologically advanced hardware, compared with
traditional single-thread processing, lowers the time needed for the processing of large datasets.
Data storage has also become more robust, improving and facilitating redundant storage, preventing
data loss, whilst allowing fault-tolerance and increased overall reliability [12,17].

The use of computational infrastructure on demand, also known as the “elastic cloud”
or “infrastructure as a service” (IaaS), is another technological approach that has permitted the rapid
expansion of Big Data applications. This relies on the increase or decrease of the size of an allocated
cluster, storage, or processing capability, in accordance with the immediate needs of the tasks being
undertaken. This drives down significantly the cost of the whole infrastructure, as it permits the
allocation of resources only “as and when” necessary [29,30].

Big Data has generated enormous interest within the private sector, leading to the emergence of
a wide range of products and technologies. In addition, there is also a noted shift towards “service
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as a business” (SaaB), where companies share part, or all of the entire codebase of their products,
or allow the use of their software free of charge, making profit solely from the services associated with
the software [31]. Hosting their product, training, consulting, or technical help then become some of
the services offered to generate revenue. This business model has been used for years by companies
such as SUSE [32] or RedHat [33], which have been offering open-source Linux distributions free
to use. The reason behind this reside in an awareness of the value of the contributions made by the
community, which in turn help accelerate the development of the products, and also help reveal the
early detection and patching of software errors and vulnerabilities.

Other factors, such as the popularization of the IoT (Internet of Things) and the growing interest
in the scientific applications of Big Data have also contributed to the increased pace of development
of the technology. A vast community, focused on the development of free and open-sourced tools,
has arisen around this field, boosting exponentially the development of the technology. SCADA-based
control systems are an area that have been widely exploited by the water sector over many years,
serving the operation of complex plant systems [34,35]; such systems add to the body of available data.

Together, these circumstances have generated a plethora of linked software technologies,
all in constant evolution. There are a wide range of options available for achieving given goals,
with solutions appearing and being withdrawn rapidly, or being fused with other existing software
tools. This is a sign not only of the high interest in this technology, but also of its high complexity and
rapid evolution. A wide range of alternatives is available in both free and paid-for versions, with a
substantive documentation accessible. Figure 1 illustrates this complexity, displaying a small selection
of the different tools used in contemporary Big Data analytics. Many of the tools noted, including
Cassandra and Hbase, belong to the Apache Software Foundation, which provide support to open-source
software projects. The community support of such projects allows for rapid innovation, and highlights
the strong interest in this field.

2.2. Current Use in the Water Sector

Searches of literature in scientific databases (Scopus®, Web of Science®) reveals limited
documented uses of Big Data approaches in the water industry. The implementation of smart meters
and smart sensors being one area generating large amounts of near-real-time information, permitting
water companies to deliver better services and improved infrastructure, drawing upon Big Data
techniques [36–41]. However, the application of these technologies across other business activities,
such as the better characterization of water effluents, or the better understanding of the water quality,
seem as yet relatively unexplored. This was highlighted by the low number of results obtained during
the search of certain combination of keywords in peer reviewed publications (Table 1). Relevancy
was established in each case through consultation of the article metadata and content where made
available. In the specific case of the use of Big Data in the evaluation of the risks posed by the presence
of certain chemicals in water, there seem to be no relevant publications to date. The cause for the low
return in results can be either due to the non-existence of this type of use within the industry, or due to
corporate unwillingness to disclose such information.

In seeking to ascertain those publications in academic journals, specific keywords were applied in
Scopus® and Web of Science®, and the limited set of results recorded. The same search terms were
also used in Google Scholar®, obtaining thousands of results, due to the inclusion of other kinds of
publications (grey literature) and websites in addition to the exclusively peer-reviewed academic
journals. Nonetheless, the relative novelty of this science makes the grey literature an important source
as it can provide an insight on the enormous industrial interest in this field. It is observed that, due to
the nature of the evolution of this technology, the number of publications in grey literature is greater
than those appearing in scientific publications.
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Table 1. Search results for keyword combinations within two scientific databases (Scopus®, Web of
Science®) (March–May 2017).

Searched Term
Scopus® Web of Science®

Results Relevant Results Relevant

“Big Data” AND “sewage” 6 1 2 1
“Big Data” AND “pollutants” AND “water” 5 3 3 1

“Big Data” AND “risk” AND “chemicals” AND “water” 5 0 0 0

3. Key Considerations

To understand the current situation within the water industry, it is necessary to address the
context within which the different stakeholders operate. Modern society has added a complexity to
the water sector in hitherto unimaginable ways. Population increase, scarcity, and depletion of natural
resources, increases in industrial processes, stringent legislation, and privatization of water companies
are just some of the influencing factors that need to be considered. Figure 2 identifies some of the key
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drivers in the UK water sector. As may be seen in Table 2, there are many stakeholder organizations
influencing in the UK water industry, each having different drivers, priorities, and constraints, which
frequently conflict. Simultaneously, the systems and conditioning factors are also continuously
evolving, potentially hindering long-term solutions.
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Figure 2. Some of the factors affecting to the complexity of the water sector, which need to be carefully
considered in order to understand the current situation of the water sector.
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3.1. Stakeholders Constraints—Public, Shareholders, Regulators, Government, Environmental

The diversity of the stakeholders involved (defined by Freeman [42] as “those groups and
individuals who can affect and are affected, or are affected by, the accomplishment of organizational
purpose”) provides an additional factor contributing to the complexity of the UK water utility sector.
Each of the key UK stakeholders (Table 2) plays an important role in the development, direction
and implementation of policies and practices. It is important to highlight how different geographic
regions in the UK also have different stakeholders with equivalent responsibilities. For instance,
the environment agencies acting as Competent Authorities are the Environment Agency (EA) in
England and Wales, the Scottish Environment Protection Agency (SEPA) in Scotland, and the Northern
Ireland Environment Agency (NIEA) in Northern Ireland. Knowledge of the main drivers for each of
these groups is important in gaining an understanding of the operation of the water sector.

Table 2. Classification of the key influencers in the UK water sector and some examples of membership
of each class.

Role Name Region

General interest Customers General

Government

Welsh Assembly Government (WAG) Wales
Countryside Council for Wales Wales
Joint Nature Conservation Committee (JNCC) UK
Natural Resources Wales (NRW) Wales
Scottish Natural Heritage (SNH) Scotland
Department for Environment, Food and Rural Affairs (DEFRA) UK

Industry

Anglian Water East of England
Dŵr Cymru Welsh Water Wales
Northumbrian Water North East England
Severn Trent Water West Midlands, East Midlands
South West Water South West England
Southern Water South East England
Thames Water Greater London, Thames Valley
United Utilities North West England
Wessex Water South West England
Yorkshire Water Yorkshire and the Humber

Industry/Government Northern Ireland Water Northern Ireland
Scottish Water Scotland

NGO The Canal & River Trust England and Wales

Regulatory

Environment Agency (EA) England and Wales
Natural England England
Northern Ireland Environment Agency (NIEA) Northern Ireland
Northern Ireland Environment Agency (NIEA) Northern Ireland
Scottish Environment Protection Agency (SEPA) Scotland

3.2. Complex Systems and Their Continuous Evolution

Directly or indirectly, chemical usage is embedded in most human activities. In many cases,
chemicals are discharged to the environment once the associated activity or process is concluded.
The presence or accumulation of such chemicals may pose a danger for humans or natural wildlife.
As a main receptor and transport agent for chemicals, water bodies can cause diffusion of these
substances, in certain geographical cases even with a trans-national dimension. This issue is aggravated
with the continuous increase in the use and emergence of new chemicals [43,44], and the complexity of
the physical, biological, and chemical interactions taking part in the ecosystem and organisms. In some
cases, the magnitude of the consequences are unknown, and the process to assess consequent risk
can take a significant time (sometimes >10 years, as outlined in a report from the American National
Research Council (NRC) [43]). This represents a challenge for scientists and engineers, industry,
and policy makers, all of whom require a strong evidence-base, able to support the decisions taken.
Environmental legislation and its evolution in time is further representative of this complexity.
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With the need for a fair apportionment, growing public interest, and the evolution of legislative
frameworks, the continuously evolving fraction and composition of the chemicals reaching the water
bodies presents a challenge in itself. Some of these chemicals can be present at concentrations less
than current detection limits, or they can accumulate in the environment, while others can pose a yet
unknown risk for humans and/or the environment [4,45–48]. For example, the PBDE limit proposed
by the EU of 0.000000049 µg/L is several orders of magnitude below the levels achievable by even
advanced treatment [5].

3.3. Environmental Concerns

Knowledge of the nature of the pollutants present in the influents reaching WWTPs is relevant not
only for the preservation of water bodies, but also for the protection of land. WWTPs apply different
processes to effluents to promote the removal of both particulate matter and dissolved pollutants,
to meet quality standards. This generates large amounts of biosolids, rich in nutrients, and of great
economic and environmental interest for agricultural or amenity use. However, a wide range of
substances, some of them undesirable, persist [49–51], and can be transferred to land and the food
chain after application [4,52], examples being phosphorus, metals, and endocrine disruptors. Economic
and environmental restrictions for the use of alternative disposal options (e.g., combustion and disposal
at sea) have led to an increase in the proportion of wastewater sludge recycled to agricultural land.
Ofwat (the UK Water Services Regulation Authority) have estimated a rise from approximately 44% in
1992, to 80% in 2010 [53], whilst Cooper et al. [54], estimated the amount of sewage sludge recycled to
agriculture as approximately 71% in 2013.

The adoption of European legislation concerning water and environment, and more specifically
the Water Framework Directive (WFD), has significantly affected the control measures used for the
protection of surface waters. The WFD [55] and other Directives identify a series of substances present
in water that were previously under insufficient control, setting out “strategies against pollution of
water”, and defining the gradual procedure to remediate this problem. The substances identified were
classified as priority (PS) or priority hazardous substances (PHS), and environmental quality standards
(EQS) were also set for surface waters. The WFD state the necessity of compliance with the EQS for
all the priority substances and the other pollutants listed so as to achieve “good chemical status” [56].
Competent Authorities (displayed in Table 3 for the UK) are responsive of the survey and monitoring
of the water bodies to identify pressures, for detection of long-term trends, and classification of their
status. Assessments are based on the evaluation of a range of biological communities rather than the
sole measurement of chemicals. Although it is recognized as a more integrative and effective method
for evaluating and measuring the ecological quality, there is still a series of gaps hindering this task.
Some of them are expressed in the River Basin Management Plan for the UK, one of the Parliament’s
POSTnotes [57]:

• A large amount of data is required to obtain a high level of certainty in the decision making,
something that is not always possible.

• The monitoring of water bodies is needed at a larger scale to identify the causes and effects of
failures to meet the “good” status.

• Seasonal river fluctuations happen naturally, and it is expected to be more frequent in the future
due to climate change. Lower river flows mean lower dilution of pollutants, which can lead to
more severe impacts of the contaminants. It can also generate a series of technical difficulties
identifying sources and impact of contaminants. In addition, pollutants assessed in an annual
base can be subject to an underestimation of the effects.

• Historical industrial sites can also be a source of surface and groundwater pollutants. However,
site location and characteristics of the pollutants emitted are not always known.

• Storm drains can carry a variety of contaminants derived from urban run-off and misconnections
of domestics and commercial sewers, which eventually will derive into the waterbodies.
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Hering et al. [58] also states some of the other gaps derived from this approach, such the
heterogonous response of these biological communities to stress and restoration, and the need of
long-term monitoring data to understand the aquatic ecosystems.

Table 3. Regulations and competent authorities responsible for the transposition of the WFD into the
British legislation.

Region Legislation Competent Authority

England and Wales
The Water Environment (Water Framework
Directive) (England and Wales) Regulations
2003 (Statutory Instrument 2003 No. 3242)

Environment Agency (EA)

Scotland
The Water Environment (Water Framework
Directive) Regulations (Northern Ireland)
2003 (Statutory Rule 2003 No. 544)

Scottish Environment Protection
Agency (SEPA)

Northern Ireland The Water Environment and Water Services
(Scotland) Act 2003 (WEWS Act)

Northern Ireland Environment
Agency (NIEA)

4. Key Opportunities and Challenges

As it has been mentioned previously, Big Data techniques have been proved useful for supporting
decision making and the prediction of outcomes. The development of a new generation of sensors,
more accurate, smaller, cheaper to manufacture, and able to transmit the information in almost real time,
is a contributing factor to the ubiquity of devices generating data of use for the water industry [59–63].
However, despite having access to a broad range of data sources and technical resources, the water
utility sector appears to make very limited use of it for the improvement of water quality and source
apportionment. A wider application of these techniques can provide context to data already available
by water companies and regulators (e.g., CIP data, climate data, water quality data, and customer
data), thus allowing the extraction of additional valuable information. The use of these techniques
will support the provision of evidence required in the decision-making process. This can be achieved
with the use of analysis techniques such as machine learning, which is able to extract additional and
more accurate patterns and relationships from data. Results can provide better understanding of the
processes occurring and help support a rationale for an improved decision making, to the benefit of
industry, regulators, and customers alike. Table 4 displays some of the potential applications of Big Data
for contributing in the decision-making process and the apportionment of liability in the water industry.

Table 4. Potential contributions of Big Data in addressing characterization and apportionment
of liability.

Contribution Factor Opportunities for the Use of Big Data

Points of origin

Residential

Characterization of the population: age, gender, health status, density,
behaviour, etc. This can be used to infer the presence of certain drugs,
medicines and other chemicals in water, and to explain the presence of
certain volatile chemicals.

Commercial

Identification of commercial activity: food services, car cleaning,
storage of cleaning products, storage of paints, etc. Different activities
might use different chemicals, each posing risks to the environment,
and which can reach the sewage system by varied pathways. Certain
services such as Google Maps® already hold extensive databases with
the location and type of commercial activity.

Industrial

Characterization of the industrial activity and the kind of chemicals in
use, historical presence of industry and discharges/leaks. This can be
used not only for the apportionment of the pollutant contribution to
wastewater, but also for establishing background levels of chemicals,
and achieve a more accurate risk assessment.
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Table 4. Cont.

Contribution Factor Opportunities for the Use of Big Data

Diffuse sources

Agricultural

Characterization of activity: crop, livestock, type of operation
(extensive/intensive), soil classification, historical chemical
composition of water bodies. This will not only contribute to a more
equitable apportionment of responsibilities, but also to the prediction of
outcomes according to external factors such as rainfall.

Hard surface run-off
(urban, amenities,
industrial, etc.)

Identification of sources and factors with influence on the run-off:
urban areas, population density, soil classification, traffic information,
weather data, pipe bursts, industrial activity, open-air activities
(concerts, camping areas, etc.) which can impact on the composition of
the run-off water. A classification of the permeability of surface can be
also used for modelling at large scale contribution of chemicals.

4.1. Improved Efficiencies, Streamlined Processes

The information holdings of water companies, government, and environmental agencies include
large datasets comprising diverse information from different sources, e.g., analytical observations,
land measurements, weather data, satellite multispectral imagery, and geo-referenced asset location,
maintenance and performance and customer demographics, as well as comprising differing types of
data—geospatial, temporal qualitative and quantitative in nature. Such resources may be collectively
being classified as Big Data. Contemporary and emergent Big Data techniques can help overcome
some of the challenges inherent in storage, maintenance, and analysis of such a diversity of data.

4.2. Improved Evidence Based Decision Making in the Water Industry

The correct application of these techniques offers the potential to provide insight as to the source,
behaviour, prevalence, and destiny of chemicals reaching sewage and, ultimately, water treatment
plants. Decision-making can be informed through incorporation and analysis of the wide spectrum of
external datasets such demographic or thematic environmental information (e.g., soil, geology and
meteorology), which in turn can enlighten new relationships between elements not initially considered.
These approaches can also lead towards the extraction of additional outcomes from existing data,
drawing upon the use of analytical techniques, as well as the means to convey, communicate and
display the results in a manner whereby each of the target groups can be easily understood. This can
be used to achieve more efficient approaches for the control of chemicals, and to ensure that current
legislation is realistic and effective.

4.3. Use of Machine Learning for the Better Analysis of Hold Data

In the process of knowledge acquisition aimed to provide a better understanding of the natural
world, observed natural phenomenon must be analysed to establish patterns that can support
explanations. This procedure commences with the detection of regularities in data, continuing with
the formulation of hypotheses that can characterize those regularities, finishing with the testing of
the hypotheses against new data to evaluate legitimacy. This procedure is known as data mining [64].
It is time-consuming, and it can become challenging depending on the nature (e.g., volume, kind,
or veracity) of the data holdings in question. However, machine learning algorithms can be used to
support the rapid characterization of patterns in data [65], being of great interest for the analysis of
data of large volume or complexity.

Samuel [66] offered an early definition of machine learning as “a field of study that gives
computers the ability to learn without being explicitly programmed”. The definition has evolved over
time, currently being understood as “the process by which a computer can work more accurately
as it collects and learns from the data it is given” [67]. Its use is increasing with the popularization
of open-source software, free and fast access to data, a diminution of the price of the infrastructure
required to analyse and store the data, and advances in computational techniques.
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Machine learning algorithms (Table 5) can be grouped by their learning style into three
groups, namely supervised machine learning (SML), semi-supervised machine learning (SSML) and
unsupervised machine learning (UML). The difference between these lies in the use or not of annotated
training data. SML algorithms are provided with characterized training data representing how
judgements might be provided by an expert. The goal is to minimize error in future classification
judgements with respect the given inputs, predicting or forecasting target values. After training and
validation is complete, SML machine learning approaches can be used effectively in prediction of
new observations. UML uses unlabelled data, not being any classification or categorization present
among the input observations. The aim of these kinds of algorithms is to infer hidden structure from
the input data, finding generalities in the data that can be of use. However, in this case there is not
an a-priori basis to judge goodness of results from UML, the goal being to establish interesting and
useful generalities in data [65]. SSML algorithms make use of a combination of labelled and unlabelled
input data, existing a desired prediction problem, but expecting the model to also learn the structures to
organize the data. Large amounts of unlabelled data is used in conjunction with labelled data to construct
better classifiers [68]. Supervised machine learning is generally more appropriate for classification and
regression tasks, while unsupervised learning approaches suit clustering and association mining [64,67].

Table 5. Example algorithms used in machine learning.

Learning Style Example Algorithms

Supervised Machine Learning

Decision trees, neural networks, Naïve Bayes, Support Vector Machines,
K-Nearest Neighbours, Logistic regression, Adaboost [69,70],
Generalized Linear Models, Linear and Quadratic Discriminant
Analysis, Neural Network Models, etc.

Unsupervised Machine Learning
Single Link, Complete Link, CobWeb, K-Means, Expectation
Maximization, Artificial Neural Networks, Support Vector Machines,
Gaussian Mixture Models, Neural Network Models, etc.

4.4. Fusion—Integration of All Sources

The continual improvement in the effectiveness of machine learning algorithms, along with the
ease in the generation of data, is allowing their increasing use in decision support, with noted examples
in Medicine [71], Biology [72], and the Social Sciences [26]. However, expert judgement is still needed
to incorporate assumptions beyond those required for the prediction methods, usually not testable
but influencing the results, and the verification of the outcomes [73]. It is also necessary to use a risk
assessment method able to integrate different sources of decision process and the expert judgement.
In this case, Weight of Evidence has been proven useful in environmental risk assessment [74–77],
and its use in combination with Big Data techniques will allow a holistic approach able to assist
decision makers in the process of risk assessment.

The use of different datasets implies handling data with different characteristics (e.g., type,
volume, and confidence level). As a result, it is necessary to augment the use of databases with
different approaches to those of traditional SQL databases to handle this diversity. NoSQL databases
(referred as not only SQL [12]), such as “MongoDB”, allow the storage of data in “documents”,
with non-normalized data models, without predefined structure, and easily horizontally-scalable.

4.5. CIP as an Example of Decision Challenge

The need to complying with the EQS set by European Union Directives is particularly challenging
for wastewater. The large number of chemicals involved, the analytical challenge of working with very
low concentrations (ng/L), and the complexity of reactions and interactions difficult the process [3].
In the UK, the CIP is a strategy being developed by the industry and regulators, and driven by the UK
Water Industry Research (UKWIR), for better understanding the challenge and risks that the presence
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of certain pollutants in water represent. It comprehends the characterization of a series of chemicals of
especial interest likely to be found in effluents from WWTPs [3,7].

The first phase of the CIP was undertaken between 2009 and 2012, with the objective of monitoring
those chemicals considered most likely to reach the water treatment plant, so providing an insight into
the behaviour, sources, and applicable control measures. Final effluents from 162 WWTPs, distributed
throughout England, Scotland and Wales, were sampled either 14 or 28 times over a period of one
year. A total of 70 determinants were targeted, 64 of which were trace contaminants situation. Results
obtained have contributed with useful findings and provided a deeper insight of the current status of
the sector [2–4]. The substantive and diverse data this study has generated has been used for guiding
rational decision making within the water industry [78]. However, there are a series of factors which
limit the amount of information which can be obtained by using this data alone, including:

• The vast amount and associated variety of measurements: The number of individual
measurements is such that the correct handling and transformation presented a challenge. Storing,
classification, and handling of this data requires the use of adequate methods for its effective use.

• The values obtained lack context: The complexity of the relationships between the different
elements and processes taking part in the environment requires consideration of more than just
the concentration of a chemical to evaluate its true impact. For instance, rainfall will affect the
water level of the water bodies, thus affecting the concentration/dilution of chemicals and their
effect/efficacy. It is necessary also to consider the natural eutrophication levels for the water body
considered, as some rivers are naturally more eutrophicated than others. This can be achieved by
considering the historical water quality status for each location.

• Unknown repercussions of the presence of some of the chemicals: While the impact of the
presence of some chemicals in the environment is well known, science still lacks enough evidence
to determine the direct or indirect effect for some combinations, or their long-term presence.

• The presence of a chemical or group of chemicals can influence the behaviour of others:
Some chemicals can alter the behaviour or the impact of others, enhancing or reducing consequent
effects. For example, high levels of phosphorus can lead to higher levels of eutrophication, which
in turn affects biodegradation rates of other contaminants.

The use and incorporation of external datasets, such as meteorological data, demographics,
and historical industry presence, is required to provide information complementary to the
measurements, thus solving current gaps and extending the period in which this data can be of
use. Drawn from the literature, Table 6 displays some of the technical solutions to the limitations noted.
Databases such EU Agri4Cast or the UK Census data are freely available, and have been chosen to
contextualize the results obtained in the first phase of the CIP. Their use provides the support needed to
aid identification and control of sources, and the optimization of current remediation processes, which
are some of the needs highlighted by Gardner et al. [3] after the study of the data obtained. This not
only extends the period in which the data hold can be of use, but it can also unveil more effective
strategies for the control of trace substances. Table 6 further suggests the use of both Supervised and
Unsupervised Machine Learning approaches for use in predicting the concentration or presence of
pollutants in other locations of the UK, while algorithms drawing on the latter approach can also be
used for finding new ways by which the chemicals act.
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Table 6. Limitations identified in the CIP data and some proposed solutions. * Materials comprehend
both software and datasets.

Limitation Proposed Solution Materials * of Interest

Vast amount and associated
variety of measurements NoSQL database Non-relational database

Measures lacking context (for
the particular case of the UK)

Agro-meteorological data Agri4Cast [79]

Climate data and climate change
projections UKCP09 [80]

Historical flood data Remotely Sensed Flood Estimates [81] and Historic
Flood Map [82]

Historical mining locations Inventory of Closed Mining Waste Facilities [83]

Historical pollution levels The Environment Agency “What’s in Your
Backyard?” service [84]

Historical river water quality status
Environment Agency Water Quality Archive
(WIMS) [85] and Environment Agency’s Historic
River Quality Data [84]

Population data
UK Census (Age distribution, sex distribution,
general health, population density, social class
distribution) [86]

River levels River and sea levels in England [87] and Wales river
levels [88]

Sensitive areas Eutrophic lakes [89], eutrophic rivers [90], and nitrates
rivers [91]

Soil classification LandIS [92]

Unknown repercussion of the
presence of chemicals Machine Learning Supervised and Unsupervised Machine Learning

algorithms

Influence of the presence some
chemicals on others Machine Learning Supervised and Unsupervised Machine Learning

algorithms

4.6. SAGIS as an Example of Decision Challenge

SAGIS (Source Apportionment GIS) is a collaborative source apportionment model sponsored by
UKWIR, the Environment Agency, and the Scottish Environment Protection Agency. SAGIS is being
used in the UK to provide the necessary rationale to support fair apportionment for the water industry
under the “polluter pays” principle of the EU, ensuring that the WFD is implemented effectively. It is
built on the Environmental Agency’s SIMCAT model, and combines GIS, export coefficient databases,
and water quality models [93]. The outputs generated are used in the prediction of determinants
(namely, nitrate; ortophosphate; diethylhexyl phthalate (DEPH); benzo-a-pyrene; fluoranthene;
naphthalene; nonylphenol; triclosan; ethinylestradiol (EE2); PBDE (sum of BDE congeners 28, 47, 99,
100, 153 and 154); tributyltin (TBT); and total and dissolved phases of cadmium, copper, mercury,
nickel, lead, and zinc), also included are contributions to modelled water concentrations, and the
comparison of simulated outputs with observed river monitoring data.

SAGIS aims to incorporate all major point and diffuse source applicable to a range of substances,
providing evidences for the rational identification of effective programs of measures to meet required
EQS, of sources of contamination (not only those arising from sewage treatment) and the evaluation
of the significance for each of them. Data inputs used in SAGIS include river network, hydrology
and river monitoring data, water body boundaries, rainfall, land use and agricultural data, on-site
wastewater treatment system, sewage treatment works, combined sewer overflow (CSO) and storm
tank locations, soil erosion, highway run-off and pollution inventory, industrial discharges to river,
and sewer (including extensive sewerage treatment works data) databases. However, the paucity of
key data available has necessitated only a limited validation to date of the modelling outcomes for
organic compounds.

Further incorporation of Big Data and machine learning may enhance the functionality of the
model, allowing a deeper understanding of the sources of chemicals and incorporation of new
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substances leading to more accurate predictions. For example, the presence of certain groups of
pharmaceutical chemicals can be inferred from the age group of the population contributing to the
effluents. In the same way, historical data can be used to fill the current gaps in the WFD, providing
the necessary background for the judgement in the heterogeneous response of biological communities
to stress.

5. Discussion and Conclusions

Modern technologic advances have reduced significantly the difficulty and costs for the generation
and storage of data, being the current generation ratios beyond comparison with those in the
past. In addition to it, some companies and governments are facilitating access to some of their
datasets, encouraging their use. Furthermore, popularization and increasing of public interest is also
contributing to the fast development of this technology and the creation of a complex and rapidly
evolving “ecosystem” of hardware and software.

Big Data with machine learning have proven useful in supporting decision making and the
prediction of outcomes in different fields. Despite having access to a large number of resources
(datasets and sensors), there is a low number of peer-reviewed documented applications in the
improvement of water quality and the study of sources and pathways of pollutants in water.

The water sector is a complex system, with many causal affects between variables that influence
the water quality and the decision-making process. Some of the challenges being faced are the
need for a fair apportionment, a growing public interest, the evolution of legislative frameworks,
and the continuously evolving fraction and composition of the chemicals reaching the water bodies.
Furthermore, the presence of chemicals in concentrations below detection levels, with an accumulative
nature in the environment, or with an unknown risk for humans and/or the environment, suppose an
additional obstacle for the appropriate risk assessment.

In the particular case of the UK, the adoption of European legislation (and more specifically the
Water Framework Directive) has significantly affected the control measures for the protection of surface
waters. The need for a rationale able to support a fair apportionment of liability within the water sector
has led to the development of the CIP and SAGIS. Both approaches have generated useful results,
but they have also highlighted a series of gaps which can be addressed through the use of Big Data.

The first phase of the CIP (from 2009 to 2012) consisted in the monitoring of those chemicals
most likely to reach water treatment plants and the characterization of final effluents of 162 WWTPs
from England, Scotland, and Wales. The aim of this phase was to gain a better understanding of
the sources, behaviour, and control measures, used in guiding rational decision making within the
water industry. However, measurements obtained lack the context required to unveil the true impact.
Big Data approaches can be used for providing background considerations of the results (Table 6),
thus permitting the identification of sources, provision of better assessment of current remediation
processes, and an increase in the period of time over which this data can be of use.

SAGIS outputs are used in the prediction of determinants, contributions to modelled water
concentrations, and comparison of simulated outputs with observed river monitoring data. It provides
rationale support to ensure the effective implementation of the WFD and a fair apportionment work
for the water industry under the “polluter pays” principle of the EU. However, improvement is needed
in the modelling approaches used for organic compounds. Incorporation of Big Data and machine
learning can provide a deeper understanding of sources of chemicals, and unveil relationships between
chemicals which could be of use for the enhancement of the model.

The British legislative context is going through a crucial stage after the Brexit referendum
in 2016. Although currently the exact nature of the future relationship between the UK and EU
remains to be determined, current European legislation is already being transcribed into British law.
Consequently, ratifying or modifying such laws will require supporting evidence, specific to the
British context. Current legislation is not lacking in areas requiring improvement in the evaluation
of ecological quality, with specificity for each location required and accounting for numerous factors
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(e.g., historical industrial legacy, weather, and adapted species) each exerting significant influence.
Big Data approaches have proven to be effective in the merging of diverse and large datasets in
other fields, providing more accurate and precise outputs and its application therefore promises to
offer a strong evidential-based supporting role pertaining to the water sector in both legislative and
decision making.
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