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Abstract: An important component of modern landfills is the liner system for the prevention of 
leachate contamination of surrounding ground. Among landfill liner systems, geosynthetic clay 
liner (GCL) has gained widespread popularity across the world because of its lower hydraulic 
conductivity as well as its ability to self-heal local damage, which is almost unavoidable in the field. 
Over the past few decades, numerous studies have been conducted to examine the performance of 
GCLs, particularly in regard to hydraulic conductivity, chemical compatibility, water-swelling, self-
healing capacity, diffusion characteristics, gas migration, and mechanical behavior. In this paper, a 
brief introduction on modern GCL products is firstly given. Subsequently, the main findings of 
previous publications on the critical properties influencing the long-term performance of GCLs are 
summarized in a comprehensive manner. Finally, further research perspectives on polymer-treated 
GCLs are presented. This paper provides general insights that help readers gain a state-of-the-art 
overview of GCLs and trends for future development. 
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1. Introduction 

Solid waste, which includes waste generated from mining, industrial and agricultural operations, 
urban construction [1–3], and community activities, commonly contains a variety of contaminants 
that may pose significant hazards to public health and the environment. In order to minimize the 
environmental impact, solid wastes generally require disposal in either a physical (e.g., crush, 
compaction, combustion) or a biogeochemical manner (e.g., composting, incinerating). No matter 
which treatment method is adopted, disposal by land-filling is often the eventual fate for most solid 
waste via cutoff from surrounding groundwater system [4–10]. In developed countries, the 
development of land-filling can be divided into three stages [11]: (i) the direct dumping of waste 
before the 1940s; (ii) sanitary landfills from the 1940s to 1970s, in which the waste was covered by dirt 
with no barrier liner; (iii) closed landfills after the 1970s, which had barrier liner systems to limit 
contaminant migration into the surrounding environment. 

The barrier system is a critical component of modern closed landfills. In the early 1980s, the 
barrier system of a landfill mainly comprised of compacted clay liner (CCL). This was progressively 
substituted by geomembrane (GM) by the end of 1980s. Since the 1990s, the composite liner system 
GCL (geosynthetic clay liner) has gained widespread popularity. The geosynthetic clay liner is 
composed of a layer of bentonite supported or encased by geotextiles or geomembranes. Compared 
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to the compacted clay liners and geomembranes, GCLs have a variety of advantages, such as low 
hydraulic conductivity, high mechanical behavior, and simple and rapid installation in the field. 
Moreover, the high-swelling capability of bentonite in GCL enables local damage caused by field 
installation to self-heal in some circumstances. Owing to these advantages, GCLs are also adopted in 
many other geotechnical applications, such as dams, artificial lakes, sewage-treatment ponds, storage 
tanks, landfills, contaminated sites, etc. [12–21]. 

Over the past three decades, extensive studies have been conducted on the physical and 
mechanical properties of GCL and/or bentonite-based barriers in geoenvironmental applications [22–
28]. Generally, the properties of GCLs have been investigated according to the following aspects: (i) 
hydraulic conductivity and chemical compatibility; (ii) self-healing capacity; (iii) diffusion; (iv) gas 
migration; and (v) mechanical behaviours, e.g., creep behavior [29]. These properties are closely 
related to bentonite’s form and mineralogy, which have also received much attention in the past 
decade. Moreover, due to the increased application of GCL materials in mining and industrial 
processes (e.g., heap leach pads etc.), many studies have been conducted to investigate the effect of 
exposure to extreme environments and conditions (i.e., excessive cold, excessive heat, hyper-salinity, 
strongly acidic, strongly alkaline, etc.). To better deal with these effects, the modification of bentonite 
also became a research hotspot. One of the typical innovations is polymer-treated bentonites in GCLs 
[30–32]. The objectives of this paper are: (i) to provide a comprehensive summary on the main 
findings on the above-mentioned five aspects of GCLs over the past few decades; (ii) to provide 
perspectives for further studies, e.g., polymer-treated GCLs. 

2. Configuration of Geosynthetic Clay Liners 

Figure 1 shows a typical liner system in a municipal waste landfill with the configuration of the 
covering and bottom liners, which are generally composed of geomembrane, geotextile and other 
geomaterials. GCL is one of the most important impermeable materials in the liners. GCL comprises 
a layer of bentonite supported by a geomembrane or sandwiched between two geotextiles. The 
thickness of a GCL is typically 5 mm to 12 mm. According to the type of geosynthetics adopted, GCL 
can be divided into the following two categories: (i) GT-GCL (geotextile-encased GCL), which is 
composed of two geotextiles and a thin bentonite layer sandwiched between them, mechanically held 
together by method of needle punching, stitching or chemical adhesives; (ii) GM-GCL 
(geomembrane-supported GCL), which comprises of a layer of geomembrane and a layer of bentonite 
pasted to it using non-polluting adhesive [33]. The photos for various types of GCL are given in 
Figure 2. 
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Figure 1. Structure of a typical landfill: (a) schematic of a typical landfill (modified from Du et al., 
2009) [28]; (b) structure of covering liners; (c) structure of bottom liners. 

  
Figure 2. Basic types of geosynthetic clay liners (GCLs): (a) geotextile-encased (GT-GCL); and (b) 
geomembrane-supported (GM-GCL). 

Figure 3 schematically illustrates the configurations of the GCLs, including three types of GT-
GCL (needle-punched, stitched-bonded, and adhesive-bonded) and one type of GM-GCL. The 
needle-punching method of GT-GCL involves piercing fibers from upper geotextile to the bottom 
geotextile. These fibers extend through the bentonite and rely on natural entanglement or being fused 
(called “thermal lock”) to the bottom geotextile in order to bond the GCL together. The stitching 
method of GT-GCL is to sew the geotextiles and bentonite together by using stitching-bonded yarns. 
The pasting method of GT-GCL is to incorporate non-polluting adhesive into bentonite and then 
paste on two layers of geotextiles. This method creates a relatively lower bonding strength than the 
needle-punching or stitching methods. For GM-GCL, the bentonite mixed with adhesive is pasted to 
one layer of geomembrane. In order to provide primary protection during installation, a thin layer of 
geotextile is also adhered on to the surface of bentonite. 
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Figure 3. Configurations of GCLs: (a) GT-GCL (needle-punched); (b) GT-GCL (stitched-bonded); (c) 
GT-GCL (adhesive-bonded); (d) GM-GCL (adhesive-bonded); (modified from Koerner, 2005) [34]. 

The bentonite in GCL has extremely low hydraulic conductivity and high swelling capacity. 
Bentonite has a high creep behavior to keep the hydraulic conductivity of GCL low [35–42]. For a GT-
GCL, the role of the bentonite is to reduce the hydraulic conductivity of GCL and to repair local 
damage. For a GM-GCL, since the geomembrane has a very low hydraulic conductivity, the main 
function of the bentonite is to repair local damage. The bentonites commonly used in GCLs are: (i) 
sodium bentonite, and (ii) calcium bentonite. Calcium bentonite has a higher hydraulic conductivity 
than sodium bentonite. In engineering practice, calcium bentonite is usually treated with sodium 
compounds such as sodium carbonite prior to use in order to reduce its hydraulic conductivity [43–
45]. 

3. Properties of GCLs 

3.1. Hydraulic Conductivity and Chemical Compatibility 

Working as a hydraulic barrier, hydraulic conductivity is the most critical parameter to evaluate 
the effectiveness of the GCLs. Generally, the barrier effect of GCL is achieved by the bentonite within 
it, which has extremely low hydraulic conductivity similar to that used in the lubricant in pipe jacking 
[46]. The only exception is GM-GCL in which geomembrane acts as the water barrier. 

Bentonite is basically composed of smectite, whose crystal structure consists of a layer of 
aluminium-oxygen (or magnesium-oxygen) octahedron, (Al2(OH)6, Mg3(OH)6), sandwiched between 
two layers of silicon-oxygen tetrahedral ((Si4O10)4-). Each clay sheet is composed of several or dozens 
of these structure cells, and layers of structure cells are connected to each other via Van der Waals 
force. These connections are comparatively weak so that the water molecules can intervene easily, 
causing swelling of the smectite on the macro level. Figure 4 gives an illustration of the crystal 
structure of smectite and the crystalline-swelling mechanism. 

 

Figure 4. Smectite: (a) crystal structure of smectite [47]; (b) crystalline-swelling mechanism (modified 
from Ruedrich, et al., 2011) [48]. 
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The smectite has high specific surface area, e.g., about 800 m2 for 1 g of smectite, and a vast 
number of negative charges on it. To achieve charge balance, the surface will adsorb the cations in 
the pore water, forming a “diffuse double layer” (DDL) [49–51]. Figure 5 gives an illustration of the 
typical diffuse double layer. The thickness of DDL (H) can be calculated by the equation proposed by 
Bolt (1956) [52]: 

2 28
DkT

H
nπ ε ν

=  (1) 

where, D = dielectric constant of solution; k = Boltzmann constant (k = 1.38 × 10−23 J/K); T = absolute 
temperature; n = molar concentration; ε = elementary charge (ε = 4.8 × 10−20 esu); and ν = ionic valence. 
Moreover, electrostatic forces can attract numerous ions into the space between the clay particles, 
which causes a large difference of ionic concentration between the clay mineral surface and the pore 
solution. Driven by concentration gradient forces, water with lower electrolyte concentration is taken 
up by osmosis between the clay particles thus pushing them apart, which makes the smectite further 
swell. 

 

Figure 5. Osmotic swelling of clay minerals (modified from Ruedrich et al., 2011) [48]. 

After water-swelling, an immobile water phase will be formed by the bound water molecules 
and an impermeable material will be formed by hydrated bentonite, leading to the decrease of 
hydraulically active pores, and manifested as anti-seepage of bentonite [30,43,45,53]. Generally, the 
hydraulic conductivity of bentonite to water is within the range of 2 × 10−12 m/s to 2 × 10−10 m/s, which 
decreases with the increase in confining pressure [15,54]. 

In some conditions, if the permeant solution contains high concentrations of cations, especially 
bivalent cations and trivalent cations (e.g., Ca2+, Mg2+, Al3+), ion exchange will occur and reach 
equilibrium, and the thickness of DDL will significantly decrease. This will cause an increase of the 
hydraulic conductivity of GCL, which can be one order of magnitude or more for some permeating 
conditions [55–58]. The triggering mechanism of ion exchange on increase of the hydraulic 
conductivity was presented by Egloffstein (2001) [59]. Figure 6 gives an example of ion exchange 
between monovalent sodium ions and bivalent calcium ions. The ion exchange increases the inner-
crystalline attraction, thus reducing the space between the silicate layers (layers of structure cells) 
and the mass of bound water. With this change, the micro structure of bentonite changes from smaller, 
finely distributed clay mineral flakes to larger clay mineral crystals, leading to an increase in 
hydraulic conductivity. 
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Figure 6. Ion exchange of monovalent sodium ions against bivalent calcium ions in bentonite 
(modified from Egloffstein, 2001) [59]. 

GCLs are exposed to leachates other than water under most circumstances. Assessment of the 
effect of chemical solutions on the hydraulic behaviour of GCLs is of great importance. The hydraulic 
conductivity to the permeant liquid of GCL needs to be assessed on a case-by-case basis. The common 
method adopted is the “compatibility test”, in which the sample is permeated with a leachate similar 
to that anticipated. Factors influencing the hydraulic conductivity of GCLs have been studied 
through extensive compatibility tests [25,53,55,59–65]. Generally, the hydraulic conductivity can be 
affected by both internal and external causes. The internal factors involve the smectite content, 
aggregate size, exchangeable metals and void ratio of bentonite in GCL, and the external factors 
include the concentration of cations (monovalent and divalent) in the permeant liquid, pre-hydration 
of the GCL, etc. In the last 10 years, increasing concern has been expressed about the compatibility of 
GCLs in extreme environments and conditions, such as hyper-salinity, strongly acidic, strongly 
alkaline, excessive cold and excessive heat environments, which can greatly deteriorate their anti-
seepage performance [14,61,66–68]. 

3.2. Self-Healing Capacity 

During field installation, the GCL system may suffer from damage for the following reasons: (i) 
piercing by sharp objects, e.g., construction machineries [15], angular stones; (ii) poor connections 
between panels of GCLs [69,70]; (iii) migration of bentonite in GCLs due to daily temperature 
variation, forming spots/zones with litter or no bentonite [29,56,71,72]; (iv) wet and dry cycles, which 
leads to the desiccation of clay and associated cracking [73]. Because of its high expansion capacity 
when hydrated, the bentonite in GCLs can be squeezed into the damage holes/slits under the 
confining pressure. Such self-healing capacity can guarantee that the GCL functions properly in some 
circumstances; for example, holing up to 30 mm in diameter [74,75]. Figure 7 is a photograph showing 
the self-healed result of a GCL pierced by a bolt. The self-healing capacity of a GCL liner is commonly 
assessed using percent swell tests or direct measurements of hydraulic conductivity [76,77]. To assess 
in a quantitative way, Chai et al. (2016) [26] proposed a concept, the “self-healing ratio” (the area 
healed by bentonite divided by the total damaged area), and an explicit empirical equation for 
predicting the self-healing ratio. 
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Figure 7. Self-healing of GCL pierced by a bolt (modified from Koerner, 1990) [78]. 

Extensive laboratory tests have been conducted to investigate the factors that influence the self-
healing capacity of GCLs. In general, all of the factors affecting the swelling capacity of bentonite will 
influence the self-healing ability of GCLs [70]. The swelling amount of bentonite can be influenced 
by the following factors: (i) internal factors, e.g., bentonite mass, binding method; and (ii) external 
factors, e.g., permeant solution type, overburden pressure, hydraulic head. The most vital element of 
bentonite in GCLs is smectite, which is responsible for the swell potential. It has been proven that a 
higher amount of bentonite in the liner, or a higher content of smectite in bentonite, can contribute to 
a better self-healing capacity [79,80]. Furthermore, the method of binding the GCL components has a 
significant influence to self-healing ability, e.g., needle-punched GCLs have better self-healing 
capacity than stitch-bonded GCLs [75,81]. 

The hydrated bentonite particles in a defect area can be carried away under huge seepage force 
[10,19,21,82,83], resulting in the destruction of the self-healing capacity [84]. Overburden stress may 
affect the self-healing capability in two opposite ways: (i) squeezing the bentonite into damaged 
holes/slits, thus increasing the capability of self-healing; (ii) constraining the expansion of the 
bentonite, causing reduction of the self-healing capability. The latter occurs when the overburden 
stress of the bentonite is greater than the swelling pressure [70]. The type of permeant solution also has 
a significant impact, and all of the factors affecting the DDL around the bentonite particles will also 
contribute to a change of self-healing capability [59,70,85]. 

3.3. Diffusion 

Diffusion refers to the migration of ions or molecules as a result of their random thermal motion 
from a higher concentration region to lower concentration region without the transportation of 
seepage water. For some typical situations, the advective flows are extremely slow and molecular 
diffusion may be the main mechanism of transporting through the GCL system [86]. The diffusion 
process of molecules and ions through GCLs can be described by the following equations proposed 
by Fick (1855) [87]: 

dC
J D

dx
= −  (2) 

C C
D

t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
 (3) 
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where, J = diffusion flux; C = volume concentration of diffusive substance; /dC dx , /C x∂ ∂  = 
concentration gradient; /dC dt  = concentration variation rate with time; and D = diffusion 
coefficient. 

The diffusion coefficient is a critical parameter for evaluating the diffusion capacity of molecules 
or ions through GCLs. Several apparatus and test methods for the evaluation of the GCL diffusion 
coefficient have been proposed [88–90]. The test involves placing a contaminant source solution on 
one side of a GCL specimen and an uncontaminated receptor solution on the other side (see Figure 
8). Factors influencing the diffusion coefficient of GCLs have been widely investigated. Lake and 
Rowe (2000) [86] indicates that the diffusion coefficient has a significant linear correlation with the 
final bulk GCL void ratio (defined as the void volume divided by the solid volume in GCLs at the 
end of testing). The diffusion coefficients for different chemical molecules or ions through GCLs can 
vary a lot. Lake and Rowe (2004) [23] investigated the diffusion of acetone through a GCL under 
normal conditions. The results indicated the diffusion rate of mass through the GCL for different 
molecules, from high to low, are: dichloromethane, dichloromethane, benzene, trichloroethylene, 
toluene. Rowe, et al. (2005) [89] further investigated the diffusion of benzene and concluded that the 
order, from high to low, is: toluene, ethylbenzene, m & p-xylene and o-xylenen.  

The diffusion coefficient can be also significantly influenced by the concentration level of the 
solute, which is able to modify the microstructure of the sensitive minerals [86]. However, Lange et 
al. (2009) [91] conducted laboratory tests on metal diffusion through GCLs from four solutions 
collected from landfill wastes, and found no significant variation of the metal diffusion coefficients. 
For instance, the diffusion coefficient of Cu, Ni, Fe and Cd is within the range of 0.67 × 10−10 to 0.98 × 
10−10 m2/s, while 0.80 × 10−10 to 1.6 × 10−10 for As, Al, Mg and Sr. They also pointed out that some other 
cations (e.g., Na+) can be sensitive to the solution pH. 

The diffusion also depends on temperature, with lower value at a relatively lower temperature 
[89]. What is noteworthy is that, by contrast with the influence on hydraulic conductivity of GCLs, 
the type of bentonite contained in GCLs (sodium or calcium) and the ion exchange in bentonite (e.g., 
from sodium to calcium) both have no obvious influence on the diffusion coefficient of GCLs [90,92]. 

 

Figure 8. Illustration of diffusion-testing instrument. 
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3.4. Gas Migration 

Except for the hydraulic barrier, the objective of GCLs in cover systems should also include the 
control of leakage of toxic gas from waste and the migration of oxygen into waste. As with the 
movement of liquid through GCL, gas migration occurs by two means: permeation and diffusion. 
The driving force for gas permeation is the pressure differentials across the two sides of the liner 
system, which can result from natural fluctuations in atmospheric pressure, or changes of the 
temperature or water table [54,93,94]. Gas diffusion occurs in response to a concentration gradient of 
the gas. The molecules move from a high concentration area to a low concentration area.  

To prevent gas migration, the pores in bentonite need to be saturated during their lifetime. 
However, this is difficult to achieve because experience has indicated that the occurrence of 
unsaturated flow is unavoidable in liner systems [94]. Vangpaisal and Bouazza (2004) [94] conducted 
a group of gas migration tests on different, partially hydrated GCLs, and the results indicated that 
gas permeability was closely related to the variation of moisture and volumetric water content. As 
the gravimetric moisture and volumetric water content increases, the gas migration rate of GCLs 
decreases accordingly (see Figure 9) [95]. Didier et al. (2000) [96] indicated that the gas permeability 
was linearly related to the volumetric water content on a linear-log scale. The relationship between 
the gas diffusion coefficient and the effective diffusion has been investigated by many researchers 
[97–99], and the results are plotted in Figure 10. It is evident that the diffusion coefficient of gas 
decreased with the increase of saturation degree. Environmental factors such as straining and wet-
dry cycles can induce strain cracks and desiccation cracks in bentonite within GCLs, which provide 
a preferential flow path, thus accelerating gas permeation through the GCL [27,94]. 

The structure of GCL can also influence its gas permeability; for example, stich-bonded GCL has 
a higher gas permeability than needle-punched GCL. GCLs with a poor distribution of needle-
punched fibers will have gas permeability up to three orders of magnitude higher than that with 
uniform distribution [100,101]. Besides, in actual applications, it is not uncommon for some space to 
exist at the interface of the GM/GCL composite cover, which will inevitably provide a flow path for 
gas migration [22,33]. 
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3.5. Mechanical Behaviour 

Stability is an importation consideration for GCLs which are applied in cover and slope-lining 
systems of waste landfills. GCLs are commonly expected to suffer from transient shear stress during 
construction, as well as permanent shear stress in some cases. During the design stage, two aspects 
of shear strength should be taken into account for stability analysis: (i) the internal shear strength of 
GCL; (ii) the interface shear strength between GCL and adjacent materials. 

3.5.1. Internal Shear Strength 

The internal shear strength and variables governing the strength for different types of GCLs 
have been investigated by many researchers using direct shear tests [37,102–108]. These indicate that 
all of the GCLs exhibit strain-softening characteristics under direct shear. For unreinforced GCLs that 
are bonded together with a chemical binder (e.g., adhesive-bonded, GM-GCL), since no 
reinforcement exists in the bentonite the products provide a relatively low resistance to shear force. 
For reinforced GCLs (e.g., stitch-bonded, and needle-punched GT-GCL), the piercing fibers and the 
stitch will act as reinforcement materials leading to a significant increase in shear strength [103,104]. 
Typically, owing to the frictional connection of the reinforcing fibers, needle-punched GCL has a 
higher peak shear strength than other types of GCL [105,106]. For each type of GCL, failure occurs at 
the interface of geotextile and bentonite. The stitch-bonded GCL fails when the stitching lines rip 
through the geotextile, while the needle-punched GCL fails when reinforcing fibers pull out of the 
geotextile [105]. In terms of stability, reinforced GCLs are suitable for high-stress application, while 
unreinforced GCLs are suitable for low-stress applications. 

Except for some types of GCLs, the hydration condition, the normal stress and the shear-
displacement rate will also contribute to internal shear strength variability [103]. Hydration will lead 
to an increase in the water content of the bentonite as well as a significant decrease of the internal 
shear strength. Hydration fluid, hydration time, and normal stress during hydration are the key 
factors influencing the hydrated shear strength [104]. For needle-punched GCLs, the peak shear 
strength increases with normal stress, while for stitch-bonded GCLs, it seems to be independent of 
normal stress. Under a low normal stress, the peak shear strength of reinforced GCLs was observed 
to increase with the shearing rate [103,105]; however, under a high normal stress, the trend will be 
reversed [106]. This is because negative pore water pressures are generated during shearing under 
low normal stress, while positive pore water pressures are generated under high normal stress. 
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3.5.2. Interface Shear Strength 

GCLs are usually laid under the geomembranes (GM) to form a composite liner system in 
landfills. As a critical factor for stability, the shear strength of the interface between GCL and GM has 
been widely studied [28,94,109–113]. Compared with GM sheared against normal geotextiles, what 
makes the GCL-GM interface specific is the presence of extruded bentonite, which can significantly 
reduce interface friction [23,24,110]. Laboratory tests have indicated that the GM-GCL interface has 
smaller peak shear strength and greater large-displacement strengths than GCL internal shear 
specimens [112]. The failure modes of a GM-GCL system can transform from interface failure to GCL 
internal failure as normal stress increases, according to many laboratory tests [102,112,114]. 

The measured value of the interface shear strength depends on several factors, such as product 
type, normal stress, hydration fluid, hydration condition, and shear conditions. The product type is 
determined by the type of geotextiles (woven or non-woven) and the roughness of the geomembranes’ 
surface. For example, a woven geotextiles–geomembrane interface has lower strength than non-
woven geotextile interfaces and smooth GM interfaces, because the bentonite is more likely to be in 
the former [54,110]. The extrusion of bentonite is also relevant to the normal stress applied during 
shear. A higher normal stress will lead to a greater amount of extrusion and a smaller interface shear 
strength [110,115]. If the products are pre-hydrated, the bentonite will be extruded in the interface 
more easily than those without predisposal of hydration, and thus will have a lower interface strength 
[115]. The loading sequence and loading rate also play an important role; for example, GCL/GM 
products subjected to swelling before loading will have obvious bentonite extrusion, while those 
subjected to a reverse sequence will exhibit no extrusion in the interface. The amount of extruded 
bentonite increases as the loading rate increases [116]. 

4. Recent Advancement of GCL and Perspectives 

4.1. Polymer-Treated GCL 

Exposure to inorganic solutions can cause significant degradation of the hydraulic properties of 
bentonite clay in GCLs. In order to enhance the hydraulic performance and chemical resistance of 
GCLs, numerous bentonite modification technologies, e.g., adding glycerol carbonate or propylene 
carbonate, have been developed [117–119]. Recent progress has been made by adding a 
polyelectrolyte polymer into the bentonite clay. 

A polymer is a large molecule, or macromolecule, composed of many repeated sub-units. The 
application of polymers (macromolecule resin, polymeric fiber) in environmental geotechnics has 
become more popular in some areas of the world, such as Europe, America and Asia, e.g., Japan. Due 
to the low hydraulic conductivity and high swelling potential, a macromolecule resin in GCL as a 
substituted material of bentonite has been explored in Japan. The main chemical composition of the 
water-swelling polymer is acrylic acid, and its water-absorbing capacity can be from several to 
several dozen times the value of the bentonite, e.g., 1 g of polymer material can absorb a few hundred 
grams or even several kilograms of water. The mechanism of water swelling of the polymer is 
illustrated in Figure 11. However, the water-swelling capacity of acrylic materials can be impaired 
when in contact with sea water or other solutions with a high concentration of cations. 

Since there are pros and cons to both bentonite and polymer, the new concept of combining 
bentonite and polymer to form a high-performance anti-seepage liner in GCL has been developed in 
recent years. The use of polymer for enhancing the mechanical and hydraulic behaviours of clay 
materials has been well studied [120–123]. However, research on a polymer-treated GCL is still at a 
preliminary stage, and references are relatively limited. Elhajji et al. (2001) [124] shows that polymers 
can improve the hydraulic performance of GCL when permeated with low-concentrated contaminant. 
Tests conducted by Ashmawy (2002) [125] indicate that polymer treatment will be more beneficial if 
the clay is first saturated with water and not directly with the leachate. When low hydraulic 
conductivity is required in the short term, pre-hydration is more advantageous than polymer 
treatment. Razakamanantsoa et al. (2012) [126] conducted laboratory test on the different types of 
polymer-treated GCL, and found different polymer had different effects. For example, cationic 
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polymer can improve the swelling capacity of the bentonite, while anionic polymer enhances the 
hydraulic behavior of the product. Compared with the untreated variety, both cationic and anionic 
polymers improve the properties of the bentonite. Scalia et al. (2014) [127] conducted laboratory tests 
that enabled the bentonite–polymer composite (BPC) to come in contact with aggressive inorganic 
leachate. The results indicated that BPC had a better long-term anti-seepage performance than the 
natural bentonite, with low hydraulic conductivity and high swelling capacity. In particular, Yang et 
al. (2017) [30,45] proposed a SHMP-amended calcium bentonite which has been found to be 
promising in contaminant-containment applications due to its superior resistance to DDL 
compression caused by heavy metal and salt exposure. All of this research shows that the present 
polymer-treated technology has great potential in future GCL applications. 

 
Figure 11. Mechanism of water swelling of polymer (modified from Fujida, 2011) [128]. 

4.2. Perspectives for Further Study 

Polymer chemistry has experienced great development in recent years, and varieties of new 
polymer materials have been developed. Bentonite is a natural product whose components can vary 
from region to region. The diversity of both polymers and bentonites provides great possibilities for 
the future exploration of a polymer–bentonite composite that provides a high-performance GCL. For 
further study, the microstructure of the polymer-treated bentonite needs to be investigated in 
comprehensive and systematic ways. The microstructure of the polymer–bentonite composite created 
by using the technology of free-radical polymerization, with its relationship to the macro behaviors 
of PBC (e.g., hydraulic conductivity, water-swelling capacity, chemical compatibility, self-healing) 
should be further investigated. 

5. Conclusions 

This paper provides a systematic summary of research on geosynthetic clay liners over the past 
decades, and the following conclusions can be drawn: 

(a) Research on geosynthetic clay liners has experienced rapid growth over the past few decades. 
Numerous laboratory investigations and field tests have been undertaken to examine the 
performance of geosynthetic clay liners, such as their hydraulic conductivity and chemical 
compatibility, water-swelling and self-healing capacity, diffusion, gas migration, and shear 
strength. These properties are found to be affected by a variety of factors, e.g., structural types, 
permeant solution, hydration condition, confining pressure, environmental factors (temperature, 
hydraulic head, etc.), which can vary from case to case. It is of great importance to assess the 
properties of GCL on a site-specific basis. 
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(b) With the wide use of GCLs in landfills and other geotechnical applications, more problems 
concerned with complicated environments, such as moisture-cycles, freeze-thaw cycles, thermal 
cycles, long-term exposure to solar radiation, GCL-lined slopes, can be encountered. Such 
particular environments may significantly influence the long-term hydraulic performance and 
durability of GCLs. Although primary studies on the impact of these factors can be found in 
some publications, the mechanism by which complicated conditions influence the physical and 
chemical properties of GCL components needs to be further investigated. 

(c) Polymer-treated technology has shown great potential for future GCL applications. The 
expansion capacity of bentonite in GCLs decreases when permeating aggressive leakages with 
high cation concentration. The addition of superabsorbent polymers, which have much higher 
resistance to aggressive leakages, can make up for the deficiency of bentonite and greatly improve 
hydraulic performance and self-healing capacity. Research on polymer-treated GCLs is still in its 
preliminary stages. Further study needs to be conducted on the microstructure of polymer–
bentonite composite created by using the technology of free radical polymerization as well as on 
the macro behaviors of polymer–bentonite composites (e.g., hydraulic conductivity, water-
swelling capacity, chemical compatibility, diffusion, gas migration, and shear strength). 
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