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Abstract: This paper develops a charge pricing model for private charging piles (PCPs) by considering
the environmental and economic effects of private electric vehicle (PEV) charging energy sources
and the impact of PCP charging load on the total load. This model simulates users’ responses to
different combinations of peak-valley prices based on the charging power of PCPs and user charging
transfer rate. According to the regional power structure, it calculates the real-time coal consumption,
carbon dioxide emissions reduction, and power generation costs of PEVs on the power generation
side. The empirical results demonstrate that the proposed peak-valley time-of-use charging price can
not only minimize the peak-valley difference of the total load but also improve the environmental
effects of PEVs and the economic income of the power system. The sensitivity analysis shows that the
load-shifting effect of PCPs will be more obvious when magnifying the number of PEVs by using the
proposed charging price. The case study indicates that the proposed peak, average, and valley price
in Beijing should be 1.8, 1, and 0.4 yuan/kWh, which can promote the large-scale adoption of PEVs.

Keywords: electric vehicle; peak-valley time-of-use tariff; private charging pile; energy saving;
emissions reduction

1. Introduction

In order to alleviate the problem of environmental pollution and the greenhouse gas effect,
many countries, including China, have formulated relevant policies to promote the development of
electric vehicles (EVs). However, the uncontrolled charging behavior of increasing numbers of EVs
will not only affect the stability of the power grid, but also the coal consumption and carbon emissions
of EV charging energy sources. The charge pricing of EVs is the key to guide the orderly charging of
EV users and, importantly, to ensure the benefits of charging facility operators. The research on charge
pricing of EVs can be divided into three aspects.

From the perspective of stakeholders’ economic benefits: Finn et al. [1] determined the charging
price of EVs to increase the economic benefits of participants; Anderson [2] proposed a two-stage
charge pricing approach to balance the interests between public institutions and consumers; Lv [3]
designed an optimal time-of-use (TOU) tariff scheme to balance the interests of the users and the power
grid by using a multi-objective genetic algorithm; to minimize the users’ charging costs, Zhang et al. [4]
set a charging price to standardize their charging behavior, Yu et al. [5] introduced an incentive factor
into the charging/discharging power limitation and charging/discharge price, and Zhang and Li [6]
proposed a regime-switching based risk management scheme against the electricity peak prices.

From the perspective of smoothing the power grid’s load: Ge et al. [7] ordered the charging of
EVs to achieve the peak-filling effect of EVs by optimizing the valley price; Xiang et al. [8] established
the vehicle-to-grid charging and discharging period model and the peak-valley electricity price model
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to determine the optimal charge-discharge period and corresponding electricity price; Dai et al. [9]
applied the particle swarm optimization algorithm to solve the electricity price which can smooth the
load of the power grid and ensure the users’ benefits; Xu et al. [10] utilized the heuristic algorithm to
define the TOU tariff of EVs; Dufo-López and Bernal-Agustín [11] presented a methodology to evaluate
the technical and economic performance of a grid-connected system with electricity storage under
a TOU electricity tariff; to smooth the power load profiles, Hu et al. [12] designed two valley-filling
pricing mechanisms under non-cooperative and cooperative scenarios, respectively, to schedule EV
owners’ charging; Deng et al. [13] presented a bi-level programming approach that coordinated the
charging of private electric vehicles (PEVs) with the network load and open market electricity price.

From the perspective of environmental protection: in order to reduce the load fluctuation of
the renewable energy power, Dallinger and Wietschel [14] suggested to provide EV users with the
preferential charging price when the supply of renewable energy power was high; Foley et al. [15]
determined the charging price of EVs by considering CO2 emissions and new energy input as a
proportion of the transport industry; Zhang et al. [16] analyzed fuel costs and CO2 emissions of
EVs in three power generation combinations, two charging control strategies, and two real-time
pricing scenarios; to improve energy supply patterns, reduce energy system costs and abate pollutant
emissions, Yu et al. [17] developed a robust flexible probabilistic programming method for planning
municipal energy systems considering peak electricity prices and EVs.

In summary, previous studies have addressed charge pricing of EVs mainly from the three
perspectives of stakeholders’ economic benefits, the power load’s stability, and environmental
protection. They demonstrate that these three effects are important to the charge pricing of EVs.
Temporal price differentiation has a significant impact on users’ charging time and the price level [18].
The charging and discharging of batteries can be coordinated by formulating a ladder-type electricity
price [19]. TOU schemes are more beneficial to plug-in hybrid EV owners than real time pricing [20].
It is estimated that the demand number of EVs will be 600,000 in Beijing by 2020, and the proportion
of PEV number in this will be more than 60% [21]. Therefore, these motivations have led the authors
to work on the peak-valley TOU charge pricing for private charging piles (PCPs) by considering their
economic and environmental effects at the generation side and the impact of PCP charging load on
the total load. Diminishing the peak-valley difference of the power load can mitigate the peak-load
regulation pressure of power supply enterprises during peak hours, and decrease the unit operating
costs of the power grid by increasing the electricity sales during valley hours. Moreover, it can enhance
the utilization of power generation equipment which results in reducing the coal consumption of
power supply unit. Furthermore, this will not only lower the coal consumption of thermal power
generator sets but also be favorable to the utilization of night wind power during the valley period.
Thus, this paper chooses the peak-valley difference of the total load as the criterion to reflect if the
power grid’s load is stability.

The contributions of this study include: (1) to minimize the peak-valley difference of the total
load, this paper analyzes multiple factors influencing the charge pricing, and proposes a peak-valley
TOU charge pricing model; (2) the optimal charging price is identified according to the energy-saving,
emission-reduction, and load-shifting effects of PCPs; (3) the proposed model introduces the existing
charging price to realistically simulate user price response, and determines economic benefits of
PCPs from the point of view of the power system; (4) according to PEV users’ driving and charging
patterns and the local power structure, this paper calculates the real-time coal consumption and carbon
emissions reduction of PEVs and the electricity-sale incomes of the power system; and (5) to analyze
the load-shifting effect of the proposed charging price, this paper magnifies the number of PEVs to
test the peak-valley difference reduction rate. The purpose of this study is to develop a peak-valley
TOU charge pricing model which can take into account the environmental performance of the PEV
energy sources, the impact of the PCP charging load on the power grid, and the net income of the
power system. This model simulates the real-time charging power of PEVs and price response of users
based on the PEV charging probability and the regional power structure. Considering five constraints
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of the price limitation, generator sets’ installed capacity, PEV energy sources’ coal consumption and
emissions reduction, and the power system’s electricity-sale incomes, the peak-valley TOU charging
price is proposed to minimize the peak-valley difference of the total load.

2. Charge Pricing Factors of PEVs

In the process of PEV charge pricing, this paper considers factors including the charging
probability of PEVs, price response of PEV users, charging load forecast of PCPs, energy saving
and emissions reduction of PEVs, and economic benefits of the power system. The charging load of
PCPs is predicted according to the PEV charging probability and users’ price response. Considering
the line loss and charge loss, the sum of PEV load and conventional load equals the total load. Based
on the total load and the local power structure, the environmental and economic effects of PCPs
are calculated.

2.1. Charging Probability of PEVs

This paper divides a day into 24 h (t = 0, 1, 2, . . . , 23). PEV users are assumed to immediately
charge when they return home. According to the total number of PEVs (N) and the travel final return
probability of PEVs (f (t)), the number of PEVs beginning to charge (Nr(t)) can be expressed as:

Nr(t) = [N × f (t)] (1)

where [] is the rounding symbol.

2.2. Price Response of PEV Users

The equations of user price response are provided by Chang et al. [22]: the dead zone thresholds
(yuan/kWh) of peak-valley, peak-average, and valley-average price differences mean the peak-valley,
peak-average, and valley-average price differences which users begin to respond to, and their values are
0.2, 0.2, and 0.1 respectively; the saturated zone thresholds (yuan/kWh) of peak-valley, peak-average,
and valley-average price differences represent the peak-valley, peak-average, and valley-average price
differences which users no longer response to, and their values are 1.4, 0.8, and 0.6 respectively; 0.25, 1,
and 0.8 are price response curve linear region slopes in peak-valley, peak-average, and valley-average
periods; 30%, 60%, and 40% are the saturation values of user transfer percentages in peak-valley,
peak-average, and valley-average periods. Furthermore, this paper introduces the existing charging
price (P0, yuan/kWh) into Equations (2)–(4) by considering its influence on user price response. Thus,
peak-valley (apv), peak-average (apa), and valley-average (aav) user response transfer percentage can be
adjusted as

apv(t) =


0, Pp − Pv ≤ 0.2

0.25×
(

Pp − Pv − 0.2
)
× (P0/Pv), 0.2 < Pp − Pv ≤ 1.4

30%× (P0/Pv), Pp − Pv > 1.4

(2)

apa(t) =


0, Pp − Pa ≤ 0.2(

Pp − Pa − 0.2
)
× (P0/Pa), 0.2 < Pp − Pa ≤ 0.8

60%× (P0/Pa), Pp − Pa > 0.8

(3)

aav(t) =


0, Pa − Pv ≤ 0.1

0.8× (Pa − Pv − 0.1)× (P0/Pv), 0.1 < Pa − Pv ≤ 0.6

40%× (P0/Pv), Pa − Pv > 0.6

(4)

where Pp, Pa, and Pv are the peak, average, and valley charging prices, yuan/kWh.
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After users respond to the TOU tariff, the number of PEVs beginning to charge at each moment
(Nc(t)) should be an non-negative integer. Thus, the equation of Nc(t) in the research of Chang et al. [22]
is adjusted as:

Nc0(t) =


[
Nr(t)− apaNp/Tp − apvNp/Tp

]
, v(t) = 1[

Nr(t) + apaNp/Ta − aavNa/Ta
]
, v(t) = 2[

Nr(t) + apvNp/Tv + aavNa/Tv
]
, v(t) = 3

(5)

Nc(t) =

{
Nc0(t), Nc0(t) ≥ 0

0, Nc0(t) < 0
(6)

where Np and Na are the sum of the number of PEVs beginning to charge at peak and average
period respectively; Values of v(t) can be 1, 2, and 3 which represents the peak, average, and valley
period, respectively.

2.3. Charging Load Forecast of PCPs

This paper assumes that the daily travel mileage of private vehicles are the same, which is
determined by the annual travel mileage of private vehicles. The charging time (Tc, hour) in the
research of Su and Liang [23] is determined as:

Tc =
LMe

365× 100p
(7)

where p is the charging power of a single PCP, MW; Me is the 100-kilometer electric consumption of
fuel vehicles, kWh; L is the annual travel mileage of private vehicles, km.

According to Equation (7), the charging time is 2 h. Thus, the charging power of PCPs (pc(t), MW)
at each moment is expressed as:

pc(t) =

{
(Nc(23) + Nc(0))× p, t = 0

(Nc(t− 1) + Nc(t))× p, t 6= 0
(8)

The load of PCPs (Fe(t), MW) with the line loss (ω) at each moment is calculated as:

Fe(t) = pc(t)/(1−ω) (9)

Considering the charging loss (η) of PCPs, the purchased electric quantity of EV users (Q(t),
MWh) is:

Q(t) = pc(t)× (1− η)× 1 (10)

The total load (F(t), MW) can be expressed as

F(t) = Fe(t) + Ft(t) (11)

where Ft(t) is the conventional load, MW.

2.4. Energy-Saving and Emission-Reduction Effects of PCPs

Considering the intermittency of wind power and hydroelectric power, this paper introduces the
utilization rate of wind power (α(t)) in 24 h and the generating guarantee rate of hydroelectric power
(β) to determine their available generation capacities (Gw(t) and Gh(t), MW) in each moment.

Gw(t) = Gw × α(t) (12)

Gh(t) = Gh × β (13)
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where Gw and Gh are the installed capacities of wind power and hydroelectric power, MW.
Coal power generating units are assumed to be peaking units. Coal consumption per electricity

unit (s(t), t/MWh) is determined as:

s(t) =

{
0, F(t) ≤ Gw(t) + Gh(t) + Gn

c× (F(t)− Gw(t)− Gh(t)− Gn)× 1/(F(t)× 1), Gw(t) + Gh(t) + Gn < F(t)
(14)

where Gn is the installed capacity of nuclear power, MW; c is the coal consumption of coal power per
electricity unit, t/MWh.

Coal consumption of PEVs (S(t), t) is calculated as:

S(t) = s(t)× Fe(t)× 1 (15)

Carbon emissions per electricity unit (ee(t), t/MWh) is defined as:

ee(t) =


(ew × F(t))/(F(t)× 1), F(t) ≤ Gw(t)

(ew × Gw(t) + eh × (F(t)− Gw(t)))/(F(t)× 1), Gw(t) < F(t) ≤ Gw(t) + Gh(t)

(ew × Gw(t) + eh × Gh(t) + en × (F(t)− Gw(t)− Gh(t)))/(F(t)× 1), Gw(t) + Gh(t) < F(t) ≤ Gw(t) + Gh(t) + Gn

(ew × Gw(t) + eh × Gh(t) + en × Gn + ec × (F(t)− Gw(t)− Gh(t)− Gn))/(F(t)× 1), Gw(t) + Gh(t) + Gn < F(t)

(16)

where ew, eh, en, and ec are carbon emissions of wind, hydroelectric, nuclear, and coal power respectively,
t/MWh.

Carbon emissions of PEVs (Ee(t), t) is calculated as

Ee(t) = ee(t)× Fe(t)× 1 (17)

Carbon emissions of fuel vehicles (Eg(t), t) is determined as

Eg(t) = (Q(t)× 1000)/We ×Wg × eg (18)

where Wg is 100kilometer gasoline consumption of fuel vehicles, L; eg is carbon emissions of
gasoline, t/L.

2.5. Economic Benefits of the Power System

The power plants generate the electricity from the wind, hydroelectric, nuclear, and thermal
energy, and then the electricity is transferred by the power grid to PCPs for PEVs’ charging. Thus,
this paper takes power plants and the power grid as an integrated system to calculate the economic
benefits that the power system supplies energy to PEVs. The equation of generation costs per electricity
unit (C(t), yuan/MWh) is expressed as

C(t) =


(Cw × F(t))/(F(t)× 1), F(t) ≤ Gw(t)

(Cw × Gw(t) + Ch × (F(t)− Gw(t)))/(F(t)× 1), Gw(t) < F(t) ≤ Gw(t) + Gh(t)

(Cw × Gw(t) + Ch × Gh(t) + Cn × (F(t)− Gw(t)− Gh(t)))/(F(t)× 1), Gw(t) + Gh(t) < F(t) ≤ Gw(t) + Gh(t) + Gn

(Cw × Gw(t) + Ch × Gh(t) + Cn × Gn + Cc × (F(t)− Gw(t)− Gh(t)− Gn))/(F(t)× 1), Gw(t) + Gh(t) + Gn < F(t)

(19)
where Cw, Ch, Cn, and Cc are generation costs of wind, hydroelectric, nuclear, and coal power
respectively, yuan/MWh.

Net incomes that the power system sells to PEV users (I(t), yuan) is calculated as:

I(t) =


Pp × 1000×Q(t)− C(t)× Fe(t)× 1, v(t) = 1

Pa × 1000×Q(t)− C(t)× Fe(t)× 1, v(t) = 2

Pv × 1000×Q(t)− C(t)× Fe(t)× 1, v(t) = 3

(20)
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3. Charge Pricing Model of PCPs

Based on the work of Section 2, the charge pricing model aims at proposing an optimized
peak-valley TOU charging price which could minimize the peak-valley difference of the total load and
achieve better environmental and economic effects of PCPs.

3.1. Constraints

(1) Price constraint

The order in magnitude of charging prices should be valley price, average price and peak price,
and the charging prices should be in the range limit of charging price.

Plow ≤ Pv < Pa < Pp ≤ Pup (21)

where the upper limit of charging price is Pup, yuan/kWh; the lower limit of charging price is Plow,
yuan/kWh.

(2) Energy-saving effect constraint

Coal consumption of PEVs (S(t)) should not be higher than the initial one (S0(t)).

∑23
t=0 S0(t)−∑23

t=0 S(t) ≥ 0 (22)

(3) Emission-reduction effect constraint

Carbon emissions reduction of PEVs equals carbon emissions of fuel vehicles minus carbon
emissions of PEVs, which should not be less than the initial one.

∑23
t=0

(
Eg(t)− Ee(t)

)
−∑23

t=0

(
Eg0(t)− Ee0(t)

)
≥ 0 (23)

(4) Economic benefit constraint

Net incomes of the power system cannot be lower than initial ones.

∑23
t=0 I(t)−∑23

t=0 I0(t) ≥ 0 (24)

(5) Peak-valley load difference constraint

The peak-valley difference of the total load should not be higher than the initial one.

(MAX(F0(t))−MIN(F0(t)))− (MAX(F(t))−MIN(F(t))) ≥ 0 (25)

3.2. Optimization Goals

Minimize the peak-valley difference of the total load:

minZ = MAX(F(t))−MIN(F(t)) (26)

3.3. Flow Chart of the Optimized Peak-Valley TOU Charging Price

Figure 1 shows the design of the peak-valley TOU charge pricing optimization model for PCPs.
The coal consumption of PEVs, carbon emissions reduction of PEVs, and net incomes of the power
system are determined by the charging regularity of PEVs, the price response of users and the
local power structure. Under the constraints of price range limit, generation set installed capacity,
energy-saving and emission-reduction effects, economic benefit, and peak-valley load difference
constraints, the peak-valley TOU charging price is proposed to minimize the peak-valley difference of
the total load.
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4. Empirical Results

This paper takes Beijing as an empirical case, and uses the energy consumption and carbon
emissions coefficients of BAIC EV200 and Beijing Hyundai Elantra.

4.1. Initial Data of the Model

According to the investigated data of United States Transportation Department on household
vehicles of United States, Su and Liang [23] approximated PEV travel final return time to the normal
distribution by using the maximum likelihood estimation method. This paper transfers the probability
density distribution function of PEV travel final return time [23] into a segmentation function by
dividing a day into 24 h periods, and uses the rectangle method to integrate the segmentation function
with MATLAB. The calculated travel final return probability of PEVs (f(t)) of each moment is shown as
Table 1.

Table 1. Travel final return probability of PEVs.

Time Probability Time Probability

0 0.0151 12 0.0383
1 0.0080 13 0.0568
2 0.0039 14 0.0774
3 0.0017 15 0.0987
4 0.0007 16 0.1110
5 0.0003 17 0.1169
6 0.0006 18 0.1129
7 0.0015 19 0.1001
8 0.0033 20 0.0815
9 0.0070 21 0.0608

10 0.0134 22 0.0417
11 0.0237 23 0.0262

Beijing plans to construct 360,000 PCPs and basically achieve equipping each PEV with a PCP
by 2020 [21]. Thus, the total number of PEVs should be 360,000. Currently, the charging price of PCP
(P0) is 0.4733 yuan/kWh in Beijing [24]. The charging power of a single PCP (p) is 0.0025 MW [23].
The 100-kilometer electric consumption of BAIC EV200 (M) is 15 kWh [22]. The annual travel mileage
of private vehicles (L) is 12,566 km [25]. The line loss (ω) and the charge loss (η) are 6.68% and 17%,
respectively [26]. According to the research of Zhang et al. [26], the conventional load and the power
structure of Beijing are shown as Tables 2 and 3. It can be seen that the peak load concentrates on the
period from 10:00 to 18:00 and the valley one distributed from 23:00 to 7:00 in Table 2. Table 3 shows
that coal power is the main energy source to supply the charging of PEVs. Unlike other generation
technology, coal power generates more carbon emissions. This means that more electricity from the
coal power will cause PEVs produce more carbon emissions. Table 4 shows the utilization rate of wind
power in 24 h which is provided by Song [27]. According to Table 3, hydroelectric-power installed
capacity as a proportion of all power installed capacity is 21.05%. Thus, the hydroelectric power’s
generating guarantee rate should be 80–90% [28]. This paper uses the middle value, 85%, to estimate
the utilization rate of hydroelectric power. Unlike the research of Zhang et al., this paper introduces the
utilization rate of wind power and hydroelectric power, and assumes to use coal power to modulate
the peak load of the power grid. This is to say that the generating capacity of coal power can be more
than 10,000 MW when the other power is not enough to fit the electricity demand in the power grid.
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Table 2. Conventional load of Beijing grid.

Time Load (MW) Time Load (MW)

0 9962.86 12 17,322.84
1 9369.53 13 17,228.38
2 8919.59 14 17,261.56
3 8643.24 15 17,316.02
4 8567.24 16 17,118.31
5 9066.06 17 16,306.82
6 10,450.95 18 15,813.80
7 12,571.51 19 16,056.32
8 14,914.15 20 16,239.37
9 16,413.02 21 15,380.58

10 17,297.23 22 13,709.11
11 17,366.19 23 11,860.02

Table 3. Schedule of generation sets.

Wind Power Hydroelectric Power Nuclear Power Coal Power

Installed capacity (MW) 2000 4000 3000 10,000
Generation costs (yuan/MWh) 248 120 80 270

Generation carbon emissions (t/MWh) 0.298 a 0.1733 b 0.00675 b 0.86252 b

a The data were derived from the research of Ji et al. [29]; b The data were from the master graduation thesis of
Xia [30].

Table 4. Utilization rate of wind power.

Time Utilization Rate Time Utilization Rate

0 0.41 12 0.23
1 0.59 13 0.16
2 0.71 14 0.28
3 0.84 15 0.35
4 0.69 16 0.29
5 0.57 17 0.25
6 0.49 18 0.18
7 0.41 19 0.16
8 0.22 20 0.18
9 0.15 21 0.29

10 0.09 22 0.36
11 0.22 23 0.46

According to the energy-saving power generation dispatching method, the order of the power
generation should be wind power, hydroelectric power, nuclear power, and coal power [31]. The coal
consumption of coal power per electricity unit (c) is 4.47 t/MWh [32]. Carbon emissions of gasoline
(eg) are 0.002135 t/L [33]. According to the research of Chang et al. [22], the 100kilometer gasoline
consumption of Elantra (sg) is 9L, the upper limit of charging price (Pup) is 3.576 yuan/kWh and
the lower limit of charging price (Plow) is 0.396 yuan/kWh. Due to the existing charging price being
0.4733 yuan/kWh and the acceptable highest charging price for users being 3.576 yuan/kWh, there is
a lot consumer surplus. It is feasible to adopt the peak-valley TOU charging price to guide PEV users’
charging behavior and make PCP operators more profitable.

4.2. Optimization Results

In order to effectively achieve the load-shifting effect of PEVs, 24 h are divided into three
periods—peak period, average period, and valley period—according to the distribution time of
Beijing grid peak, average and valley load in Table 2. Based on the charge pricing model in Section 3,
the optimized peak-valley TOU charging price is proposed to minimize the peak-valley difference of the
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total load in Table 5. It can be seen that the peak and average prices are more than double and quadruple
of the valley one, and the valley one is lower than the existing charging price 0.4733 yuan/kWh.

Table 5. Optimized peak-valley TOU charging price.

Period Division Price (yuan/kWh)

Peak period 10:00–18:00 1.8
Average period 7:00–10:00, 18:00–23:00 1
Valley period 23:00–7:00 0.4

Comparing with the initial PCP load, the black part indicates the increased load of optimized
PCP load and the white part indicates the decreased one in Figure 2. It can be seen that the charging
load of PCPs transfers from peak and average period to the valley one. Due to the low valley charging
price in Table 5, the charging loads of PCPs at 8:00 and 9:00 in average period decrease to 0 MW
and 1.78 MW, and the ones at 10:00, 11:00 and 12:00 in peak period reduced to 1.78 MW, 0 MW and
0 MW, respectively. The price difference between peak period and valley period is much more than
that between average period and valley period. Thus, the charging load of PCPs from 10:00 to 18:00
decreases much more than that of 7:00–10:00 and 18:00–23:00. Apart from dead zone thresholds and
saturated zone thresholds, the determination of user price response is based on price response curve
linear region slopes, saturation values of user transfer percentages, and the comparison of the existing
charging price in Equations (2)–(4). It means that only the large price difference can not cause a great
number of users to change charging behavior. Thus, the decreased charging load of PCPs between
17:00 and 21:00 is still high.
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Figure 2. Load of PCPs.

Figure 3 shows that the coal consumption per electricity unit of the valley period is extremely
low, and the one between 0:00 and 6:00 is much less than 1.5 t/MWh. While the coal consumption per
electricity unit of the peak and average period is particularly high, especially the one between 9:00
and 20:00 which is higher than 2.5 t/MWh. Although the load of PCPs increases during the valley
period and decreases during the peak and average period in Figure 2, the increased area of PEV coal
consumption during the valley period are much less than the decreased one during the peak and
average period in Figure 3. It results in decreasing coal consumption of PEVs in Figure 5.
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Figure 3. Coal consumption of PEVs.

Figure 4 shows that carbon dioxide emissions per electricity during the valley period are lower
than 0.35 t/MWh, while the ones during the peak period are much higher than 0.55 t/MWh. Like
coal consumption of EVs in Figure 3, the increased carbon emissions of PEVs during the valley
period are much lower than the decreased ones during the peak and average period. Due to TOU
stimulation, some users transfer their charging from the average and peak period to the valley one
in Figure 2. Moreover, the low valley price has encouraged the more charging of users during the
valley period, and make the optimized charging power of PCPs more than the initial one. According
to Equations (10) and (18), it can be known that carbon emissions of fuels vehicles will rise in Figure 4.
Thus, the decreased carbon emissions of PEVs and the increased carbon emissions of fuels vehicles
result in the increased carbon emissions reduction in Figure 5.
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Figure 4. Carbon emissions of PEVs and fuel vehicles.

Figure 5 shows the initial and optimized values of the total load’s peak-valley difference,
PEVs’ coal consumption, PEVs’ carbon emissions reduction, and the power system’s net incomes.
The optimized peak-valley difference of the total load reaches a minimum value of 8741.15 MW,
which decreases 2% of the initial total load’s peak-valley difference. The coal consumption of PEVs
at the power generation side reduces 20%. Carbon emissions reduction at the power generation side
increases 28%. Net incomes of the power system that sell to PEV users enhances more than two
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times. Combining with Figures 3, 4, and 5, it can be known that minimizing the peak-valley difference
of the total load is beneficial to reduce the coal consumption and carbon emissions of EV charging
energy sources.
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Figure 5. Optimized results of the charge pricing model.

4.3. Sensitivity Analysis

The total number of private vehicles is 4,523,000 [18] in Beijing, which is 12 times more than
that of PEVs. Thus, we magnify the number of PEVs from 1 to 12 times to analyze its impact on the
peak-valley difference of the total load. The peak-valley difference reduction rate means the decreased
peak-valley difference as a proportion of initial peak-valley difference, which can be expressed as:

r = ((MAX(F0(t))−MIN(F0(t)))− (MAX(F(t))−MIN(F(t))))/(MAX(F0(t))−MIN(F0(t))) (27)

In Figure 6, the value of peak-valley difference reduction rate rises with the magnifying number of
PEVs, which means that the optimized peak-valley TOU charging price can achieve the load-shifting
effect of PCPs. In addition, the load-shifting effect is enhanced with the increasing number of PEVs.
When all the private vehicles in Beijing are replaced by PEVs, the peak-valley difference reduction rate
will reach 20%.
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Figure 6. Peak-valley difference reduction rate with magnifying PEVs’ number.

Figure 7 shows the total load with magnifying the number of PEVs 10-fold. At that time, PEVs’
number will account for 80% of private vehicles. The initial scenario (S0) means the scenario that the
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initial number of PEVs which is 360,000 [1]. The magnifying number of PEVs will rise the peak load
and enlarge the peak-valley difference of the total load. It can be seen that the load-shifting effect
of PCPs in S0 is not obvious. However, the proposed charging price displays a better load-shifting
effect with the magnifying number of PEVs, which can decrease 16.6% of the total load’s peak-valley
difference. It means that the proposed peak-valley TOU charging price can effectively achieve the
load-shifting effect of PCPs with the magnifying number of PEVs.
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5. Conclusions

To minimize the peak-valley difference of the total load, this paper proposes a peak-valley
TOU charge pricing model for PCPs with five constraints including charging price range limit,
energy-saving and emission-reduction effects, economic benefit and peak-valley load difference
constraints. This model analyzes factors that influence the charge pricing and simulates the charging
load of PEVs and price response of users to determine the coal consumption and carbon emissions of
PEVs and net incomes of the power system. The charging load of PCPs is predicted according to the
charging probability of PCPs and PCP constructing number of Beijing in 2020. The analysis results
show that the optimized peak, average and valley charging price in Beijing should be 1.8 yuan/kWh
from 10:00 to 17:00, 1 yuan/kWh and 0.4 yuan/kWh from 23:00 to 6:00. The proposed peak-valley TOU
charging price can minimize the peak-valley difference of the total load. Moreover, the load-shifting
effect of PCPs will be improved with magnifying the number of PEVs. When the proportion of PEVs in
total private vehicles numbers reaches 80%, the proposed charging price can decrease 16.6% of the total
load’s peak-valley difference. Therefore, the proposed charging price is beneficial for the government
to promote the large-scale development of PEVs. The proposed charging price can reduce 20% coal
consumption and increase 28% carbon emissions reduction of PEVs at the power generation side.
Additionally, it enhances more than 2 times net incomes from PEV electricity sales of the power system.
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