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Abstract: A translog production function model with input factors including energy, capital, and labor
is established for China’s heavy industry. Using the ridge regression method, the output elasticity of
each input factor and the substitution elasticity between input factors are analyzed. The empirical
results show that the output elasticity of energy, capital and labor are all positive, while the output
elasticities of energy and capital are relatively higher, indicating that China’s heavy industry
is energy- and capital-intensive. Simultaneously, all the input factors are substitutes, with the
substitution between labor and energy having the highest degree of responsiveness. The substitution
elasticity between labor and energy is decreasing, while the substitution elasticities of capital for
energy and labor are increasing. More capital input can help to improve energy efficiency and thus
accomplish the goal of energy conservation in China’s heavy industry.
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1. Introduction

With the rapid economic growth since the beginning of the 21st century, China’s total primary
energy consumption has been growing. In 2009, China surpassed the United States to become
the world’s largest energy consumer; with primary energy consumption of 3014 million tons of oil
equivalent (toe) in 2015, accounting for 22.92% of the world’s consumption. In comparison, the primary
energy consumption of the United States has remained stable since the peak level of 2350 million
toe in 2005. At the same time, the proportion US energy consumption has been experiencing a rapid
decline since 2000. In 2015, the primary energy consumption of the USA was about 2280 million toe,
accounting for 17.35% of global consumption (Figure 1).

China’s energy consumption is dominated by fossil fuels. Due to the rapidly growing energy
consumption and fossil energy-based structure, the country’s carbon emissions have increased rapidly.
According to [1], China’s CO2 emissions in 2015 totaled 9154 million tons, accounting for 27.3% of the
world’s total emissions. With the growing concerns about global warming, China is facing enormous
pressure on energy conservation and emission reduction.

According to the National Bureau of Statistics, the industrial sector can be divided into heavy
and light industry according to production or living materials. The heavy industry is the main source
of energy consumption and carbon emissions in China. Specifically, it includes the energy, steel,
metallurgy, machinery, chemical, materials, and other industrial sectors which provide raw materials,
fuel, power, technical equipment and other production materials for the economy [2]. Compared with
the light industry, energy-intensity is one of the major features of heavy industry.
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China’s energy consumption is concentrated in the heavy industry, which accounted for over
65% of the total energy consumption [3]. Since the founding of the People’s Republic of China (PRC),
China has built a complete industrial system, but the different characteristics of the industrial sectors
cause huge sectoral differences in energy consumption and energy intensity. It is necessary to make
targeted energy saving and emissions reduction policies according to the industry characteristics.
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Figure 1. The primary energy consumption of China and US and their proportions to the world.

In recent years, energy substitution is considered as one of the most important ways to solve
the problems of resource constraints and environmental pressures, and also achieve sustainable
development [4–7]. Energy substitution can be specifically divided into inter-fuel substitution
and inter-factor substitution. Inter-fuel substitution is mainly about energy structure optimization,
while inter-factor substitution is about the effective allocation of social resources, including energy,
capital, labor and other input factors for production. Typically, by adjusting the proportion of
other input factors on the basis of changes in the relative price of energy, the optimal marginal
production of energy inputs can be achieved and perhaps realize the purpose of energy conservation [8].
As inter-fuel substitution is subject to certain factors like resource endowments, technology and
total costs, people tend to focus more on inter-factor substitution between energy and other input
factors [9,10].

The concept of substitution elasticity was first proposed by Hicks [11]. Hick’s substitution
elasticity reflects the relative proportion of changes in input factors caused by the change in the
marginal technical substitution rate. The shortcoming of Hick’s elasticity of substitution is that the
estimation needs to be carried out based on the hypothesis that other input factors remain unchanged,
which is obviously a biased estimation. Hick’s substitution elasticity was improved by [12], and then
proven by [13], which has been named Allen elasticity of substitution (AES).

However, AES is also a kind of biased estimation, and some limitations cannot be addressed.
For instance, AES cannot provide the relative proportion of two input factors, neither can it be
explained by the marginal rate of substitution. Thus, AES cannot adequately explain the substitute
relationship between one input factor and another.

In [14], the cross-price elasticity (CPE) was proposed, which reflects the change in another input
factor when the price of one factor changes. However, CPE can only and simply describe the absolute
replacement between factors, for example, the change in capital when energy price changes. That is,
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CPE cannot explain the effect of changes in relative proportion of input factors on the changes in
relative price; even if the increase in energy prices lead to a reduction in the demand for capital
investment, it does not mean that the relative amount of capital investment per unit of product to
energy input per unit of product decreases, while capital investment per unit of product rise.

Morishima Alternative Elasticity (MES) proposed by [15] is a relative replacement rate that can be
obtained by the integration of Hicks substitution elasticity and the replacement rate of two or more
factors. Through the comparison of MES and CPE, it is possible to estimate not only the response of
the proportion of two input factors to the change in relative price, but also the difference between
substitution at the macro and the micro levels.

In the existing empirical research on energy economics, the constant elasticity of substitution
(CES) function with the hypothesis of neutral technological progress is mostly used [16–18]. However,
the impact of input factors on output is not only related to the change in input factors themselves,
but also related to the technology progress of different input factors, which are often not the same. It is
clear that CES cannot fully reflect the interaction and relationship between input factors. Therefore,
earlier research studies on energy substitution were mostly carried out using the translog production
function (TPF) method [19–21].

TPF is a kind of production function with variable elasticity. However, just like the CES, there is a
problem when estimating the substitution relationship in the TPF. The TPF assumes that all the input
factors in the production function are endogenous, which obviously leads to multicollinearity problem
when estimating the coefficients with linear regression. As a result, there exists a deviation in the
elasticity of substitution between energy and other factors [6,22–25].

Multicollinearity does not affect the unbiased and least variance property of the ordinary least
squares (OLS) estimator (Gauss-Markov Theory). However, although the OLS estimator has the least
variance in all the linear estimators, the absolute value of this variance is not necessarily small. In fact,
we can find a biased estimator, which has a small deviation, but the accuracy can be higher than the
unbiased OLS estimator.

Based on this principle, the ridge regression is a method that can solve the problem of
multicollinearity through the introduction of a biased constant to obtain the estimator. In the case of
multicollinearity problems, the joint distribution between two collinear coefficients is a ridge surface,
each point on the surface corresponds to a residual sum of square (RSS); and the higher the point,
the smaller the corresponding RSS. This means that the highest point on the ridge surface corresponds
to the smallest RSS [26,27].

Ridge regression is essentially an improved least squares estimation method. By discarding the
unbiasedness of the original least squares method, the estimator of the ridge regression method is
more realistic and reliable, and the tolerance to morbid data is much stronger than in the OLS [28,29].

In summary, this paper studies the substitution between energy and other input factors in
China’s heavy industry using a ridge regression method based on the translog production function.
The relevant conclusions can provide a reference for the targeted energy saving and emission reduction
policies. The remainder of this paper is organized as follows. Section 2 shows the methods used in this
paper. Section 3 reports the data sources and processing. Section 4 concludes the estimation results and
main conclusion. Section 5 presents some corresponding policy implications based on the empirical
results, and the last section include the references used in this paper.

2. Methodology

2.1. Translog Production Function

The translog production function (TPF) was first proposed by [30]. A translog production function
which contains two input factors is in the form of Equation (1):

ln(Y) = θ0 + θ1 ln(X1) + θ2 ln(X2) + θ3 ln(X1)
2 + θ4 ln(X2)

2 + θ5 ln(X1)× ln(X2) (1)
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TPF is a variable elasticity production function, which is easy to estimate and also inclusive. It is a
simple linear model which can be directly estimated using the singular linear model estimation
method. Inclusion means it can approximate any form of production function, for example,
let θ3 = θ4 = θ5 = 0, the production function in Equation (1) can change into Cobb-Douglas production.
Also, let θ3 = θ4 = −0.5θ5, it can change into common elasticity of substitution (CES) production
function. Therefore, we can analyze the interaction between energy and other input factors as well as
the differences in technological progress with the TPF.

Taking the added value of China’s heavy industry (Y) as the dependent variable, and energy
consumption (E), capital stock (K), and labor input (L) as independent variables, we can build a TPF
as follows:

ln(Y) = θ0 + θK ln(XK) + θL ln(XL) + θE ln(XE) + θKK ln(XK)
2 + θLL ln(XL)

2

+ θEE ln(XE)
2 + θKL ln(XK)× ln(XL) + θKE ln(XK)× ln(XE)

+ θLE ln(XL)× ln(XE)

(2)

The output elasticity is defined as the relative change in output caused by the relative change in
input factor under the premise that technology and prices are constant. In Equation (2), the output
elasticity of each input factor is:

ηK =
dY/Y
dK/K

=
dln(Yt)

dln(Kt)
= θK + 2θKK ln(Kt) + θKLln(Lt) + θKEln(Et) (3)

ηL =
dY/Y
dL/L

=
dln(Yt)

dln(Lt)
= θL + 2θLLln(Lt) + θLK ln(Kt) + θLEln(Et) (4)

ηE =
dY/Y
dE/E

=
dln(Yt)

dln(Lt)
= θE + 2θEEln(Et) + θEK ln(Kt) + θEK ln(Lt) (5)

The substitution elasticity is defined as the relative change in the proportion of input factors
caused by a relative change in the marginal rate of substitution technology under the premise that the
technology and prices are constant. On the basis of Equation (2), the substitution elasticity between
different factors are as follows:

δLK =
d
(

L
K

)
/ L

K

d
(

MPK
MPL

)
/ MPK

MPL

=
d
(
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K

)
×
(
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)
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(
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(
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δLE =
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(

L
E
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E

d
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MPE
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d
(
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×
(
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where MPK, MPL and MPE represents the marginal output of capital, labor and energy, respectively.
According to [31], we give the deduced procedure of δLK as:

MPK
MPL

=
∂Y/∂K
∂Y/∂L

=
ηK
ηL
× L

K
(9)

Further, we can obtain:

δLK =
d
(

L
K

)
d
(

MPK
MPL

) × ηK
ηL

=
ηK
ηL
×

d
(

MPK
MPL

)
d
(
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)
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=
ηK
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×
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)
−1

(10)
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because:
d
(

ηK
ηL
× L

K

)
d
(

L
K

) =
ηK
ηL

+
L
K
×

d
(

ηK
ηL

)
d
(

L
K

) (11)

d
(

ηK
ηL

)
= −ηK

η2
L

d(ηL) +
1

ηL
d(ηK) (12)

d
(

L
K

)
= − L

K2 d(K) +
1
K

d(L) (13)

Substituting Equations (12) and (13) into Equation (11) gives:

d
(

ηK
ηL
× L

K

)
d
(

L
K

) =
ηK
ηL

+
L
K
×
− ηK

η2
L

d(ηL) +
1

ηL
d(ηK)

− L
K2 d(K) + 1

K d(L)
=
− ηK

η2
L
× d(ηL)

d(K) + 1
ηL
× d(ηK)

d(K)

− L
K2 +

1
K ×

d(L)
d(K)

(14)

Also, by substituting Equation (14) into Equation (10), we can have:

δLK =

1 +
ηL
ηK
× L

K
×
− ηK

η2
L
× d(ηL)

d(K) + 1
ηL
× d(ηK)

d(K)

− L
K2 +

1
K ×

d(L)
d(K)


−1

=

[
1 +
−θLK + 2 ηL

ηK
× θKK

ηK − ηL

]−1

(15)

Similarly, we can have the other two substitution elasticities as:

δKE =

[
1 +
−θKE + 2 ηK

ηE
× θEE

ηE − ηK

]−1

(16)

δLE =

[
1 +
−θLE + 2 ηL

ηE
× θEE

ηE − ηL

]−1

(17)

2.2. Ridge Regression

The basic linear regression model is in the form of Equation (18):

Y = Xβ + U (18)

The OLS estimator of β is:
β̂ =

(
X′X

)−1X′Y (19)

Due to the interaction and squared terms of the input variables in Equation (2), the model is
likely to suffer from severe multicollinearity, a statistical phenomenon in which two or more predictor
variables in a multiple regression model are highly correlated, thereby violating a basic necessary
condition for OLS to be unbiased. The coefficient estimates for the design matrix X have an approximate
linear dependence, and Equation (19) becomes close to singular. As a result, the least squares estimate
becomes highly sensitive to random errors in the observed response Y, producing a large variance.
If there is multicollinearity between the independent variables, which is |X′X|≈ 0 , then we can know
that E((β̂− β)(β̂− β)

′
) = δ2(X′X)−1 will increase, which is harmful for the parameter estimation.

Adding a normal matrix λI(λ > 0) to X′X, where I is the unit matrix, then the possibility of
|X′X + λI|≈ 0 is lower than the possibility of |X′X|≈ 0 , which can avoid the variance of β̂ increasing
because of |X′X|≈ 0 . The ridge regression estimator is:

β̂(λ) =
(
X′X + λI

)−1X′Y (20)



Sustainability 2017, 9, 1892 6 of 15

where β̂(λ) is the ridge regression estimator of β, while λ is the ridge parameter or the biasing
parameter which satisfies λ > 0. , and I is the identity matrix. In general, there is an optimum
value of λ. for any problem. However, it is desirable to examine the ridge solution for a range of
admissible values of λ. Small positive values of λ improve the conditioning of the problem and
reduce the variance of the estimates. While biased, the reduced variance of the ridge estimates usually
results in a smaller mean square error when compared to least-squares estimates. In the econometric
literature, several methods of obtaining the optimal value of the ridge parameter have been proposed.
This study uses the ridge trace plot method which is the most popular in the literature. The coefficients
are estimated with various levels of λ from zero to one. The β̂(λ) coefficients are then plotted with
respect to the values of λ and the optimal value is chosen at the point where the bi coefficients seem
to stabilize.

3. Data

3.1. Capital Stock

In China, capital stock is not included in the official statistics, so we construct the capital stock of
heavy industry using the perpetual inventory method [32].

δt =
(FOt − FNt)− (FOt−1 − FNt−1)

FOt−1
(21)

where δt is the depreciate rate, FOt and FNt are the original value and net value of
fixed assets in year t, respectively. (FOt − FNt) is the accumulated depreciation in year t,
and (FOt − FNt)− (FOt−1 − FNt−1) is the depreciation of year t. We then calculate the added amount
of investment in year t as:

It = FOt − FOt−1 (22)

where It represents the newly added investment in year t. Capital stock is calculated by the summing
up the newly added investment in year t and the capital stock in year t − 1 minus depreciation.
The capital stock in the prime year is the net value of fixed assets in 1980. All the asset values are
converted into constant price in 1990 according to the price index of fixed asset investment from the
China Economic Database.

Kt = It + (1 + δt)× Kt−1 (23)

The calculated capital stock of China’s heavy industry is shown in Figure 2:
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Figure 2. The capital stock of China’s heavy industry in 1980–2014.
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3.2. Energy Consumption

The heavy industry contains a large number of sub-sectors, including energy production and
storage sectors. To avoid double counting, we use the terminal energy consumption of each sub-sector
to get the total energy input of the heavy industry.

According to the Organization for Economic Cooperation and Development (OECD) and
International Energy Agency (IEA), terminal energy consumption refers to energy used by the terminal
energy equipment. By this definition, we can infer that terminal energy consumption is equal to
primary energy consumption minus the energy loss in processing, conversion and storage, as well
as that which is lost in the production process of the energy industry. Losses in the intermediate
process include loss in coal preparation and briquette, loss in oil refining, loss in oil and gas fields,
power generation, power plant heating, coking, gas loss, transmission loss, loss in coal storage and
transportation, and loss in oil and gas transportation. The terminal energy consumption of each
sub-sector is from China energy Statistical Yearbook.

3.3. Output and Labor

The output of the heavy industry in this paper is represented by the added value, which is the
newly added value in the production process of industrial enterprises. The sum of the added value
of each sector is the gross domestic product, and labor is indicated by the number of employees.
According to the definition of National Bureau of Statistics, China’s heavy industry includes
26 sub-sectors, covering all areas from mining to manufacturing and other industries. The added
value and total employee of China’s heavy industry can be obtained by adding each sub-sector.
The date on the added value and employee of each sub-sector are from China Industry Economy
Statistical Yearbook and CEIC database, and it spans the years 1980 to 2014. This is because the energy
consumption data of each sub-sector before 1980 and after 2014 is not available. If not specifically
pointed out, all data are in 1990 constant prices according to the industrial producer price index (PPI)
in order to eliminate the impact of inflation.

The statistics of the variables used in this paper are shown in Table 1:

Table 1. Statistics of variables used in this paper.

Variable Obs Mean Std. Dev. Min Max

Output 35 25,751.01 31,423.81 2399.00 106,109.70
Capital 35 51,790.68 46,530.36 7916.28 170,377.80
Labor 35 4676.70 1427.98 2386.01 7195.62

Energy 35 579.06 393.17 166.00 1373.64

4. Empirical Results

As mentioned above, there is a multicollinearity problem, which we believe might lead to an
invalidation of the original least square (OLS) estimator. To prove the existence of multi-collinearity
among the variables, Pearson’s correlation coefficients were computed and the results are shown in
Table 2. By ranging between +1 and−1, the Pearson correlation coefficient can measure the dependence
between two variables (+1 is total positive correlation, −1 is total negative correlation, and 0 is no
correlation). The results show that there is a significant multi-collinearity among the variables, thus we
use ridge regression instead of the OLS in this paper.
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Table 2. Correlation analysis of variables.

Output Capital Labor Energy

Output Pearson Correlation 1 0.991 ** 0.827 ** 0.976 **
Sig. (2-tailed) – 0 0 0

N 35 35 35 35

Capital Pearson Correlation 0.991 ** 1 0.854 ** 0.989 **
Sig. (2-tailed) 0 – 0 0

N 35 35 35 35

Labor Pearson Correlation 0.827 ** 0.854 ** 1 0.874 **
Sig. (2-tailed) 0 0 – 0

N 35 35 35 35

Energy Pearson Correlation 0.976 ** 0.989 ** 0.874 ** 1
Sig. (2-tailed) 0 0 0 –

N 35 35 35 35

** means correlation is significant at the 0.01 level (2-tailed).

Sensitivity analysis shows that the results are not very sensitive to how the value of the ridge
parameter is selected. For this reason, this paper relies on the ridge trace plot to determine the best
value of K. Ridge trace plot showed the relationship between β̂ coefficients and K, which can fully
reflect the effect of different value of K on the estimated value of coefficients. According to the variation
in the values of the R-square and the coefficients of ridge regression for different values of K in Table 3,
most values become steady when K approaches 0.30 and 0.40. When K is less than 0.30, the values
of the coefficients are unstable, varying significantly with K. We can also see from the ridge trace in
Figure 3 that when K is around 0.35, the ridge trace becomes steady. At the same time, Figure 4 shows
that the R-Square falls rapidly when K < 0.30, and then begins to fall slightly when K = 0.35 (the
vertical line). Thus, the value of K is 0.35 in this paper.
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Table 3. R-square and beta coefficients for estimated values of K.

K RSQ LNK LNL LNE LNKLNK LNKLNL LNKLNE LNLLNL LNLLNE LNELNE

0.00 0.9984 15.1871 5.7819 −21.2592 −6.4124 −35.1092 36.2057 −5.0518 38.2264 −26.5467
0.05 0.9911 0.0983 −0.1029 0.1913 0.1529 0.0765 0.2100 −0.0784 0.1581 0.2573
0.10 0.9885 0.1282 −0.0760 0.1773 0.1594 0.0905 0.1898 −0.0620 0.1379 0.2150
0.15 0.9862 0.1354 −0.0570 0.1683 0.1579 0.0955 0.1784 −0.0470 0.1298 0.1953
0.20 0.9838 0.1370 −0.0423 0.1615 0.1548 0.0980 0.1701 −0.0343 0.1251 0.1828
0.25 0.9815 0.1365 −0.0303 0.1560 0.1514 0.0993 0.1636 −0.0236 0.1219 0.1737
0.30 0.9792 0.1353 −0.0204 0.1514 0.1481 0.1001 0.1583 −0.0146 0.1195 0.1666
0.35 0.9771 0.1338 −0.0120 0.1474 0.1451 0.1005 0.1537 −0.0069 0.1176 0.1608
0.40 0.9750 0.1321 −0.0049 0.1440 0.1422 0.1007 0.1498 −0.0003 0.1160 0.1560
0.45 0.9731 0.1305 0.0012 0.1409 0.1396 0.1007 0.1463 0.0054 0.1145 0.1518
0.50 0.9712 0.1289 0.0066 0.1382 0.1372 0.1007 0.1432 0.0104 0.1133 0.1481
0.55 0.9693 0.1273 0.0113 0.1357 0.1350 0.1005 0.1404 0.0148 0.1122 0.1448
0.60 0.9675 0.1258 0.0154 0.1335 0.1329 0.1003 0.1379 0.0187 0.1111 0.1419
0.65 0.9658 0.1243 0.0191 0.1314 0.1310 0.1001 0.1356 0.0221 0.1101 0.1393
0.70 0.9641 0.1229 0.0223 0.1295 0.1292 0.0998 0.1334 0.0252 0.1092 0.1369
0.75 0.9624 0.1216 0.0252 0.1277 0.1275 0.0995 0.1315 0.0280 0.1083 0.1346
0.80 0.9607 0.1203 0.0279 0.1260 0.1259 0.0991 0.1296 0.0304 0.1075 0.1326
0.85 0.9591 0.1191 0.0302 0.1245 0.1244 0.0988 0.1279 0.0327 0.1067 0.1307
0.90 0.9575 0.1180 0.0323 0.1230 0.1230 0.0984 0.1263 0.0347 0.1060 0.1289
0.95 0.9559 0.1168 0.0343 0.1216 0.1216 0.0981 0.1247 0.0365 0.1052 0.1272
1.00 0.9544 0.1158 0.0360 0.1203 0.1203 0.0977 0.1233 0.0382 0.1045 0.1256

The results of the ridge regression with K = 0.35 is shown in Table 4. The relevant statistical
tests show that the results of the ridge regression are significant. All the indicators of statistical
testing, such as Adjusted R-Square, Standard Error (SE), significance level of regression equation
(value of F and Sig F), as well as the ANOVA table, depict a reasonable model. More importantly,
whether this model is good or not depends on the ability of the ridge regression to efficiently overcome
the multicollinearity problem, and also the reasonableness of the estimated parameters. From Table 4
we can find that the statistical tests of the coefficients are ideal due to their rather small Standard Error
(66.7%) which is smaller than 0.01, and is 0.10. Thus, the ridge regression estimators are reasonable.
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Table 4. Model results of ridge regression.

Ridge Regression with K = 0.35

R-Square 0.97710
Adjusted R-square 0.96886
Standard Error (SE) 0.21830

ANOVA Table

Degree of Freedom (DF) Stdev Squre (SS) Mean Squre (MS)
Regress 9 50.833 5.648
Residual 25 1.191 0.048
F value Sig F
118.52448 0

Variables in the Equation

B SE(B) Beta B/SE(B)
ln(XK) 0.17954 0.01101 0.13378 16.31419
ln(XL) −0.04644 0.06161 −0.01204 −0.75379
ln(XE) 0.26951 0.01293 0.14741 20.84683
ln(XK)

2 0.00926 0.00050 0.14507 18.48060
ln(XK)× ln(XL) 0.01152 0.00048 0.10051 24.03356
ln(XK)× ln(XL) 0.01483 0.00068 0.15373 21.76466

ln(XL)
2 −0.00160 0.00364 −0.00694 −0.44023

ln(XL)× ln(XE) 0.01945 0.00072 0.11758 27.06722
ln(XE)

2 0.02370 0.00119 0.16084 19.95578
Constant 1.48061 0.62412 0.00000 2.37231

The values of “B” represent coefficients for corresponding variables, and values of “SE(B)” represent the
corresponding standard error of each coefficient.

According to the ridge regression estimators, Equation (2) can be rewritten as:

ln(Y) = 1.48061 + 0.17954 ln(XK)− 0.04644 ln(XL) + 0.26951 ln(XE) + 0.00926 ln(XK)
2

− 0.00160 ln(XL)
2 + 0.02370 ln(XE)

2 + 0.01152 ln(XK)× ln(XL)

+ θKE ln(XK)× ln(XE) + 0.01945 ln(XL)× ln(XE)

(24)

From the coefficients in Equation (24), the output elasticity of each input factor can be calculated
according to Equations (3)–(5), while the elasticity of substitution between input factors can be
calculated according to Equations (15) and (17). The results are shown in Table 5.

Table 5. Output and substitution elasticities of each input factor.

Year ηK ηL ηE σKL σKE σLE

1980 0.5115 0.1317 0.7969 0.9406 0.9482 1.0178
1981 0.5123 0.1322 0.7971 0.9407 0.9480 1.0177
1982 0.5148 0.1337 0.8012 0.9411 0.9483 1.0176
1983 0.5181 0.1358 0.8069 0.9415 0.9487 1.0174
1984 0.5220 0.1381 0.8134 0.9420 0.9493 1.0172
1985 0.5260 0.1406 0.8204 0.9425 0.9498 1.0169
1986 0.5303 0.1433 0.8274 0.9430 0.9503 1.0167
1987 0.5340 0.1456 0.8332 0.9435 0.9506 1.0165
1988 0.5378 0.1479 0.8394 0.9439 0.9510 1.0163
1989 0.5405 0.1496 0.8438 0.9442 0.9513 1.0162
1990 0.5428 0.1510 0.8472 0.9445 0.9515 1.0161
1991 0.5457 0.1528 0.8525 0.9448 0.9519 1.0159
1992 0.5484 0.1545 0.8575 0.9451 0.9523 1.0158
1993 0.5513 0.1563 0.8634 0.9454 0.9529 1.0156
1994 0.5543 0.1582 0.8693 0.9457 0.9534 1.0155
1995 0.5586 0.1617 0.8747 0.9461 0.9534 1.0152
1996 0.5612 0.1635 0.8783 0.9464 0.9535 1.0151
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Table 5. Cont.

Year ηK ηL ηE σKL σKE σLE

1997 0.5629 0.1655 0.8814 0.9466 0.9538 1.0150
1998 0.5623 0.1675 0.8799 0.9466 0.9536 1.0149
1999 0.5627 0.1683 0.8793 0.9466 0.9533 1.0148
2000 0.5636 0.1696 0.8803 0.9467 0.9533 1.0147
2001 0.5655 0.1719 0.8844 0.9469 0.9537 1.0146
2002 0.5672 0.1733 0.8871 0.9471 0.9539 1.0145
2003 0.5723 0.1775 0.8977 0.9475 0.9549 1.0142
2004 0.5789 0.1818 0.9103 0.9481 0.9558 1.0139
2005 0.5825 0.1846 0.9168 0.9484 0.9563 1.0137
2006 0.5871 0.1877 0.9245 0.9488 0.9567 1.0135
2007 0.5916 0.1907 0.9325 0.9492 0.9572 1.0133
2008 0.5964 0.1928 0.9393 0.9496 0.9574 1.0132
2009 0.5994 0.1953 0.9443 0.9498 0.9577 1.0130
2010 0.6041 0.1982 0.9522 0.9502 0.9581 1.0129
2011 0.6059 0.2003 0.9561 0.9503 0.9584 1.0128
2012 0.6072 0.2016 0.9570 0.9504 0.9583 1.0127
2013 0.6101 0.2032 0.9611 0.9506 0.9583 1.0126
2014 0.6121 0.2044 0.9634 0.9508 0.9583 1.0125

The output elasticity of energy, labor and capital have been increasing over the years (1980–2014),
indicating that there is continuous overall technology progress. Among the three output elasticities,
the elasticity of energy is the largest, followed by capital, and then labor (Figure 5). Though the
output elasticity of labor is the smallest, the growth rate of the output elasticity of labor is the highest.
During the period 1980–2014, the output elasticity of capital was 0.5115–0.6121 (an increase of 19.67%);
the output elasticity of energy was 0.7969–0.9634 (an increase of 20.89%); and the output elasticity of
labor was 0.1317–0.2044 (an increase of 55.20%).

The heavy industry is both energy- and capital-intensive. Notwithstanding this, some sub-sectors
are labor-intensive, which is proved by the results of the estimated output elasticities. In general,
the production of the heavy industry is highly dependent on energy and capital inputs, with the effect
of labor inputs being relatively small. These are all determined by the characteristics of the heavy
industry itself. On the other hand, in the period of the rapid development of the heavy industry,
energy consumption and investment in fixed assets will grow rapidly.
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Then we look at the elasticity of substitution between the pair of capital, labor, and energy.
From Figure 6, all the estimated elasticities of the heavy industry are positive. According to the
definition in Equations (15)–(17), positive elasticity means that the relationship between capital
and labor, capital and energy, labor and energy are substitute. On the other hand, the elasticity
of substitution between capital and labor is almost the same with capital and energy. Both are in the
interval of 0.94–0.96 during the period 1980–2014. The result indicates that the energy consumption
and labor input of China’s heavy industry can be effectively saved by increasing the capital input.

The elasticity of substitution between labor and energy is relatively high, indicating that the
substitution between labor and energy in the heavy industry is efficient. The substitution between
labor and energy can be explained as follows: if a factory invests in more machines, more energy
will be consumed, which may obviously decrease labor input. With the increasing popularity of
automation equipment, energy and labor becomes more substitutable. In past years, especially after
the 1990s, the price of labor inputs in China has been relatively low. Likewise, the existence of many
migrant workers made labor supply sufficient. Factories in the heavy industry chose to use more labor
inputs than capital and energy inputs. In this sense, China’s labor market has played a positive role in
reducing energy consumption in the heavy industry. The effect of the substitute relationship between
capital and energy is similar. More capital input can aid invest more efficient machines, which can
reduce the energy consumption of a given output.

In recent years, with the increase of labor costs and population aging, China’s demographic
bonus is gradually disappearing. This also explains the decreasing elasticity of substitution between
labor and energy. With increasing resource constraints and environment pressures, future energy
substitutes will mainly rely on the substitution of capital for energy and labor. The slightly upward
trend in the substitution between capital and energy and labor suggests that the substitution is effective.
The increasing trends of this substitution also indicate a bigger space for remitting energy supply
shortage with more capital contribution.

In order to give an indication of the overall energy conservation and emission reduction effect of
the substitution between capital and energy in China’s heavy industry, we estimate the energy saving
and CO2 emission reduction potential in different scenarios. The results are shown in Table 6.Sustainability 2017, 9, 1892  13 of 15 
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Table 6. Energy conservation and CO2 emission reduction of China’s heavy industry under different
substitution scenarios in 2014. Million Tons Coal Equivalent (Mtce).

Year
Capital Input Increases by 10% Capital Input Increases by 20%

Energy Conservation Carbon Emission Reduction Energy Conservation Carbon Emission Reduction

2014 131.64 Mtce 328.17 million tons 263.27 Mtce 656.34 million tons

The average growth rate of capital stock for the past 30 years is 9.29%. If capital input increases
by 10% in 2014 (ceteris paribus), it will lead to 131.64 million tons coal equivalent (Mtce) of energy
conservation in China’s heavy industry, and 328.17 million tons of CO2 emission reduction (the carbon
emission coefficient is assumed as 2.493 per ton). If the growth rate of capital input increases by
20%, the corresponding energy conservation and CO2 emission reduction will be 263.27 Mtce and
656.34 million tons, respectively.

5. Conclusions and Policy Implications

In this paper, a translog production function with input factors including energy, capital, and labor
is established for China’s heavy industry. Using ridge regression, the output elasticity of each input
factor and the elasticity of substitution between these input factors are analyzed. The main results are
as follows.

Firstly, the output elasticity of energy, capital, and labor are all positive, which means that increase
in factor inputs increases total output. Moreover, the level and growth rates of the output elasticities of
all the three factors increased in the period 1980–2014, indicating that the efficiency of China’s heavy
industry is improving. Despite this, the growth rates are rather moderate, indicating that the effect
of increasing returns to scale in the heavy industry is wearing off. From the perspective of absolute
value, the output elasticity of energy is the largest, followed by that of capital. The output elasticity of
labor is the least, indicating that China’s heavy industry is both energy and capital-intensive, while the
importance of labor is relatively less. The development of the heavy industry is highly correlated with
macroeconomic environment. Thus, it will have an obvious impact on total energy consumption.

Secondly, the elasticities of substitution between energy, capital, and labor are all positive,
indicating that all the three input factors are substitutes. The elasticity of substitution between
labor and energy is relatively high (around 1.0178–1.0125 during 1980–2014), while the absolute value
of the elasticity is decreasing. If industrial upgrading and improvement in the degree of automation
continues, coupled with rising labor costs, the substitution effect of labor for energy in China’s heavy
industry in the future will decline. The elasticities of substitution between capital and energy and
labor are similar in terms of absolute value and trend. Capital and energy are substitutes in the
heavy industry, and can be explained as follows: when an enterprise chooses to put more capital into
improving energy efficiency, the energy consumption for a given output will decrease. However, it is
worth noting that the operation of machinery will consume energy, and energy and capital may be
complements, which is not conductive for energy conservation and emission reduction. For policy
developments, the substitution between energy and capital depends on the direction of capital inputs,
that is, energy saving or energy consumption. Government should encourage enterprises to invest
in the improvement of energy efficiency through some fiscal and tax policies, and avoid extensive
expansion of production capacity.

Thirdly, as China’s heavy industry accounts for over 60% of China’s total primary energy
consumption, the substitution effect will bring about huge energy conservation and emission reduction.
The existence of a substitution relationship indicates that the energy consumption constraints the heavy
industry is facing can be improved by increasing capital input. With more investment, energy-efficient
technology could be applied, and this can promote the substitution between capital and energy.
The substitution relationship between capital and labor is similar. On the other hand, the elasticity of
substitution is increasing, indicating that there is a chance of reducing the energy constraints when the
heavy industry is more capital-intensive.
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In summary, China’s heavy industry is both energy- and capital-intensive. More capital input can
help improve energy efficiency, which will eventually help accomplish the goal of energy conservation.
As capital is substituted for energy and labor, more capital inputs are used in China’s heavy industry
from the perspective of energy conservation and emission reduction. It is important to understand the
substitution relationship between energy and other input factors to improve the quality of development
of China’s heavy industry and also optimize its development model. It is worth noting that there is
need to differentiate between advanced and backward production capacity in some energy-intensive
sectors in China’s heavy industry. The former can be promoted through some pricing policies like
carbon tax, while the latter can be addressed by some administrative means in order to achieve a
rapid effect.
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