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Abstract: Precipitation data are important for the fields of hydrology and meteorology, and are
fundamental for ecosystem monitoring and climate change research. Satellite-based precipitation
products are already able to provide high temporal resolution precipitation information at a global
level. However, the coarse spatial resolution has restricted their use in regional level studies. In this
study, monthly fine spatial resolution land precipitation data in China was obtained by downscaling
the TRMM 3B43 V7 monthly precipitation products. The downscaling model was constructed
based on the ensemble learning method called random forest (RF). In addition to the RF model,
the classification and regression tree (CART) model was also used to downscale the precipitation data
for the purpose of comparison. The results were validated with in situ measurements. Results showed
that the RF model outperformed the CART model. The downscaled precipitation data were strongly
correlated with the in situ measurements. The downscaling method was applied to mapping fine
spatial resolution precipitation over all of China, and is valuable for developing high spatial resolution
precipitation products for studies on hydrology, meteorology, and climate science.
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1. Introduction

Precipitation is a key component of the global water cycle [1–7], and is important for plant
physiological, ecological, environmental, and hydrological models [8–11]. Mapping precipitation
with high spatial resolution is therefore beneficial for monitoring ecosystem and environmental
changes. Satellites with radar and microwave sensors can provide reliable sources of precipitation
data [3,5,12–16], especially for un-gauged regions. During the past three decades, a multitude of
global precipitation products have been published and they were widely used in multiple hydrological,
meteorological, and environmental applications [3,14,17,18]. These products were mainly estimated by
integrating remotely sensed microwave (MW) and infrared (IR) data. The precipitation radar launched
by the Tropical Rainfall Measuring Mission (TRMM) was the first satellite-based active MW sensor
designed for precipitation detection and it provided reliable precipitation estimation for the tropical
and mid-latitudes [19]. Those precipitation products are fundamental for many global scale models
and applications, but typically are not suitable for regional applications due to their coarse spatial
resolution [20,21].
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The development of spatial downscaling techniques can address this problem by improving
the spatial resolution of images or gridded datasets. Spatial downscaling methods are helpful for
obtaining fine spatial resolution precipitation data from coarse resolution precipitation products.
Various approaches have been developed to downscale satellite-based precipitation by integrating the
impact of several environmental variables. These methods seek to establish a statistical correlation
model between coarse resolution precipitation datasets and fine resolution auxiliary variables.
Precipitation is a continuous variable, so linear regression algorithms have been used in downscaling
models for fitting the relationship between precipitation and other variables [20–23]. In addition,
various methods, such as machine learning and the interpolation approach, have been implemented
to fill gaps in climatic variables, such as streamflow, total water storage changes, air temperature,
and soil moisture [24–27]. However, these methods have not been widely used for downscaling
satellite-based precipitation datasets. The ensemble learning method is defined as a type of learning
algorithm that uses multiple predictors to produce a more accurate prediction. The basic principle of
ensemble learning methods is to construct a more robust learner by grouping a number of individual
learners. Fast algorithms, such as classification and regression tree (CART), are commonly used as
the basic predictor in ensemble methods. The random forest (RF) is a popular ensemble learning
method and has been reported to have good performance for a variety of applications [28]. In addition,
RF can efficiently handle large datasets. Precipitation is difficult to simulate and estimate with simple
statistical algorithms due to its own complexity and the complex relationship with other factors. In this
study, we used the RF algorithm to construct the downscaling model to evaluate its potential value in
mapping fine spatial resolution precipitation products.

The aims of this study were threefold: (1) to downscale the TRMM 3B43 V7 monthly precipitation
products from a spatial resolution of 25 km to 1 km; (2) to evaluate the performance of the CART and
RF algorithm in downscaling satellite-based precipitation products; and (3) to generate fine spatial
resolution precipitation products for China.

2. Study Area and Data Resources

2.1. Study Area

This downscaling study was conducted for China land area. Its latitudes range from 18◦ N
to 54◦ N, and longitudes range from 73◦ E to 135◦ E. A marked continental monsoonal climate
dominates the most part of China. Because of complex terrain and wide area, precipitation and
temperature conditions vary extremely from west to east and from south to north [29,30]. Figure 1
shows the topography and the spatial distribution of the 675 meteorological stations in China. According
to Figure 1, ground-based weather networks are sparse in western China due to harsh natural conditions,
the satellite-based precipitation datasets, therefore, are significant for hydrological and environmental
studies over these regions.
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2.2. Data Sources

The TRMM satellite, launched in late November 1997, has provided multiple precipitation
products for more than 17 years. The TRMM-based precipitation products have good performance
and have been the standard for the validation of other satellite-based precipitation products because
of their reliable quality [15]. In this study, the products used for were version 7 of the TRMM 3B43
monthly precipitation product for 2003, 2006, and 2009. The TRMM 3B43 V7 products are produced
at a spatial resolution of 0.25◦ × 0.25◦, covering 50◦ N–50◦ S. The original TRMM 3B43 V7 data were
re-projected to the Albers Conical Equal Area projection and resampled to 25 km resolution using the
nearest neighbor resampling algorithm during the re-projection.

Two Moderate Resolution Imaging Spectroradiometer (MODIS) optical products, monthly NDVI
(MOD13A3) and daily land surface temperature (MOD11A1), with 1 km spatial resolution were jointly
used to downscale the TRMM precipitation products. Monthly LST was calculated by averaging daily
land surface temperature (LST) in corresponding months. The digital elevation model (DEM) dataset
used in this study was from the Shuttle Radar Topographic Mission (SRTM). The SRTM DEM with 1
km spatial resolution was downloaded from the website http://glcf.umd.edu/data/srtm/.

For validation purposes, the ground-based monthly climate variables dataset of China were used.
The dataset includes 675 weather stations over China land area (Figure 1), it provides in situ measured
monthly total precipitation. The original dataset are obtained from China Meteorological Data Service
Center (CMDC) (http://data.cma.cn/en/).

3. Methods

3.1. Downscaling Algorithm

The spatial downscaling algorithm for mapping precipitation at high spatial resolution from
TRMM 3B43 V7 precipitation products, using MODIS-derived NDVI and LST products, consisted of
two main steps which are described as follows. A flowchart showing the main steps of the process is
presented in Figure 2.

http://glcf.umd.edu/data/srtm/
http://data.cma.cn/en/
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Figure 2. Process used for generating fine spatial resolution precipitation data.

The first step involved building the model. A precipitation estimation model, based on the
relationship between precipitation and environmental variables, was developed. The CART and RF
algorithm were used to establish the downscaling model at a grid pixel resolution of 25 km by 25 km.
Multiple studies have acknowledged that precipitation data are strongly correlated to NDVI, LST,
and DEM [31–35]. As precipitation is a spatially heterogeneous variable, geolocations (longitude and
latitude) are also considered variables that reflect spatial variations in precipitation.

There were seven inputs for the downscaling model: NDVI, daytime LST (LSTday), nighttime LST
(LSTnight), day–night LST difference (LSTDN), DEM, longitude, and latitude. First, the NDVI, LSTs,
and DEM were aggregated to 25 km using an averaging algorithm. Then, the CART and RF models
were both trained at a grid cell of 25 km by 25 km.

The second step involved generating high resolution precipitation data. Precipitation maps at
a resolution of 1 km (PRCP1km) were obtained by applying the models in the first step to original
MODIS optical products and DEM data at 1 km. Then, a residual correction was performed on the
PRCP1km maps that the model could not estimate. The residual correction includes three steps:
(1) The PRCP1km were aggregated to coarse spatial resolution (25 km) using an averaging method.
The residuals were then calculated by subtracting the re-sampled PRCP1km from the original TRMM
products. (2) The coarse resolution residuals were spatially interpolated to mapping residuals at
fine resolution (1 km); a spline interpolation method was implemented here for its usefulness for
regularly-spaced data [20,21]. (3) The residuals at 1 km resolution were then added back to PRECP1km.
Lastly, the overcorrected values (negative values) were replaced by zero to guarantee a reasonable
range of the downscaled precipitation data.

3.2. Random Forests

Ensemble learning is a method that uses a number of individual predictors to obtain better
quality predictions. In theory, it performs better than any single predictor. Random forest (RF) is a
well-known ensemble learning method that has been widely used for both classification and regression,
and was reported to outperform a number of machine learning algorithms. The RF was developed
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by Breiman [36]. It constructs a multitude of classification and regression trees (CART) by randomly
extracting subsets from the total dataset with replacement. For classification problems, the final output
is the mode of the classes of all the individual trees. For regression problems, the predicted results
are obtained by averaging the predictions of the individual trees. The basic process of RF regression
method can be described as follows: (1) The total number (N) of subsets is extracted randomly from
the total sample set with replacement; (2) For each subset, a regression tree is generated. All of the
trees are constructed independently. In each tree, a number of random variables are selected at a root
node of the tree and the best variable split is selected in order to split the node into two sub-nodes;
(3) The predictions are obtained by averaging the prediction of each individual trees:

f =
1
N

N

∑
i=1

fi(x) (1)

where N is the number of trees and fi(x) is the prediction from each individual regression tree.
For comparison in this study, the CART model was used to downscale the TRMM precipitation

products. Further details about CART and RF algorithm are provided in Breiman [36] and
Breiman et al. [37].

4. Results and Analysis

4.1. Performance of the Regression Algorithms

The CART and RF models were trained on a 25 km by 25 km scale. Optimization of model
parameters are significant for utility of machine learning algorithms. In practice, we optimized
parameters to obtain the best training performance by introducing a grid search algorithm (GS).
The basic idea of GS is to traversal the pre-set parameter sets to find the best training accuracy based
on cross-validation (CV). In this study, we used a CV scheme that divide the total dataset into three
subsets randomly; two subsets are used for learning, and the left one is used for testing. The candidate
parameters used can be seen in Table 1.

Table 1. Candidate parameters for classification and regression trees (CART) and random forest (RF).

Algorithm Parameter Type Description of
Parameter Type Parameters

Classification and
Regression Trees MinSamplesLeaf

The minimum number
of samples required to
split an internal node.

2, 3, 4, 5, 6, 7, 8, 9, 10

Random Forests n_estimators The number of trees in
the forest

20, 40, 60, 80, 100,120, 140, 160,
180, 200, 220, 240, 260, 280, 300

By using the grid search algorithm, we derived the coefficient of determination (R2) achieved by
the training models with different parameters (Figure 3). As shown in Figure 3, the R2 values between
the predictor and the target obtained by the CART model varied between 0.90 and 0.99 when the
parameters were changed. In contrast, the RF model produced more stable R2 values with different
parameters; the averaged R2 values were all higher than 0.99. In general, the RF model performed
better than the CART model when establishing the downscaling model. According to the analysis
above, the performance of RF model is stable when the ‘n_estimators’ changes; in addition, the RF
model has good robustness compared to the CART model. However, as ‘n_estimators’ decreases,
the strength of the RF model tends to decrease as well. Selecting appropriate parameters for different
datasets and application scenarios is needed.
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4.2. Mapping Fine Spatial Resolution Precipitation

By applying the CART and RF models to variables at a fine spatial resolution of one kilometer,
we generated fine spatial resolution precipitation data over China’s land area. Figure 4 shows
the original TRMM products in May 2009 (Figure 4a) and the fine spatial resolution precipitation
maps generated using the CART and RF models separately. Through visual comparison, the results
generated by the two models show similar spatial distribution patterns. We then compared the scatter
plots between the original and the aggregated fine spatial resolution precipitation maps (Figure 5).
The precipitation map generated using the RF model has a higher correlation with the original TRMM
products than those obtained by the CART model, as shown in Figure 5.Sustainability 2017, 9, 1912  6 of 16 
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Figure 8 illustrates the effectiveness of the developed approach for downscaling precipitation in
July 2006 for the TRMM precipitation products. Figure 8c,e highlight the downscaled precipitation
maps created by the RF model for different areas. The coarse resolution precipitation data appear to
be downscaled well. The downscaled precipitation map could provide more spatial details within
each coarse grid. Fine spatial resolution precipitation products could strengthen the potential of
satellite-based precipitation products for regional applications.
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4.3. Validation and Analysis

4.3.1. Validation for In Situ Measurements

The downscaled results were analyzed using in situ measurements for validation. First,
we validated the downscaled precipitation data before residual correction, and the results are shown
in Figure 9. The CART model estimated the precipitation with an R2 value of 0.74. Compared with
CART, the RF model had a higher R2, and a smaller mean absolute error (MAE) and root-mean-square
error (RMSE). The residual corrected precipitation data were then validated with in situ measurements
(Figure 10). Compared to the precipitation without correction, the corrected precipitation data
had a higher R2 value and a smaller MAE and RMSE. We examined the performance of the final
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downscaled precipitation data for different months. Table 2 presents the validation results with in
situ measurements. In general, the RF model performed better than the CART model in each month,
with higher R2 values and smaller MAE and RMSE values.
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Table 2. The coefficient of determination (R2), mean absolute error (MAE), and root-mean-square error
(RMSE) of each algorithm for different months.

Month
CART RF

R2 MAE (mm) RMSE (mm) R2 MAE (mm) RMSE (mm)

1 0.822 5.6 9.8 0.823 5.4 9.4
2 0.851 9.0 16.8 0.882 8.2 15.0
3 0.862 11.3 20.0 0.892 10.2 17.5
4 0.811 19.3 30.4 0.862 16.7 25.4
5 0.835 24.8 38.3 0.869 21.5 34.1
6 0.766 36.5 55.2 0.804 33.1 50.4
7 0.566 48.8 73.5 0.655 41.8 62.9
8 0.620 41.1 61.8 0.699 36.0 54.1
9 0.670 26.6 40.9 0.738 23.2 36.2

10 0.666 17.1 28.9 0.736 15.0 24.9
11 0.809 10.9 17.7 0.848 9.8 15.8
12 0.738 5.6 9.5 0.774 5.1 8.7
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A zoning system divides the land area of China into nine regions. The zones were determined
based on regional similarities and differences in precipitation, temperature, terrain, conditions, and
potential for development of agricultural production. It was published by the National Committee of
Agricultural Regionalization under the State Agricultural Commission of China [38,39]. This zoning
system facilitates the analysis of changes and differences in precipitation and temperature between
locations. The topography, land cover type, and ecosystems of different regions can greatly vary.
The downscaled precipitation data in different regions were analyzed with in situ precipitation based
on the zoning system. The nine regions are identified as Ri where i ranges from one to nine (Figure 11).
Figures 12 and 13 present the scatter plots comparing the in situ observations and the final downscaled
precipitation maps created with CART and RF. In general, the RF model performed better than the
CART model in each region. However, both the CART and RF models had small R2 values and high
bias in R8.
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The temporal behavior of the downscaled precipitation data was then examined. Figure 14
shows the comparison of the station-averaged in situ precipitation data and the station-averaged
downscaled precipitation data for each region during the time period. In general, the precipitation
products accurately captured the precipitation dynamics. For R8, the downscaled results generally
overestimated precipitation compared with the in situ measurements. The precipitation products
significantly overestimated precipitation in the summer months of June, July, and August in R9.Sustainability 2017, 9, 1912  11 of 16 
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4.3.2. Error Analysis

We analyzed the errors in the downscaled precipitation data. First, we compared the
station-averaged mean absolute error (MAE) with the in situ average precipitation data (Figure 15).
Results showed that MAE was positively correlated to the precipitation. As illustrated in Figure 15,
the MAE of the downscaled precipitation data obtained by CART increased at a rate of 2.7 mm/10 mm
(R2 = 0.62), whereas the RF model had a smaller trend of 2.4 mm/10 mm. We further investigated
the relationship between the accuracy of the original TRMM products and the performance of the
downscaled results to determine the sources of the errors. The accuracy of the TRMM products and
the downscaled precipitation were assessed by comparing the MAE of the in situ measurements
and the precipitation datasets. Figure 16 shows the scatter plots of the MAE of the TRMM and the
downscaled results. The MAE of the monthly precipitation datasets obtained by the RF model has
a strong relationship with that of the original TRMM data, with an R2 value of 0.89. This indicates
that the accuracy of the downscaled precipitation data may be strongly affected by the accuracy of the
original satellite precipitation datasets.
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5. Discussion

Investigating changes and spatial variations in precipitation is important to better understand
global climate change and its impact on regional ecosystems. Satellite-based precipitation observations
are valuable resources for climate change, hydrological simulation, and drought and flood monitoring.
However, the coarse spatial resolution of the satellite-based precipitation products reduces the potential
for regional uses.

To address the limitation on regional applications imposed by this coarse spatial resolution,
we generated fine spatial resolution precipitation datasets from a satellite-based (TRMM 3B43 V7)
precipitation product by using a RF-based downscaling method and optical remote sensing products.
The downscaling approach depends mainly on NDVI, LST, and DEM. These variables have been
investigated and proven to be strongly related to precipitation changes and spatial distribution [40–46].
However, several human and natural variables affect this relevance, which as a result, reduce the
potential of using these variables as indicators in downscaling precipitation data for certain areas.
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For instance, irrigation and harvesting processes can influence the NDVI and LST values of farmland,
and the defoliation of vegetation would also change these values of these variables [22]. These
non-precipitation effects on the variation in NDVI and LST might result in some uncertainty in
precipitation downscaling. This uncertainty was not evaluated in this study. These influences
need to be explored to reduce the uncertainties in future work. In addition, the distribution of
the stations is uneven and sparse in the western Tibetan Plateau (TP) due to the high altitude, the
complex topographical conditions, and the extremely cold climatic conditions [45,47,48]. Therefore,
uncertainties in the regional trends would arise because of a lack of reliable data. These uncertainties
in the downscaled precipitation dataset over the west TP area were not analyzed because of the lack of
ground-based observations.

According our analysis in Section 4.3.2, the performance of the downscaled precipitation dataset
is greatly affected by the accuracy of the original precipitation products. Previous studies have found
that the TRMM-based precipitation datasets have limited ability to estimate solid precipitation, which
is the main form of precipitation over the middle and high latitudes in winter [22]. Thus, uncertainty
may arise in the data during winter in these regions.

6. Conclusions

Fine spatial resolution precipitation datasets are useful for characterizing the details of the spatial
distribution of precipitation, and are helpful to bridge the gap between coarse spatial resolution
precipitation and their application to regional studies. Land surface temperature was combined here
with NDVI and DEM data to downscale the TRMM 3B43 V7 precipitation datasets in China from a
resolution of 25 km to 1 km using the CART and RF models. The coherence and accuracy of the results
were validated and verified based on the actual data from meteorological stations.

The verification results indicated the RF model had higher coherence and precision than the
CART model, both before and after residual correction. The RF model performed well in downscaling
the precipitation datasets and achieved results with high accuracy for every month. Moreover, we
observed a relatively significant positive and linear correlation between the estimated errors and
the average observed precipitation. In addition, the rates of the RF-based model are lower than the
CART-based model.

We recommend that researchers introduce more precipitation correlated features, such as soil
moisture, slope, and aspects, to determine if they are valuable variables for downscaling satellite
precipitation data in a subsequent study. Furthermore, the TRMM mission ended in 2015; the next
generation precipitation products of Precipitation Measurement Missions (GPM) have higher spatial
and temporal resolution. Moreover, we recommend that future studies focus on exploring downscaling
algorithms for weekly or daily precipitation datasets, which would be more valuable for hydrological,
meteorological, and ecological research.
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