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Abstract: The extreme variation in the amount of annual precipitation and rainfall during single
events is typical of the East Asian monsoon climate and may greatly influence the characteristics of the
suspended sediment load. The turbidity in Lake Imha which is the eighth largest multipurpose dam
in Korea has been the cause of major water quality problems for use as drinking water. The turbidity
rose to 882 NTU, and it remained over 30 NTU continuously for 170 days during 2002, as the result of
significant amounts of soil erosion from the watershed during the Asian monsoon typhoon. In this
study, characteristics of suspended sediment loadings under the Asian summer monsoon climate
was investigated by comparing the variation of yearly suspended sediment loads and the ratio of
maximum suspended sediment loads in a single event to yearly suspended sediment load from Lake
Imha watershed using the Hydrologic Simulation Program-FORTRAN (HSPF). The model calibration
is performed according to the 2009–2010 events, and simulation results characterized suspended
sediment loadings under the Asian summer monsoon climate for 2001–2010. Water sampling and
flow rate measurements were performed every 4–6 h, and calibration was performed using hourly
simulated sediment loads. The calibration results demonstrated good agreement with the observed
data. The characteristics of suspended sediment loadings under the Asian summer monsoon climate
are a high variance of the yearly suspended sediment load and a significant of amount of suspended
sediment load during a single event influenced by the typhoon intensity. The maximum yearly
suspended sediment load was 10 times higher than the minimum yearly value. About half of the
yearly suspended sediment load was loaded with a single event under the Asian summer monsoon
climate and the ratio of suspended sediment loads by a single event to total yearly loads ranged from
29% to 90%. Structural best management practices (BMPs) to trap suspended sediment in stormwater
such as stormwater ponds or wetlands rely on much more storage volume or area and non-structural
BMPs to minimize soil erosion by source control such as mulching or revegetation in disturbed areas,
which are important BMPs, especially in the Asian summer monsoon region.
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1. Introduction

The rainfall under an Asian summer monsoon climate is strongly concentrated in summer in
Korea. During the summer season, significant amounts of nonpoint source pollution are generated
which flow into water bodies. Soil erosion can be a major factor in water quality problems caused by
the Asian summer monsoon typhoon in Korea [1]. Excessive sediment deposited onto the bottom of a
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water body can impair aquatic life and fisheries, reduce the quality of drinking water such as taste and
odor, block water supply intakes, and limit recreational water use by altering channel morphology [2].
Pollution tightly attached to sediment can also cause water quality problems. Crabill et al. [3] identified
sediment with high fecal coliform counts, averaging 2200 times higher than those of the water column,
which causes a deterioration in water quality during the summer season in Oak Creek, Arizona, USA.
The major source of phosphorus, which causes eutrophication in lakes and reservoirs, was found to be
soil erosion in the Hii River basin, Japan [4].

Estimating and simulating sediment loads from watersheds is an important procedure for
evaluating various scenarios in order to reduce soil erosion. One used method to estimate sediment
loads is the Revised Universal Soil Loss Equation (RUSLE) [5]. RUSLE can easily estimate soil erosion
loads [6], and evaluate various measured controls [7,8]. Another watershed model used to simulate
sediment is the Soil and Water Assessment Tool (SWAT) [9]. SWAT uses a Modified Universal Soil
Equation (MUSLE) for sediment simulation, and has been used to simulate sediment yield from
small [10] to large scale watersheds [11]. Sommerlot et al. [12] developed a field-scale SWAT linked
with RUSLE2 for estimating sediment yield, and compared the results with those of SWAT and High
Impact Targeting (HIT). Hydrologic Simulation Program-FORTRAN (HSPF) is used widely to simulate
the watershed hydrology and water quality, and is one of the detailed models that can be applied in
both rural and urban areas [13]. The detachment and wash-off equation in HSPF was used to simulate
soil erosion. A few researchers have also simulated sediment using HSPF. Ouyang et al. [14] evaluated
the impact of reforestation on sediment load and water outflow, and Walton and Hunter [15] used it to
analyze the land-use effects on fluxes of suspended sediments from a catchment.

One of the characteristics of sediment loads in the Asia monsoon region is that the majority of
sediment transport occurs during high-flow events; thus a model’s capacity for accurately capturing
these rainfall events is important [11,16]. Thompson et al. (2014) [17] concluded that the use of
different sampling resolution impacted the estimation of the suspended sediment loads, and sampling
every seventh hour was the best frequency. The strength of HSPF for suspended sediment simulation
is that it can simulate hourly pollutant loads [18]. If monitoring is performed well during a rainy
day, HSPF can simulate the pattern of hourly sediment loading and estimate sediment yield. In this
study, the suspended sediment loads under the East Asian monsoon climate was characterized
using calibrated HSPF during 2001–2010, and HSPF was calibrated during the years 2009–2010 for
simulating stream flow and suspended sediment loading at six monitoring stations within the Lake
Imha watershed.

2. Materials and Methods

2.1. Overview of Hydrologic Simulation Program-FORTRAN (HSPF)

HSPF was developed based on the Stanford Watershed Model IV, which was developed to
simulate the portion (the land phase) of the hydrologic cycle for an entire watershed [18]. HSPF is now
available from the U.S. Environmental Protection Agency (U.S. EPA). The HSPF model can simulate
the hydrologic and water quality processes on pervious and impervious land, and the hydraulic and
water quality in a water body [18]. The simulation modules in HSPF used for pervious and impervious
land and reach are PERLND, IMPLND, and RCHES, respectively. The fluxes and storages of sediment
used to simulate PERLND are shown in Figure 1.

Kinetic energy from rainfall on the soil detaches soil particles, which are then available to be
transported by overland flow. The equation that simulates detachment is shown in Equation (1),
as follows [18]:

DET = DELT60 × (1.0 − CR)× SMPF × KRER ×
(

RAIN
DELT60

)JRER
(1)
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where DET is the sediment detached from the soil matrix by rainfall (tons/ac/interval), DELT60 is the
number of hours/interval, CR is the fraction of the land covered by snow and other cover, SMPF is
the supporting management practice factor, KRER is the detachment coefficient dependent on soil
properties, RAIN is rainfall (mm/interval), and JRER is the detachment exponent dependent on
soil properties.
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Figure 1. Flow diagram for SEDMNT section of PERLAND application module.

The wash off of the detached sediment when the storage is sufficient to fulfill the transport
capacity is shown in Equations (2) and (3), as follows [18]:

WSSD = STCAP × SURO
(SURS + SURO)

(2)

STCAP = DELT60 × KSER ×
(

SURS + SURO
DELT60

)JSER
(3)

where WSSD is the wash off of detached sediment (tons/ac/interval), STCAP is the capacity
for removing the detached sediment (tons/ac/interval), SURO is the surface outflow of
water (mm/interval), and SURS is the surface water storage (mm).

2.2. Study Area

Lake Imha is the eighth largest multipurpose dam in Korea, including a hydropower plant, and is
upstream of the Nackdong River, which is the second largest river in Korea (Figure 2). The surface area
and storage volume are 42.4 km2 and 6.0 m3, respectively, while the drainage area and length of the
river are 1361 km2 and 98.1 km, respectively. Lake Imha has two major tributary basins: Yongjun Creek
and Banbyun Creek. Lake Imha is a major source of drinking water in the upper area of the Nadong
River, but has suffered from high turbidity in the water from the impact of two typhoons: Rusa in 2002,
and Maemi in 2003. The nepthelometric turbidity unit of Lake Imha reached 1221 NTU, and the high
turbidity concentration in the outflow was continuous for 340 days. The long-term turbid water in
Lake Imha impacted several components of the ecosystem, including the gill structures of fish [19],
benthic macroinvertebrates, and the food selection of fish [20].



Sustainability 2017, 9, 44 4 of 15

Sustainability 2017, 9, 44 4 of 15 

 
Figure 2. Study area. 

2.3. Data Preparation 

The user control input (UCI) file of HSPF was generated by the Better Assessment Science 
Integrating point and Non-point Sources (BASINS), which is a multipurpose environmental analysis 
system. BASINS requires some geographic information system (GIS) data, including Digital Elevation 
Model (DEM), land-use, watershed, and river data. The DEM, with a mesh size of 30 m (Figure 2), and 
the land-use coverage (Figure 3) were obtained from the Korean Ministry of Environment, and the 
other GIS data, such as watershed and river data, and the location of weather stations were obtained 
from the Korean Ministry of Land, Infrastructure and Transport. The 47 subwatersheds were 
delineated using the subwatershed delineation tool of BASINS with DEM (Figure 3). Hourly weather 
data including temperature, cloud cover, wind speed, solar radiation, and dew point temperature 
were obtained from the Korea Meteorological Administration, and hourly rainfall data at eight rain 
gage stations within the Lake Imha watershed were obtained from the Korean Water Resources 
Corporation (K-Water). Suspended sediment concentration and water flow rate were monitored at 
every 4–15 h for rainy days during 2009–2010. Some monitoring chances for peak flow were missed 
due to the hazardous weather conditions including wind, lightning, flooding. Land use classification 
covered the monitored stations, and a summary of the rainfall events used for calibration is shown in 
Tables 1 and 2, respectively. Amount of rainfall ranged from 28.0 to 68.9 mm and, duration and 
maximum rainfall intensity were 4–44 h and 6.0–24.0 mm/h, respectively. 

Table 1. Monitoring stations and watershed descriptions.  

Station ID Area (km2) 
Land Use (%)

Urban Wetland Agriculture Forest Water Barren Pasture
ST1 70.9 0.4 1.1 4.3 92.8 0.8 0.5 0.1 
ST2 11.4 8.5 5.4 26.2 58.2 0.8 0.5 0.4 
ST3 21.3 1.0 2.7 11.3 83.2 1.3 0.4 0.1 
ST4 144.3 1.0 3.4 10.6 83.2 1.3 0.4 0.1 
ST5 397.4 1.3 2.8 10.5 83.2 1.4 0.6 0.2 
ST6 537.9 1.6 2.8 11.3 81.4 1.5 0.9 0.5 

Figure 2. Study area.

2.3. Data Preparation

The user control input (UCI) file of HSPF was generated by the Better Assessment Science
Integrating point and Non-point Sources (BASINS), which is a multipurpose environmental analysis
system. BASINS requires some geographic information system (GIS) data, including Digital Elevation
Model (DEM), land-use, watershed, and river data. The DEM, with a mesh size of 30 m (Figure 2),
and the land-use coverage (Figure 3) were obtained from the Korean Ministry of Environment, and the
other GIS data, such as watershed and river data, and the location of weather stations were obtained
from the Korean Ministry of Land, Infrastructure and Transport. The 47 subwatersheds were delineated
using the subwatershed delineation tool of BASINS with DEM (Figure 3). Hourly weather data
including temperature, cloud cover, wind speed, solar radiation, and dew point temperature were
obtained from the Korea Meteorological Administration, and hourly rainfall data at eight rain gage
stations within the Lake Imha watershed were obtained from the Korean Water Resources Corporation
(K-Water). Suspended sediment concentration and water flow rate were monitored at every 4–15 h
for rainy days during 2009–2010. Some monitoring chances for peak flow were missed due to the
hazardous weather conditions including wind, lightning, flooding. Land use classification covered the
monitored stations, and a summary of the rainfall events used for calibration is shown in Tables 1 and 2,
respectively. Amount of rainfall ranged from 28.0 to 68.9 mm and, duration and maximum rainfall
intensity were 4–44 h and 6.0–24.0 mm/h, respectively.

Table 1. Monitoring stations and watershed descriptions.

Station ID Area (km2)
Land Use (%)

Urban Wetland Agriculture Forest Water Barren Pasture

ST1 70.9 0.4 1.1 4.3 92.8 0.8 0.5 0.1
ST2 11.4 8.5 5.4 26.2 58.2 0.8 0.5 0.4
ST3 21.3 1.0 2.7 11.3 83.2 1.3 0.4 0.1
ST4 144.3 1.0 3.4 10.6 83.2 1.3 0.4 0.1
ST5 397.4 1.3 2.8 10.5 83.2 1.4 0.6 0.2
ST6 537.9 1.6 2.8 11.3 81.4 1.5 0.9 0.5
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Table 2. Summary of rainfall events and calibrated watershed.

Date Rainfall (mm) Duration (h) Maximum Rainfall
Intensity (mm/h) Calibrated Watershed

21 May 2009 50.9 11 9.0 ST1, ST2, ST3, ST6
2 July 2009 59.0 10 24.0 ST1, ST2, ST3, ST4, ST5, ST6

12 July 2009 67.9 19 20.0 ST1, ST3, ST4, ST5, ST6
15 July 2009 41.9 10 20.0 ST1, ST3, ST5, ST6

11 August 2009 72.9 14 16.0 ST1, ST4, ST6
23 May 2010 59.8 44 6.0 ST2

12 August 2010 28.0 4 16.0 ST1, ST2, ST3, ST4, ST6
15 August 2010 31.0 5 20.0 ST1, ST4, ST5, ST6

11 September 2010 68.9 40 21.0 ST2, ST3, ST4, ST6

2.4. HSPF Calibration

HSPF calibration was performed by matching observed stream flow first and then suspended
sediment load. The calibration parameters and the description are shown in Table 3. U.S. EPA
guides the possible ranges of calibration parameters by land use type related to hydrologic
calibration [21] and sediment calibration [22], and HSPF calibration was performed by considering the
parameter ranges. Donigian [23] suggested the calibration tolerances for HSPF simulation (Table 4).
The performance of calibration for stream flow and suspended sediment loads was evaluated by
the criteria.

The determine coefficient (R2), the Nash-Sutcliffe (NS) coefficient [24], widely used as an
objective function for stream flow calibration, and the relative error (RE) were calculated with
Equations (4)–(6), respectively. When the simulated values are exactly matched with the observed
values, the determine coefficient, Nash-Sutcliffe coefficient, and relative error are 1.0%, 1.0%, and 0.0%,
respectively. A positive relative error means simulated values are higher than the observed values.
Although simulation results represent observed stream flow or suspended sediment, outliers could
negatively affect the results in the statistical analysis. Therefore, one or two outliers were excluded in
the statistical analysis in this study.

R2 =

 ∑n
i=1
(
Oi − O

) (
Pi − P

)√
∑n

i=1
(
Oi − O

)2
√

∑n
i=1
(
Pi − P

)2

2

(4)
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NS = 1 −

 ∑n
i=1(Oi − Pi)

2√
∑n

i=1
(
Oi − O

)2

 (5)

RE(%) =
∑n

i=1(Pi − Oi)

∑n
i=1 Oi

× 100 (6)

where R2 is the coefficient of determination, NS is the Nash-Sutcliffe coefficient, RE is the relative
error, Oi is the observed value, O is the average observed value, Pi is the simulated value, and P is the
average simulated value.

Table 3. Description and ranges of Hydrological Simulation Program-FORTRAN (HSPF) parameters.

Parameter
Ranges

Upland Forest Pasture Barren Urban

Water budget

LZSN (cm) 4.1–20.3 3.8–18.8 4.1–20.3 3.8–18.8
INFILT (cm/h) 2.0–13.0 1.4–9.2 2.0–13.6 2.5–23.4

UZSN (cm) 0.2–4.1 0.2–5.1 0.2–4.1 0.1–3.0
NSUR 0.03–0.3 0.04–0.5 0.03–0.3 0.02–0.3 0.01–0.1

AGWRC (/day) 0.833–0.999
IRC (/day) 0.3–0.85

INTFW (/day) 1.0–10.0
DEEPER 0.0–0.5
BASETP 0.0–0.05

Sediment

KRER 0.05–0.75
JRER 1.0–3.0

AFFIX 0.01–0.50
KSER 0.1–10.0
JSER 1.0–3.0

KGER 0.0–10.0
JGER 1.0–5.0

LZSN: Lower zone nominal soil moisture storage; INFILT: Infiltration capacity of soil; UZSN: Upper zone
nominal soil moisture storage; NSUR: Manning’s n coefficient; AGWRC: Ground water recession rate;
IRC: Interflow recession parameter; INTFW: Interflow inflow parameter; DEEPER: Fraction of groundwater
inflow to deep recharge; BASETP: Fraction of evapotranspiration from baseflow; KRER: Detachment coefficient
of soil; JRER: Detachment exponent of soil; AFFIX: Daily reduction in detached sediment; KSER: Coefficient
for transport of detached sediment; JSER: Exponent for transport of detached sediment; KGER: Coefficient for
scour of the matrix soil; JGER: Exponent for scour of the matrix soil.

Table 4. General calibration and validation target or tolerances for HSPF application [23].

Calibration Item Very Good Good Fair Poor

Daily
Stream flow R2 >0.8 0.7–0.8 0.6–0.7 <0.6

Sediment RE (%) <20 20–30 30–45 >45

3. Results and Discussion

3.1. Calibration Results

The calibration results of HSPF are shown in Table 5, Figure 4 for hourly stream flow, and Figure 5
for hourly suspended sediment yield. The 1:1 scatter plot and regression analysis between the
observed and simulated values are shown in Figures 6 and 7. One or two extra-ordinary data points
which contribute to lower NS or relative error were excluded. The coefficients of determination and
NS for stream flow ranged from 0.76 to 0.95 and from 0.78 to 0.96, respectively. The coefficient of
determination and relative error for suspended sediment yield calibration ranged from 0.62 to 0.96,
and from −1% to 23%, respectively. Although some simulation results underestimated peak points,
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overall, the performance of the HSPF calibration of the stream flow and suspended sediment yield was
“good”, based on the HSPF calibration tolerance (Table 4). The ranges of calibrated HSPF parameters
by six subwatersheds related to water budget and sediment simulation are shown in Table 6. All of the
calibrated parameters for simulating the water budget were within the “possible” range suggested by
U.S. EPA.

Monitoring during rainy days is expensive and can sometimes be dangerous, so it is hard to
obtain data for calibration and validation processes. Due to these difficulties, it is rare for a case study
to calibrate and validate water quality using monitoring data for rainy days. Hsu et al. [25] calibrated
and validated stream flow and sediment loads of HSPF simulation using typhoon events. Many case
studies in recent (in the last 5 years) research did not perform validation processes for the water quality
simulation of HSPF because it is very hard to obtain monitoring data during the rainy season for
validation process [26–28]. A validation process was not undertaken in this study. Monitoring data for
six events were used for model calibration, which constitutes a limitation of this research.

Table 5. Coefficients of determination of the hourly stream flow calibration.

Calibration Item ST1 ST2 ST3 ST4 ST5 ST6

Stream flow
R2 0.80 0.76 0.95 0.86 0.89 0.93
NS 0.88 0.78 0.95 0.89 0.96 0.86

Suspended Sediment yields R2 0.87 0.96 0.90 0.60 0.89 0.62
RE (%) 23 −1 22 −14 −13 16

Table 6. Calibrated HSPF parameters.

Parameter
Ranges

Upland Forest Pasture Barren Urban

Water budget

LZSN (cm) 7.7–16.1 7.58–8.96 5.08–13.83 7.19–18.75
INFILT (cm/h) 0.18–0.20 0.13 0.04–0.54 0.22–0.46

UZSN (cm) 0.19–0.23 0.25–0.26 0.17–0.26 0.13–0.26
NSUR 0.21–0.34 0.37 0.11–0.25 0.05–0.27 0.05

AGWRC (/day) 0.88–0.91
IRC (/day) 0.40

INTFW 1.97–2.01
DEEPER 0.45
BASETP 0.02

Sediment

KRER 0.05–0.40
JRER 1.00–2.57
KSER 0.10–2.00
JSER 2.00–3.00

KGER 0.0001–1.70
JGER 2.50–5.00

LZSN: Lower zone nominal soil moisture storage; INFILT: Infiltration capacity of soil; UZSN: Upper zone
nominal soil moisture storage; NSUR: Manning’s n coefficient; AGWRC: Ground water recession rate;
IRC: Interflow recession parameter; INTFW: Interflow inflow parameter; DEEPER: Fraction of groundwater
inflow to deep recharge; BASETP: Fraction of evapotranspiration from baseflow; KRER: Detachment coefficient
of soil; JRER: Detachment exponent of soil; AFFIX: Daily reduction in detached sediment; KSER: Coefficient
for transport of detached sediment; JSER: Exponent for transport of detached sediment; KGER: Coefficient for
scour of the matrix soil; JGER: Exponent for scour of the matrix soil.
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Figure 7. 1:1 scatter plots between observed and simulated suspended sediment loads. 
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3.2. Characteristics of Suspended Sediment Loadings under the East Asian Monsoon Climate

One of the characteristics of the East Asian monsoon climate is extreme precipitation or annual
variabilities [29]. Annual variability of precipitation could influence the annual suspended sediment
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loads because suspended sediment load is highly dependent on rainfall intensity. There was significant
variance in the yearly suspended sediment loads in ST5 and ST6 as shown in Figure 8 and Table 7.
Yearly suspended sediment loads ranged from 6873 to 73,955 ton/year from ST5 and from 6454
to 60,787 ton/year from ST6, and the standard deviation of yearly sediment loads was 19,869 ton/year
for ST5 and 15,527 ton/year for ST6 (Table 7). The maximum yearly suspended sediment loads were
around 10 times higher than the minimum value during 2001–2010 in ST5 and ST6 (Table 7).

Table 7. Statistical analysis for yearly suspended sediment loads during 2001–2010 at ST5 and
6 (ton/year).

Station ID Average Maximium Minimum Max/Min * STD **

ST5 29,187 73,955 6873 11 19,869
ST6 22,646 60,787 6454 9 15,527

* Maximum/Minimum; ** Standard deviation.
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Figure 8. Suspended sediment loads from ST5 and ST6 during 2001 to 2010.

Another characteristic of sediment loads under the East Asian monsoon climate is that a significant
amount of sediment was loaded during one event (Table 8). Heo et al. [30] reported that 22%–33% of
total suspended sediments are loaded by typhoon under an Asian summer monsoon climate. Based on
the average value during 2001–2010, over half of the yearly suspended sediment was loaded during
one event ranging from 26% to 94% for ST5 and from 29% to 90% for ST6. More than 90% of yearly
suspended sediment was loaded by one event at ST5 in 2008 and at ST6 for 2006.

Table 8. Comparison of yearly suspended sediment loads and load during one event.

Year
ST5 ST6

Yearly * Event ** Ratio *** Yearly Event Ratio

2001 8711 4090 0.47 30,398 20,205 0.66
2002 73,955 37,283 0.50 60,787 25,202 0.41
2003 43,284 11,085 0.26 32,210 10,233 0.32
2004 44,412 16,575 0.37 26,666 9714 0.36
2005 21,473 17,076 0.80 11,038 5420 0.49
2006 37,953 29,353 0.77 22,554 20,260 0.90
2007 11,409 5339 0.47 10,537 3019 0.29
2008 17,579 16,465 0.94 6454 3676 0.57
2009 26,222 18,213 0.69 7661 4447 0.58
2010 6873 2922 0.43 18,149 12,504 0.69

Average 29,187 15,840 0.54 22,646 11,468 0.51

* Yearly suspended sediment loads; ** Suspended sediment loads by one event; *** Ratio of load by one event to
yearly load.
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Suspended sediment is a major nonpoint source of pollution in the world. Many countries have
tried to reduce suspended sediment load from the watershed by developing best management practices
(BMPs). The size or volume of structural BMPs is influenced by the volume of storm water, so when
establishing structural BMPs, the particular characteristics of the suspended sediment load under the
East Asian monsoon climate must be considered.

Monitoring under all weather conditions is practically impossible. In this study, sediment loading
for calibration periods is smaller than that for simulation periods as shown in Figure 8 and Table 8,
so it may be possible that there is systematic error in the estimates of sediment loadings during very
rainy years.

4. Conclusions

HSPF was calibrated during 2009–2010 to simulate the suspended sediment loads at six monitoring
stations within the Imha Lake watershed, Korea. The stream flow and suspended sediment load were
monitored at every 4–15 h during high water flow. The calibration results showed that HSPF could
effectively simulate the patterns of hourly change of suspended sediment loads and stream flow,
showing 0.59–0.96 for the Nash-Sutcliffe coefficients for stream flow, and −29%–17% of relative errors
for the suspended sediment loads. The extreme variance of amount of yearly and rainfall intensity by
typhoon under the East Asian monsoon climate could greatly influence the suspended sediment load
from the watershed. During 2001–2010, the maximum yearly suspended sediment load was around
10 times higher than the minimum yearly value at the same monitoring site. Overall, suspended
sediment load by a single rainfall event was up to half of the yearly suspended sediment load and
90% in certain years under the East Asian monsoon climate. When developing BMPs for controlling
suspended sediment, the characteristics of the suspended sediment load under the East Asia monsoon
climate must be considered in their design.
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