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Abstract: Currently, supply chain networks can span the whole world, and any disruption
of these networks may cause economic losses, decreases in sales and unsustainable supplies.
Resilience, the ability of the system to withstand disruption and return to a normal state quickly,
has become a new challenge during the supply chain network design. This paper defines a new
resilience measure as the ratio of the integral of the normalized system performance within its
maximum allowable recovery time after the disruption to the integral of the performance in the
normal state. Using the maximum allowable recovery time of the system as the time interval under
consideration, this measure allows the resilience of different systems to be compared on the same
relative scale, and be used under both scenarios that the system can or cannot restore in the given
time. Two specific resilience measures, the resilience based on the amount of product delivered
and the resilience based on the average delivery distance, are provided for supply chain networks.
To estimate the resilience of a given supply chain network, a resilience simulation method is proposed
based on the Monte Carlo method. A four-layered hierarchial mobile phone supply chain network is
used to illustrate the resilience quantification process and show how network structure affects the
resilience of supply chain networks.
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1. Introduction

Economic and technological globalization have rendered division of labor more pronounced,
including more and more companies in supply chain networks, which renders their structures more
complex. The consequences arising from unexpected events have direct influences on some (or even all)
companies in the network, and may lead to economic losses and unsustainable supplies. The supply
chain resilience, which refers to the ability of a system to prepare for unforeseen disruptions and
to withstand and recover from them [1–3], has drawn attention from researchers in both academia
and industry.

The term “resilience“ originates from the Latin word “resiliere”, which means to bounce back [4].
Many researchers believe that the current interest in the supply chain network resilience was triggered
by the events surrounding the 9/11 terrorist attacks. Because not all risks can be avoided, building a
resilient supply chain network that can bounce back from disruption easily becomes a new challenge
for supply chain managers. Many factors, such as the supply strategy, the network topology, and the
recovery strategy, can influence the resilience of a system. For example, the Taiwan earthquake of
1999 disrupted the flow of semiconductors to many computer and laptop manufacturers worldwide.
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In response to the shortfall, Apple Computer Inc. and Dell reacted quite differently due to their different
marketing schemes. During that quarter, Apple‘s sales declined, while Dell‘s earnings increased 41%
over the same period of the previous year [5]. A fire disrupted the main Philips radio-frequency chip
(RFC) plant in the early 2000s. Nokia and Ericsson, two competitors, both depended solely on Philips
RFCs, and they responded differently. As a consequence, Nokia met its sales goals, while Ericsson
lost $400 million and stopped making cellular phones [1]. Dell and Nokia showed better resilience to
short-term supply disruption than Apple and Ericsson, and resilient supply chain networks with good
resilience can improve the economic efficiency of the company.

Although the resilience of supply chain networks is a hot topic among researchers, there is still no
unified definition of the term [6]. According to the systematic review published by Hohenstein et al. [7],
the resilience of a supply chain network as “the ability of the supply chain network to withstand
disruptions and return to a normal status quickly”, includes the two most important attributes,
response and recovery, and is consistent with the definitions provided in [8–10]. Figure 1 shows the
conceptual schematic diagram of the system’s resilience behavior. The figure shows a disruption
occurring at time t0, and the system performance degrades from Q0 to Q1. By taking appropriate
action, the system finally returns to baseline at time t1.
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Figure 1. The schematic representation of resilience

In a systematic review, Hohenstein et al. [7] summarized that “most research has been qualitative
and lacks assessment and measurement of supply chain network resilience”. To measure resilience,
the Multidisciplinary Center of Earthquake Engineering to Extreme Events (MCEER) [11] proposed
a measure of addressing “resilience loss”. They defined a normalized system performance curve
Q(t), and used the integral of performance loss function from disruption followed by a gradual
recovery to describe system resilience loss (i.e., the shadowed area in Figure 1). This measure considers
both the robustness of the system against the disruption and the rapidity of the recovery process.
In particular, Mari et al. [12] applied the expected disruption cost to measure the supply chain
resilience, and this metric is an instance of the “resilience loss“ in the supply chain. Based on such
work, Cimellaro et al. [13] provided a further extension to define the resilience as the integral of the
area beneath the curve Q(t), which is regarded as a direct measure of resilience itself. Accordingly,
the loss of resilience should be minimized, and the resilience itself should be maximized. However,
because the recovery time of different systems differs, these two measures cannot be used to compare
resilience. To solve this problem, Reed et al. [14] defined the resilience of a system as the ratio of
the area beneath the curve Q(t) to the time interval under consideration; Zobel [15] assumed that
all systems will return to their original status before T∗ which serves as a strict upper bound on all
possible recovery times, and defined “predicted resilience” as the ratio of the approximate area under
the performance curve to T∗; Ouyang et al. [16] proposed a resilience measure as the ratio of the
area under the real performance curve to that under the targeted performance curve over 0 to T;
Spiegler et al. [17] applied the integral of time multiplied by the absolute error (ITAE) in the control
engineering to measure the resilience of the supply chain network, where the error in the inventory
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(i.e., the difference between zero and the actual inventory) is calculated by analyzing the inventory
levels and shipment rates. These measures allow system resilience to be compared on the same relative
scale. However, (1) the T∗-based scale disregards the fact that not all systems have a strict upper bound
on recovery time, and some systems cannot fully recover back; and (2) the lifetime-based one deviates
from the original definition of resilience as “bounce back”.

In this paper, a new resilience measure is proposed. It involves using the maximum allowable
recovery time as the time interval under consideration and providing a simulation-based estimation
method. Our research benefits supply chain managers. When building a new supply chain network or
changing the old one, supply chain managers can use our resilience measurement method to evaluate
the resilience of the network design alternatives, verify whether the system resilience goal can be
satisfied, and choose a resilient alternative that can withstand the disruption and return to the normal
state quickly. The remainder of the paper is organized as follows. Section 2 describes the hierarchical
structure of the supply chain network and its delivery mechanism. In Section 3, the new resilience
measure based on the maximum allowable recovery time is proposed, and two specific resilience
measures for supply chain networks are provided. This is the resilience based on the amount of
product delivered and the resilience based on the average delivery distance. Section 4 describes the
development of a resilience simulation method based on the Monte Carlo method, and the simulation
models, simulation flow and the error discussion are included. In Section 5, a four-layered mobile
phone supply chain network is introduced to show the effectiveness of our method, and the manner in
which network topology affects the network resilience is discussed. Concluding remarks are provided
in Section 6.

2. Problem

This paper considers hierarchical supply chain networks, as shown in Figure 2. In the network,
all suppliers, manufacturers, distribution centers, retailers, and other involved institutions are
considered as nodes, and nodes with the same function are grouped as one layer, e.g., supplier layer,
manufacturer layer, distributor layer, retailer layer, etc. There may be a link between any pair of
nodes in two adjacent layers for materials or product delivery, and the existence of links depends on
the network topology planning. Note that, because nodes in different layers differ in functionality,
links only exist between nodes in adjacent layers, i.e., the materials or products can only be transferred
between adjacent layers (e.g., from a supplier to a manufacturer, from a manufacturer to a distribution
center, and from a distribution center to a retailer) and not within the same layer.

Suppliers

Manufacturers

Distribution

centers Retailers

Figure 2. Hierarchical supply chain networks

The current paper focuses on measurement of the resilience of supply chain networks, and the
following assumptions were made:

(1) Only one type of product is produced and delivered per supply chain network.
(2) Each node has a certain capacity, which can be used to produce and store productions. The link

capacity is unlimited.
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(3) Both service time and waiting time on nodes are disregarded, and the waiting time on links is
also disregarded.

(4) Only nodes may suffer from the disruption, and there are no common-cause disruptions.

The first assumption is used to simplify the problem as Shin et al. [18], in which only one type
of product is considered. For networks with multiple types of products, a similar method can be
used by computing different resilience measures for different types of products, and then the system‘s
resilience can be synthetically calculated. Assumption 2 illustrates that the nodes are with finite
manufacturing or restoration ability and the links have infinite delivery ability. Assumption 3 indicates
that the materials and products are served immediately once they arrive at the node or link, and
there is no waiting time. The service time on nodes in the same layer is always the same, so they are
disregarded and only the delivery time on links is considered in our problem. The assumption that
only nodes may suffer from the disruption is made here to simplify the discussion process, similar to
the “perfect edges” assumption in the network reliability analysis [19–21], and can be easily extended
by regarding links as nodes. The assumption that there would be “no common-cause disruption”
means that one disruption can only cause the capacity of one node to degrade, which is similar to the
widely used “no common-cause failure“ assumption in reliability research [22–24].

Hence, given the network topology, node capacities, node locations, disruptions, node capacity
degradations and recovery time, the problem is to estimate the resilience of the supply chain network
and verify whether the system resilience goal can be satisfied.

3. Resilience Measure of Supply Chain Networks

3.1. New Resilience Measure

Table 1 summarizes the most commonly used resilience measures. In Table 1, Measures 1 and
2 cannot be used to compare the resilience of different systems as the relative scale, the recovery
time, varies; Measure 3 does not specify the time interval under consideration; Measure 4 ignores the
fact that the recovery time does not always have a strict upper bound; and Measure 5 is a long-term
measure, which does not directly reflect the ability of the system to bounce back after the disruption.

According to the analysis results above, (1) to make the resilience measure comparable, a fixed
time interval needs to be defined with a proper physics meaning; (2) to reflect the ability of the
system to bounce back after the disruption, the time when the disruption occurs should be used as
the beginning of the time interval; and (3) to consider both scenarios that the system can or cannot
restore within the given time interval, the system is not required to be fully recovered at the end of the
time interval. Hence, the maximum allowable recovery time determined by users is used as the time
interval under consideration, and the following new resilience measure is proposed:

R =

∫ Ta+t0
t0

Q(t)dt

Ta
, (1)

where R is the system resilience, t0 is the time at which the disruption occurs and the performance of
the system begins to decline, and Ta is the maximum allowable recovery time determined by users.
The advantages of our measure can be seen in the last column of Table 1. As shown in Figure 3,
the system resilience in the presence of one specific disruption can be expressed as the ratio of the
integral of Q(t) within the maximum allowable recovery time Ta (i.e., the dark area) to the integral of
the performance in the normal state (i.e., the colored rectangle area). Figure 3 illustrates two typical
situations, one in which the system performance returns to its initial level within the allotted recovery
time, and the other in which it does not, where t1 is the time that the system performance fully returns
to the baseline.
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Table 1. Comparisons of different resilience measures

No. Reference Measure Formula Conceptual Diagram Problems Our Measure Advantages

1 Bruneau et al. [11]

Resilience loss: the
integral of the
normalized performance
loss function.

RL =∫ t1
t0
[1−Q (t)] dt

0 t0
Time

P
erfo

rm
an
ce

100%

Q(t)

t1

Both measures cannot be used to
compare the resilience of different
systems as their relative scale,
the recovery time (t1 − t0), varies.

The maximum allowable
recovery time determined by
users is used as the time scale,
which makes our
measure comparable.2 Cimellaro et al. [13]

Resilience: the integral
of the normalized
performance function.

RC =
∫ t1

t0
Q (t) dt

3 Reed et al. [14]

Resilience: the ratio of
the area beneath the
curve Q(t) to the time
interval under
consideration.

RR =

∫ te
ts

Q(t)dt
te−ts

0 t0
Time

P
erfo

rm
an
ce

100%

Q(t)

t1tets

The time interval under consideration
(te − ts) can be defined flexibly, and the
measure is comparable when the time
interval is fixed. However, the time interval
determination method is not provided, and
the physical meaning of the measure is
not clear.

The time scale of our measure
provides a clear physical
meaning, i.e., the average
normalized performance of the
system within the allotted
recovery time after
the disruption.

4 Zobel [15]

Predicted resilience: the
ratio of the area under
the performance curve to
the strict upper bound of
the recovery time (T∗).

RZ =
T∗− Ql T

2
T∗

0 t0
Time

P
e
rfo
rm
a
n
c
e

100%

t0+T*

T

Ql

The strict upper bound of the recovery time
(T∗) is used as the end of the time interval
under consideration, which makes the
measure comparable. However, the
measure ignores the situation in which the
system cannot fully return to baseline.

The maximum allowable
recovery time determined by
users is used as the time scale of
our measure, the system is not
required to be fully recovered at
the end of the time interval.

5 Ouyang et al. [16]

Resilience: the ratio of
the area between the
actual performance curve
P(t) and the time axis to
the area between the
target performance curve
TP(t) and the time axis
from 0 to T.

RO =
∫ T

0 P(t)dt∫ T
0 TP(t)dt

0
Time

P
erfo

rm
an
ce

TP(t)

T

P(t)

A long time interval from 0 to T is used as
the time scale, which makes the measure
comparable. However, the measure cannot
reflect the ability of a system to bounce back
after disruptions, and bounce back is the
original meaning of the word “resilience”.

Our measure focuses on the
system behavior after the
disruption, and the time when
the disruption occurs is used as
the beginning of the
time interval.

Q (t) is the normalized system performance at time t (0% ≤ Q(t) ≤ 100%), ts and te are endpoints of the time interval under consideration, Ql and T are the predicted performance loss
and recovery time, P (t) and TP (t) are the actual performance curve and targeted performance curve of the system, respectively.
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Figure 3. The proposed resilience measure in two typical situations. (a) Ta + t0 ≥ t1 ; and
(b) Ta + t0 < t1.

Our resilience measure has four advantages:

(1) Using the maximum allowable recovery time as the time interval under consideration,
the resilience of different systems are comparable by using the same relative scales.

(2) The proposed resilience measure describes the average normalized performance of the
system within the maximum allowable recovery time after the disruption, which has a clear
physical meaning.

(3) The time interval under consideration starts at the time when the disruption occurs, lasts a
specific period of time, depending on users‘ recovery requirements, and it reflects the “bounce
back“ ability of the system.

(4) If the system performance cannot return to baseline within the maximum allowable system
recovery time, its resilience is considered low, and the area of the performance loss is large.

As shown in Equation (1), the resilience measure is able to comprehensively represent the ability
of the system to withstand the disruption and recover rapidly. Here, 0 ≤ R ≤ 1, (1) when R = 1,
it means that the system has perfect resilience: either its performance degradation is 0 or it can recover
from disruption instantaneously; (2) when R = 0, it indicates that the system is completely destroyed
immediately upon disruption (i.e., its performance degrades to 0 at t0) and cannot recover within the
maximum allowable recovery time; and (3) it is obvious that systems with higher R are more resilient.

Equation (1) is a deterministic resilience measure that can be used to estimate system resilience
in response to a certain disruption without uncertainty. In reality, the disruption, performance
degradation and recovery time are all random variables, so engineers care more about the probabilistic
resilience, which captures the stochastic behavior of the system during the design process. Because the
analytical distribution of the system resilience is difficult to derive, we develop the expected system
resilience as follows:

E(R) =
E
[∫ Ta+t0

t0
Q(t)dt

]
Ta

. (2)

With N disruption samples, the average here served as the estimate for the expected system resilience,
which produces the following:

Ê(R) ≈

N
∑

i=1
Ri

N
, (3)

where Ri is the system resilience under the ith disruption. With the resilience data obtained from N
disruptions, the distribution of the system resilience can also be built, and the probabilistic resilience
of the system can be obtained.
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The resilience measures can be used during both the design and operation stages of the supply
chain network. In the design stage, because of the lack of real data, the simulation method is the
most effective means of analyzing the supply chain‘s resilience process after possible disruptions.
The histogram of the network resilience can be obtained using the Monte Carlo based resilience
simulation. Equation (7) can be used to estimate the expected network resilience and verify whether
the resilience goal is satisfied. If not, the supply chain managers need to improve the network resilience
by reducing the capacity degradation, speeding the recovery rate, choosing better recovery scheme,
or changing the network topology, etc. In addition, the network topology and recovery strategy can be
further optimized using the resilience estimation results. In the operation stage, the performance data
of the supply chain network can be monitored. When a disruption occurs, the performance data can be
collected, and the network resilience under the certain disruption can be estimated using Equation (6).
Because the occurrence of disruptions is relatively infrequent, the deterministic resilience measure is
usually used in the operational stage.

3.2. Resilience Measures for Supply Chain Networks

As shown in Equation (1), the resilience of the system depends on its performance degradation
and recovery behavior, which changes along with the disruption. The most important step to determine
the resilience measure for a specific system is to find its key performance indexes (KPIs). In particular,
for supply chain networks, customers care whether the products can be delivered to them as required,
so the amount of product delivered W and the average delivery distance D̄ are set as KPIs. The amount
of product delivered indicates the degree to which the supply chain network satisfies the customers’
demands, and the average delivery distance determines both cost and time of the product delivery.

The amount of product delivered is the maximum amount of product that can be delivered from
the first layer to the last (e.g., from suppliers to retailers) within the supply chain network. It is the
maximum flow in the Graph Theory, and many algorithms have been developed to solve the maximum
flow problem. These include the Edmonds and Karp algorithm [25] and Preflow–Push algorithm [26].

The average delivery distance is defined as the ratio of the delivery distances of all products on
the network to the number of products, i.e.,

D̄ =
1

W

n

∑
i=1

n

∑
j=1

wijdij, (4)

where n is the number of nodes on the network, dij is the distance between nodes pair i and j, and wij
is the amount of product delivered on the link between nodes i and j.

According to Equation (1), the performance used in the system resilience calculation needs to be
normalized. The initial system performance is considered as Q0 = 100%, so the normalized amount of
product delivered and average delivery distance at time t can be calculated as follows:

QW(t) =
W(t)
W(t0)

and QD(t) =
D̄(t0)

D̄(t)
, (5)

where W(t) and D̄(t) are the amount of product delivered and the average delivery distance at time t,
and W(t0) and D̄(t0) are the initial performances at time t0. Note that the amount of product delivered
is a the-larger-the-better parameter and the average delivery distance is a the-smaller-the-better
parameter, so their normalized performances are calculated differently.

Combining Equations (5) with (1) shows the two deterministic resilience expressions for supply
chain networks as follows:

RW =

∫ Ta+t0
t0

QW(t)dt

Ta
and RD =

∫ Ta+t0
t0

QD(t)dt

Ta
. (6)

The expected resilience of the supply chain network can be estimated as follows:
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̂E(RW) ≈

N
∑

i=1
RWi

N
and ̂E(RD) ≈

N
∑

i=1
RDi

N
, (7)

where RWi and RDi are the resilience based on the amount of product delivered and the resilience
based on the average delivery distance under the ith disruption, respectively.

4. Resilience Estimation Using Simulation

Because supply chains have networked structures, no analytical model has been proposed for the
network flow analysis, which leaves Monte Carlo based simulation a valuable method. Deleris and
Erhun [27] used the Monte Carlo method to assess the volume loss due to disruptions in supply
networks. Colicchia et al. [28] used a simulation-based framework to assess the effectiveness of their
proposed risk management methods. Klibi and Martel [29] also proposed a Monte Carlo approach
to generate scenarios incorporating both random and extreme events for risk modeling on supply
chain networks. Schmitt and Singh [8] used a simulation model to generalize the impact of disruptions
on supply chain networks and focused on the downtime and recovery of the system. However,
the resilience measures used in these works are different from those used here, and the KPI average
delivery distance has not been studied thoroughly in any previous work. Hence, this section describes
the development of a resilience estimation method based on Monte Carlo simulation for supply
chain networks.

4.1. Simulation Models

4.1.1. Structure-Based Models

Adjacency matrixes were used here to describe the topology of the supply chain network and the
capacity, flow, and distance of each link. To make calculation easier, two virtual nodes, i.e., a source
node and a destination node, were added to produce a virtual network, where the source and the
destination are connected to all the nodes at the input and output layers of the real network (e.g., all
sites of suppliers and retailers in Figure 2), respectively. Hence, the total number of nodes in the
network is increased to m = n + 2 (including the two virtual nodes), where the source node is denoted
as Node 1 and the destination node as Node m.

These structure-based models are as follows:

Am =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

am1 am2 · · · amm

 Cm =


c11 c12 · · · c1m
c21 c22 · · · c2m
...

cm1 cm2 · · · cmm



Wm =


w11 w12 · · · w1m
w21 w22 · · · w2m

...
wm1 wm2 · · · wmm

 Dm =


d11 d12 · · · d1m
d21 d22 · · · d2m

...
dm1 dm2 · · · dmm

 ,

(8)

where Am is the topology matrix, and aij =

{
0, no link between nodes i and j
1, a link exists between nodes i and j

, Cm, Wm

and Dm are capacity matrix, flow matrix and distance matrices, cij, wij and dij are the capacity,
flow (i.e., the amount of product delivered), and length of the link between nodes i and j, respectively.
According to Assumption 2 in Section 2, the capacity of links is infinite, while each node has
a finite capacity. It is obvious that the capacity of the nodes actually bounds that of the links,
giving the following:
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cij = min(ci, cj), (9)

where ci and cj are the capacity of nodes i and j, respectively.

4.1.2. Flow Distribution Model

Usually, the supply chain networks have some redundancy, which means that there is more than
one possible flow distribution that can support the amount of product to be delivered by the network
(i.e., the maximum flow). To reduce the delivery time and cost, the products are always delivered with
the minimal average delivery distance. To find such flow distribution, a linear programming model is
constructed as follows:

min D̄ =
1

W

m

∑
i=1

m

∑
j=1

wijdij, (10)

subjected to

m

∑
i=1

w1i =
m

∑
i=1

wim = W, (11)

m

∑
i=1

wij =
m

∑
i=1

wji (for 1 < j < m), (12)

0 ≤ wij ≤ cij. (13)

In the model, Equation (11) is the constraint of the maximum flow, Equation (12) is the constraint
for the flow conservation, and Equation (13) is the capacity constraint.

4.1.3. Resilience Estimation Model

Because of the difficulties in the continuous performance data monitoring and the integral
calculation in Equation (1), a numerical method is applied as follows:

∫ Ta+t0

t0

Q(t)dt ≈

s
∑

k=1
[Q(tk) + Q(tk−1)]∆t

2
, (14)

where ∆t is the time granularity, i.e., a width of the time interval, s is the number of ∆t in the allowable
recovery range Ta (s = Ta/∆t), and Q(tk) is the normalized system performance at the end of the kth
∆t (tk = k∆t). The time granularity should be chosen properly. If it is too large, the result will not be
accurate enough; if it is too small, the resilience computation will be time-consuming.

Combining Equation (14) with Equation (6), the resilience based on the amount of product
delivered and on the average delivery distance of the supply chain network due to a certain disruption
can be calculated as follows:

RW ≈

s
∑

k=1
[QW(tk) + QW(tk−1)]∆t

2Ta
and RD ≈

s
∑

k=1
[QD(tk) + QD(tk−1)]∆t

2Ta
. (15)

4.1.4. Sampling Model

The Monte Carlo method is used here to produce samples for the three types of random variables
in the current problem, including the disruption time, the performance degradation, and the recovery
time. Given the cumulative distribution function (CDF) F(x) for each random variable X, the samples
can be generated using the inverse function method: X = F−1 (U), where U is a uniform random
number between 0 and 1 [30]. Inverse functions for some typical distributions can be seen in Table 2.
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Table 2. Inverse functions for some typical distributions.

Type Function Inverse

Uniform distribution F(x) = x−a
b−a F−1(x) = (b− a)U + a

Exponential distribution F(x) = 1− eλx F−1(x) = −ln(U)
λ

Normal distribution F(x) = Φ
(

x−µ
σ

)
F−1(x) = zUσ + µ

Lognormal distribution F(x) = Φ
(

ln(x)−µ
σ

)
F−1(x) = ezU σ+µ

zU is the value on the z-axis for which U × 100% of the area under the z curve lies to the right of zU ,
i.e., the 100 (1−U)th percentile of the standard normal distribution.

4.2. Simulation Flow

Using the Monte Carlo method, the resilience of the supply chain network can be estimated as
shown in Figure 4, with the following steps:

(1) Calculate the initial performance W(t0) and D̄(t0) of the supply chain network, which is the
performance of the supply chain network before the disruption occurs (i.e., under normal state).

(2) Use the Monte Carlo method to randomly determine the disruption time for all nodes, and
identify the node at which the first disruption occurs.

(3) Determine the capacity degradation and recovery time of the node on which the first disruption
occurs by random sampling of their corresponding distributions.

(4) Calculate the network performance W(t) and D̄(t) at every ∆t time interval.
(5) Compute the resilience of supply chain network under the certain disruption using Equation (15).
(6) Repeat Steps (2)–(5) N iterations.
(7) Estimate the expected resilience of the supply chain network using Equation (7), and obtain the

corresponding resilience histogram.

In the simulation, the disruption occurrence is event based, and the network resilience calculation
is activity based.

Monte Carlo sampling

Event and activity tiggered
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Figure 4. Input and output of the resilience simulation for supply chain networks.

4.3. Error

Samples xi obtained using Monte Carlo simulation from one population are identical and
identically distributed (i.i.d.) random variables. According to the Central Limit Theorem, if the
variance of the i.i.d. variables is finite, the arithmetic average of the samples follows a normal
distribution with mean µ and variance σ2

N for large sample size N. The error of estimation can be
calculated as follows:
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ε =
∣∣X− X̂

∣∣ < zα/2σ√
N

, (16)

where X̂ is the estimate of X, and X̂ = ∑ xi
N , 1− α is the confidence level (e.g., 1− α = 95%).

In the current problem, combining Equations (7) and (16) produces the following:

εE(RW ) =
∣∣∣E(RW)− ̂E(RW)

∣∣∣ < zα/2SRW√
N

and εE(RD) =
∣∣∣E(RD)− Ê(RD)

∣∣∣ < zα/2SRD√
N

, (17)

where SRW and SRD are the standard deviations of RW and RD, respectively. The standard deviations
of the samples are used as the unbiased estimates of variance.

5. Case Study

5.1. Case Overview

This case concerns a mobile phone supply chain network with four levels of nodes adapted
from [31]. As Figure 5 shows, there are six suppliers, located in Beijing, Shanghai, Shenzhen,
Suzhou, Shenyang and Tianjin; one manufacturer, in Hangzhou; three distribution centers, in Beijing,
Nanjing and Shenzhen; and four retailers, in Beijing, Shanghai, Guangzhou, and Nanjing. In this
case, all the suppliers, manufacturers, distribution centers and retailers are considered as nodes,
and their abilities (i.e., the supply ability of suppliers, the manufacturing capacity of the manufacturer,
the transformative ability of distribution centers, and the demand from retailers) are considered the
capacity of the nodes. Figure 5 shows all possible links and the capacity of all nodes. The distances
between node pairs are obtained from the flight information as shown in Tables 3–5.
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Figure 5. Case network, adapted from [31].

Table 3. Distances between suppliers and the manufacturer (km).

Manufacturer
Suppliers Beijing Shanghai Shenzhen Suzhou Shenyang Tianjin

Hangzhou 1663 179 1100 121 1310 1036
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Table 4. Distances between the manufacturer and distribution centers (km).

Manufacturer
Distribution Centers Nanjing Beijing Shenzhen

Hangzhou 254 1663 1070

Table 5. Distances between distribution centers and retailers (km).

Distribution Centers
Retailers Guangzhou Beijing Shanghai Nanjing

Nanjing 1125 900 255 0
Beijing 1900 0 1062 900

Shenzhen 105 1930 1210 1160

When a disruption occurs at one node, the capacity of that node decreases, which may decrease
the amount of product delivered or the average delivery distance of the network. As the node
capacity returns to baseline, the network performance does as well. In the current problem, the node
capacity recovery rate is constant. The goals of the expected resilience based on the amount of product
delivered and the one based on the average delivery distance are both 0.96 under the maximum
allowable recovery time as seven days, i.e., Ta = 7 days. The node disruption time follows the
exponential distribution, which is usually used in the previous study of the supply chain, see [32,33].
The node capacity degradation follows the discrete distribution, which is usually used in the stochastic
flow network analysis (see [34,35]). The node recovery time follows either lognormal distribution or
uniform distribution. The lognormal distribution is used as the repair time of systems always follows
such distribution (see [36–38]). The uniform distribution is used to reflect the adaptability of our
method to different distributions. The parameters of these distributions are shown in Table 6. It is
obvious that the resilience evaluation results will be influenced by the types of probability distributions.
However, our resilience measurement method is still valid, as it is very convenient to change the
distribution types in the Monte Carlo based simulation.

Table 6. Distribution parameters of the case.

Type Location Disruption Time Recovery Time Capacity
(Days) (Days) Degradation

Suppliers

Beijing X∼E(0.009) ln(X)∼N(3.5, 1.52)
Shanghai X∼E(0.010) ln(X)∼N(3.3, 1.52)
Shenzhen X∼E(0.015) ln(X)∼N(2.7, 1.52)
Suzhou X∼E(0.022) ln(X)∼N(2, 1.52)

Shenyang X∼E(0.018) ln(X)∼N(3, 1.52)
Tianjin X∼E(0.015) ln(X)∼N(2.5, 1.52) Pi(1000x) = 1000

ci
,

Manufacturer Hangzhou X∼E(0.020) ln(X)∼N(3, 1.52)

Distribution centers
Nanjing X∼E(0.1) X∼U[4, 10]

(x = 1, 2, ..., ci
1000 )Beijing X∼E(0.03) X∼U[4, 10]

Shenzhen X∼E(0.05) X∼U[4, 10]

Retailers

Guangzhou X∼E(0.015) ln(X)∼N(3.5, 1.52)
Beijing X∼E(0.009) ln(X)∼N(3, 1.52)

Shanghai X∼E(0.010) ln(X)∼N(3.7, 1.52)
Nanjing X∼E(0.015) ln(X)∼N(2.5, 1.52)
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5.2. Resilience Evaluation

Using the simulation method detailed in Section 4, the resilience of the mobile phone supply chain
network can be estimated, and some typical resilience behaviors of the network after a disruption are
illustrated in Figure 6 (∆t = 0.7 days).

As shown in Figure 6, one can see that the disruption on one node may cause the performance
degradation and recovery of the network along with the node. Using the optimization model in
Section 4.1.2, the flow distribution that supports the maximum flow with the minimal average delivery
distance can be found, and the extra capacity of each node is defined as the “node redundant capacity”,
which can be calculated by subtracting the flow distributed to it in the initial state from its total capacity.
It is here noted that, due to the node capacity redundancy, the network may recover fully before the
node. As shown in Figure 6b, the distribution center Shenzhen needs 7.87 days to recover from this
disruption, and the network recovers completely after 2.34 days. In this case, the flow distribution
returns to the initial state when the capacity of the distribution center Shenzhen returns to 35, 000,
which is the flow distributed to such a node in the initial state (i.e., the node has a 45,000 capacity
redundancy). Nodes with less redundancy are more important. For example, when the disruption
occurs for any retailer, which has no capacity redundancy either in itself or in the layer, the amount
of product delivered within the network will drop (see Figure 6a,c); when this happens to suppliers
in Shanghai, Shenzhen, Suzhou, and Tianjin or the distribution center in Nanjing, which show some
capacity redundancy in the layer but none in itself, the average delivery distance will decline, as these
nodes provide the minimal delivery distance (Figure 6d,f); when it occurs on the supplier in Beijing,
which itself is a redundancy and does not participate in the initial flow distribution, both the amount
of product delivered and the average delivery distance of the network retain their baseline values
(see Figure 6e).
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Figure 6. Network performance curves after the disruption occurs at (a) the retailer in Guangzhou;
(b) the distribution center in Shenzhen; (c) the retailer in Shanghai; (d) the supplier in Shenzhen; (e) the
supplier in Beijing; (f) the distribution center in Nanjing. Note: ND is the node at which the disruption
occurs, PD is the capacity degradation of the node, RT is the recovery time of the node, and DC is the
distribution center.

In the current case study, the number of iterations is 1000. After the simulation, the estimate of
the expected system resilience was found to be ̂E(RW) = 0.987032 and ̂E(RD) = 0.964301, according
to Equation (7). The histograms of both resilience are illustrated in Figure 7. Results indicate that
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both resilience distributions have long tails, the probability that the resilience based on the amount of
product delivered was greater than 0.985 exceeds 80%, and resilience based on the average delivery
distance was over 40%. Figure 7 shows the network resilience to be very high under most disruption
conditions, and it also has some probability to be small in response to some disruptions. The histogram
of the resilience based on the average delivery distance is flatter than resilience based on the amount
of product delivered, which results in a lower estimate for the expected value of the resilience based
on the average delivery distance in the network.
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Figure 7. Histograms of the network resilience

As described in Section 4.3, the resilience simulation errors decrease along with the simulation runs
(Figure 8), and one can see that the simulation error is very small. Using our resilience measurement
method, one can see that both of the two types of network resilience are satisfied (i.e., ̂E(RW) >̂E(R∗W) = 0.96 and ̂E(RD) > ̂E(R∗D) = 0.96).

It is obvious that the network resilience differs for different topologies. In the current case study,
two topologies were used for comparison, and their topological structures are illustrated in Figure 9.
To facilitate the comparison, all the links that provide the minimal delivery distances in the fully
connected topology of Figure 5 are reserved, and other redundancy links are reduced to some certain
extent. Hence, all three of the topologies share the same initial performance, i.e., W(t0) = 127, 000 and
D̄(t0) = 1613.2 km. The capacity redundancy of the supply chain network is considered as the ratio of
the total spare capacity over the total working capacity. Figure 5 shows the maximum redundancy,
Figure 9b shows the minimal redundancy, and Figure 9a shows a middling system.
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Figure 8. Estimation error changes along with the number of simulation runs.

Using our proposed resilience measurement method, the network resilience of the three topologies
is obtained and compared in Figure 10. For the three topologies, one can see that:
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(1) ̂E(RW5) > ̂E(RW9a) > ̂E(RW9b). In this case, the redundancy of the three topologies is

“Figure 5 > Figure 9a > Figure 9b”, and ̂E(RW) declines along with the network redundancy.
This phenomenon occurs because the network flow on the node under disruption has larger
possibility to be migrated to other nodes in the network that have higher redundancy. It is also
noted that the topology “Figure 9b“ cannot satisfy the goal of the expected resilience based on
the amount of product delivered. In such a case, the supply chain network manager needs to
improve the system resilience. In general, the supply chain network with more redundancy tends
to have higher resilience based on the amount of product delivered, but it also depends on at
which node the redundant capacity is located. To improve the network resilience based on the
amount of product delivered, the redundant capacity needs to be allocated to proper nodes.

(2) ̂E(RD5) <
̂E(RD9a) <

̂E(RD9b). In this case, ̂E(RD) increases along as the network redundancy
decreases. However, in general, it is hard to tell how the resilience based on average delivery
distance changes along with the network redundancy. As the average delivery distance of
the network is determined by both the current amount of product delivered and the flow
distribution (see Equation (4)), if the maximum flow of the network decreases during the
disruption, i.e., the amount of product delivered decreases, it is hard to determine whether
the resilience based on the average delivery distance will decrease or not.

The results of the simulation are consistent with expectations, which proves that the method
is efficient.
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Figure 10. Network performance curves after the disruption (N = 1000.)

6. Conclusions

This paper proposes a new resilience measure, in which the maximum allowable recovery time
serves as the time interval under consideration, and two specific resilience measures, i.e., the resilience
based on the amount of product delivered and the resilience based on average delivery distance,
are provided for supply chain networks. A simulation method based on the Monte Carlo is developed
to estimate the network resilience. The effectiveness of this method is verified using a mobile phone
supply chain network. The contributions of the current paper include the following: (1) a new
resilience measure is provided using the maximum allowable recovery time determined by customers
as the time scale. It not only allows system resilience to be compared on the same relative scale but
also provides a clear physical meaning focusing on the ability of “bounce back“ after disruptions;
(2) two resilience measures are proposed for supply chain networks, one based on the amount of
product delivered and the other on the average delivery distance, providing quantitative methods for
supply chain networks whose resilience is usually qualitatively analyzed (Hohenstein et al. [7]); and
(3) a resilience estimation framework is developed for supply chain networks, in which the Monte
Carlo method based simulation and the graph theory are combined. A linear programming model is
constructed under the constraint of flow conversations to determine the flow distribution with the
minimal delivery distance.

In this paper, the current case study indicates that the topology of the network has a
large influence on the system resilience, and the optimization of the network topology using
the system resilience as constraints is slated for further study. Moreover, all the institutions
(i.e., suppliers, manufacturers, distribution centers and retailers) are supposed to be controlled by the
company‘s supply chain manager. If not, each institution‘s behavior will influence the resilience of
the supply chain network. This problem will also be studied together with the Games Theory in our
future work.
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Abbreviations

The following abbreviations are used in this manuscript:

α a value between 0 and 1, and 1− α is the confidence level
∆t the time granularity
ε the error of estimation
εE(RW ) the estimation error for E(RW)
εE(RD) the estimation error for E(RD)
aij the link existence between nodes i and j
Am the topology matrix
ci the capacity of Node i
cij the link capacity between nodes i and j
Cm the capacity matrix
dij the distance between nodes i and j
Dm the distance matrix
D̄ the average delivery distance of the network
D̄(t) the average delivery distance at time t
D̄(t0) the initial average delivery distance at time t0
E(R) the expected system resilience
E(RD) the expected value of the resilience based on the average delivery distance
E(RW) the expected value of the resilience based on the amount of product delivered
Ê(R) the estimate of the expected system resiliencêE(RD) the estimate of the expected value of the resilience based on the average delivery distancêE(RW) the estimate of the expected value of the resilience based on the amount of product delivered
m the number of the nodes on the virtual network
n the number of the nodes on the network
N the number of disruptions (also the number of iterations in the simulation)
P (t) the actual performance curve of the system
Q0 the normalized system performance before the disruption (i.e., the initial performance

of the system)
Q1 the normalized performance that the system degrades to when the disruption occurs
Ql the predicted system performance loss
Q(t) the normalized system performance at time t (0% ≤ Q(t) ≤ 100%)
Q(tk) the normalized system performance at the end of the kth ∆t (tk = k∆t)
QD(t) the normalized average delivery distance at time t
QD(tk) the normalized average delivery distance at the end of the kth ∆t (tk = k∆t)
QW(t) the normalized amount of product delivered at time t
QW(tk) the normalized amount of product delivered at the end of the kth ∆t (tk = k∆t)
R the system resilience
Ri the system resilience under the ith disruption
RD the resilience based on the average delivery distance
RDi the resilience based on the average delivery distance under the ith disruption
RW the resilience based on the amount of product delivered
RWi the resilience based on the amount of product delivered under the ith disruption
RL the system resilience loss
s the number of ∆t in time interval Ta
SRW the standard deviation of RW
SRD the standard deviation of RD
t0 the time that the disruption occurs
t1 the time that the system performance returns back to the initial level
te the end of the time interval under consideration
ts the beginning of the time interval under consideration
T the predicted recovery time of the system
Ta the maximum allowable recovery time
T∗ the strict upper bound on all possible recovery times
TP (t) the targeted performance curve of the system
U a uniform random number between 0 and 1
wij the amount of product delivered on the link between nodes i and j
W the amount of product delivered of the network
Wm the flow matrix
W(t) the amount of product delivered at time t
W(t0) the initial amount of product delivered at time t0
xi the samples obtained by Monte Carlo simulation
X̂ the estimate of X
zu the 100 (1−U)th percentile of the standard normal distribution
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