
sustainability

Article

Mapping Social Vulnerability to Air Pollution: A Case
Study of the Yangtze River Delta Region, China

Yi Ge 1,*, Haibo Zhang 2,*, Wen Dou 3, Wenfang Chen 4, Ning Liu 5, Yuan Wang 1, Yulin Shi 1

and Wenxin Rao 1

1 State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University,
Nanjing 210093, China; ywang@nju.edu.cn (Y.W.); yulinshilyn@163.com (Y.S.);
njuwxrao@outlook.com (W.R.)

2 School of Government, Center for Risk, Disaster & Crisis Research, Nanjing University,
Nanjing 210093, China

3 School of Transportation, Southeast University, Nanjing 210018, China; waynedou@gmail.com
4 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Science, Beijing 100081, China;

wenfang_cams@163.com
5 School of Chemistry and Life Science, Jinling College, Nanjing University, Nanjing 210093, China;

liuning@nju.edu.cn
* Correspondence: geyi@nju.edu.cn (Y.G.); zhb@nju.edu.cn (H.Z.);

Tel.: +86-25-8968-0735 (H.Z.); Fax: +86-25-8968-0529 (Y.G.)

Academic Editor: Vincenzo Torretta
Received: 5 December 2016; Accepted: 10 January 2017; Published: 13 January 2017

Abstract: Many frequent and severe air pollution incidents have emerged across the vast parts of
China recently. The identification of factors and mapping social vulnerability has become extremely
necessary for environmental management and sustainable development. However, studies associating
social vulnerability with air pollution remain sparse. With reference to research achievements
of social vulnerability, this study made a new trial regarding social vulnerability assessment to
air pollution. With the projection pursuit cluster (PPC) model, the top three factors contributing
to social vulnerability index (SVI) were discovered and SVI and SVI dimensions (susceptibility,
exposure, and adaptability) were evaluated. Results revealed that adaptability values are higher than
susceptibility and exposure values. SVI is in a poor condition as, for the whole region, most values
belong to the high-medium level. High SVI values mainly appear in the northern and the southern
ends of study area. SVI in Shanghai is lower than in Jiangsu and Zhejiang provinces. On the scale of
prefecture-level city, it can be found that the low-value centers of SVI always occurred in urban core
areas. The spatial variation and inequality in social vulnerability provide policy-makers a scientific
basis for air pollution prevention and sustainable management.

Keywords: social vulnerability index (SVI); air pollution; projection pursuit cluster model;
Yangtze River Delta

1. Introduction

In recent years, a high number of environmental pollution disasters, such as air pollution,
have emerged across vast parts of China [1–3]. Air pollution concentration in many regions of China
has far exceeded the WHO’s air quality guidelines [4–6], and twenty Chinese cities were listed
among the world’s thirty most polluted cities [7]. Cities in the Yangtze River Delta, Pearl River Delta,
and Beijing–Tianjin–Hebei regions suffer from the worst air pollution, with PM2.5 concentration two
to four times above the standards of the WHO guidelines [3]. In these regions, the average number
of haze days has reached more than 100 days, and it even surpassed 200 days in several cities [8].
In January 2013, a thick haze had shrouded China’s central and eastern provinces that covered
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a quarter of the whole country and affected a population of about 600 million [8]. In December 2015,
Beijing issued its “red alert” for the first time, the highest level for heavy air pollution, and some
particulate indices soared dozens of times above the daily maximum level recommended by the
World Health Organization [9]. Air pollution poses a significant threat to human health, justice issues,
and even cultural heritage [10–15]. In China, the mortality rate from respiratory diseases is greater
than 17% and has become the third largest killer only after circulatory disease and cancer [7]. There is
no doubt that air pollution disasters have become the most pressing challenge for development in
China and urgent action should be taken for creating a sustainable future. Actually, a disaster is
a result of an unsustainable development combined with an ambiguous cultural reaction to balance
the natural, economic, and social setting [16]. Therefore, besides energy and industrial structure
adjustments, vulnerability assessment is another effective solution to withstand adverse effects of
a hostile environment [17], especially, the identification of social vulnerability to air pollution can
provide a scientific support for a reasonable resource allocation and efficient risk management. It is
valuable and crucial to understand the nature of social vulnerability and develop a proper method to
measure social vulnerability in the environment context.

Considerable articles have established the genealogy of vulnerability research [18]. The initial
scientific use of “vulnerability” has its roots in natural hazards research. In 1974, White first defined
that “vulnerability is the degree to which a system, sub-system, or component is likely to experience
harm due to exposure to a hazard, either a perturbation or stress” [19]. At that time, vulnerability works
were mainly associated with the place-based exposure by physical scientists and engineers, which led
to social aspects of vulnerability that were largely ignored [18]. In 1975, White and Haas advanced
the idea that hazard research needed to take human factors, such as economic, social, and political
aspects, into account because these factors also influenced vulnerability. During the late 1970s and
early 1980s, the use of demographic data to assess social vulnerability came about as a paradigm
shift in the standard interpretation of natural disasters [20]. It was really in the late 1990s that there
began to emerge a growing community of researchers that sought to quantify and derive definitive
methodologies for social vulnerability [21]. Research on vulnerability to date has stemmed from
a variety of fields in the natural and social sciences, such as climate change, environmental degradation,
development studies, food insecurity, poverty, and technological disasters [22–24]. Every field has
defined the concept differently, manifest in a host of definitions and approaches [25]. However,
it has been admitted that vulnerability, as a multidimensional concept, includes social, economic,
and political structures, and an environmental setting [26–29] and can be classified into three types of
vulnerabilities: biophysical vulnerability, social vulnerability, and a combination of the two [30].

Social vulnerability is the predisposition and inner state of human societies or individuals
that can affect the way they experience natural hazards, climate change, or other dangerous
incidences [31]. It includes the socio-economic status of groups of people, demographic traits,
perceptions, and attitudinal differences towards people and places, social networks, access to
capital and resources, physically weak individuals, cultural beliefs, access to basic infrastructure,
and access to political power [20,29]. Social vulnerability is partially regarded as the product
of social inequalities and “place inequalities” from the built environment [25,29]. Several major
conceptual models have been proposed and can help us understand and analyze social vulnerability;
for example, the Pressure and Release (PAR) framework [32], Hazards of Place (HOP) framework [27],
Exposure-Sensitivity-Resilience framework [33], and Exposure-Sensitivity-Adaptive Capacity (ESA)
framework [17]. Compared with biophysical vulnerability assessments, social vulnerability
assessments are relatively ignored. Many social vulnerability studies use case study and qualitative
assessments about the root causes of vulnerability to different hazards in various countries and
world regions [34]. This is mainly due to the fact that there are more difficulties in quantifying
social vulnerability [25]. Since the 1990s, a new methodology of aggregating the related indicators to
produce a composite index of social vulnerability has been explored [35]. Currently, it has become the
principal methodology adopted by most researchers in the field of social vulnerability studies [36].
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This methodology provides a useful tool for identifying and monitoring social vulnerability over
time and space, as well as a means for understanding the dynamic characteristics of human systems’
underlying social vulnerability. However, how to aggregate indicators properly is still challenging [37].
Some researchers averaged component indicators while others assigned weights to various indicators.
Cutter proposed a weighting scheme by examining spatial patterns of social vulnerability at the
county level with principal components analysis (PCA) [29]. The index ultimately composited was
called the Social Vulnerability Index and was firstly abbreviated to SoVI by Cutter. This aggregation
method has been applied widely and become classic for social vulnerability assessment [38–42].
Other researchers have explored some innovative methods of aggregation. For example, Wei and
Huang et al. assessed regional vulnerability to natural disasters in China with the method of data
envelopment analysis (DEA) [43,44]. Fan et al. applied the method of analytic hierarchy process (AHP)
to estimate social vulnerability to multiple hazards in China [45]. Additionally, with the AHP, Roy and
Blaschke presented a grid-based method for quantifying vulnerability to floods in Bangladesh [46].
Rygel constructed a social vulnerability index for hurricane storm surges in a developed country with
the Pareto ranking method [47]. Moreover, Ge explored the method of projection pursuit cluster (PPC)
for quantifying social vulnerability to floods of the Yangtze River Delta in China [36].

The remainder of this paper is organized as follows: In Section 2, after conceptualizing social
vulnerability in the context of air pollution, a method for assessing social vulnerability with projection
pursuit cluster (PPC) model is proposed with a case study of the Yangtze River Delta Region in
China. In Section 3, based on the results from PPC model, spatial variations of social vulnerability
index (SVI) and SVI dimensions (susceptibility, exposure, and adaptability) are mapped and analyzed.
Finally, the paper closed with conclusions and recommendations in Section 4.

2. Materials and Methods

The methodology used in this article is shown in Figure 1.Sustainability 2017, 9, 109 4 of 15 
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First of all, we conceptualized social vulnerability in the context of air pollution, referring to
relevant studies of natural hazards (Figure 2). As we know, most attributes of a subject (e.g., people
or region) fall into one of the three categories: environment, economy, and society. When subjects
suffered from air pollution, these attributes would manifest in three forms of vulnerability: exposure,
susceptibility, and adaptability. In the risk perspective, these three dimensions can be divided into
biophysical and social vulnerabilities which interact with each other and produce the overall place
vulnerability [29]. Place vulnerability interacts with air pollution to produce damage, such as disease
and economic losses. Damage, in turn, can affect attributes of subjects and, furthermore, moderate or
enhance vulnerability to air pollution. In this article, we only focus on the social vulnerability portion.
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Figure 2. Conceptual framework of social vulnerability in the context of air pollution.

2.1. Data

Based on a wide range of academic literature of social vulnerability and social inequality to air
pollution, major influencing factors of social vulnerability to air pollution were identified and relevant
indicators were initially selected (see Table 1) [29,30,34,36,38,41,48–52].

Table 1. Factors and indicators of social vulnerability to air pollution.

Factors Indicator Names Description

Age Children and Elderly

Children and the elderly are especially sensitive to air pollution. Physiologic
immaturity and developmental changes account for children’s susceptibility
to air pollutants. For older people, comorbidity, physical fragility and less
appropriate immune responses decrease their coping capacity.
Source: [10,29,53–56].

Gender Female Women can have a more difficult time during recovery than men, often due to
lower wages, and family care responsibilities. Source: [27,29,32].

Ethnicity Ethnicity
Imposes language and cultural barriers that affect the ability to seek, find or
understand warning information and access recovery information.
Source: [29].

Education Illiterate and Educated
People highly educated are more likely to have better employment prospects,
which results in better economic conditions and more resources to take
precaution against air pollution. Source: [29,57–59].

Individual
economic status Unemployed;Poor

Low-income individuals often exposure to hazardous pollution environment
or can’t take enough actions to protect themselves against air pollution.
Source: [2,60–65].

Population
exposure

Urban resident; Employees in
2nd industry, mining,
manufactory and
construction; GDP in
secondary sector;
Population density

Urban residents expose to severer air pollution for ambient heavy traffic.
High-exposure occupations lead to high health risk for potential cumulative
effects in air pollution. The boom and bust economy of secondary sector may
create more high-exposure occupation opportunities. Population density
illustrates discrepancy of average exposure among regions.
Source: [2,17,51,59,66].

Regional resource GDP; Green space coverage
“GDP” and “Green space coverage” demonstrate potential resources
available for absorbing, reducing the adverse impact and recovering from
losses more quickly. Source: [17,25,29,57].

Medical and
management
services

Beds and Physicians in
hospital; Employees in
management sector

Public medical services can help for recovery and mitigation. Employees in
the sectors of management can reflect the capacity of environmental
governance. Source: [25,29,59].
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Data in this article come from the sixth national population census in 2010, 2010 statistical
yearbooks of each city published by the cities’ Statistical Bureaus, as well as the 2010 China Civil
Affairs Statistical Yearbook. The data of “green space coverage” comes from “Lake-Watershed Science
Data Center, National Earth System Science Data Sharing Infrastructure, National Science and
Technology Infrastructure of China”(http://lake.geodata.cn). Both the developing country context
and data availability are taken into account and, ultimately, 20 indicators for 139 counties in our
study area were collected. All indicators were identified with three dimensions of social vulnerability:
susceptibility, exposure, and adaptability. The indicators belonging to “susceptibility” or “exposure”
tend to increase social vulnerability, while those for “adaptability” tend to decrease social vulnerability.
With these indicators, a composite score of social vulnerability can be evaluated and be named as
social vulnerability index (SVI). Table 2 lists the datasets in detail. In Table 2, “+” represents a positive
impact to SVI and indicates the indicator will increase social vulnerability. Similarly, “−” represents
a negative impact to SVI and illustrates the indicator will decrease social vulnerability. Before the
calculation, our data were normalized as percentages, per capita values, or density functions. A test
for correlation analysis was also made in order to avoid high correlations among indicators, and the
indicator “MANUFACT” was removed because of high correlation with the indicator “SECWORKER”.
Therefore, 19 indicators were actually selected for assessing the social vulnerability index.

Table 2. Detailed description of indicators for assessing social vulnerability index (SVI).

No. Indicator Name Description Dimension of
SVI

Impact to
SVI

1 Children CHILD Percentage of population under 14 years old Susceptibility +

2 Elderly ELD Percentage of population over 65 years old Susceptibility +

3 Female FEMALE Percentage of female Susceptibility +

4 Ethnicity ETHNICITY Percentage of Ethnicity Susceptibility +

5 Illiterate ILLITERATE Percentage of illiterates among those
aged 15 and over Susceptibility +

6 Poor POOR Percentage of recipients of
subsistence allowances Susceptibility +

7 Unemployed UNEMPLOY Percentage of unemployed Susceptibility +

8 Population density POPDENSITY Population density Exposure +

9 Urban resident URBAN Percentage of urban residents Exposure +

10 Employees in 2nd
industry SECWORKER Percentage of employed in secondary industry Exposure +

11 Employees
in mining MINING Percentage of employed in mining Exposure +

12 Employees
in manufactory MANUFACT Percentage of employed in manufactory Exposure +

13 Employees
in construction CONSTRUCT Percentage of employed in construction Exposure +

14 GDP in secondary
sector INDUSTRY Percentage of GDP in secondary sector Exposure +

15 GDP P_GDP Gross domestic product per capita Adaptability −
16 Educated EDUCATE Percentage higher education graduates Adaptability −
17 Beds in hospital HOSBED Number of beds in hospital per 1000 people Adaptability −

18 Physicians in
hospital HOSPHY Number of physicians in hospital

per 1000 people Adaptability −

19 Employees in
management sector ENWORKER

Percentage employees in the sectors of water
conservancy, environment and
public management

Adaptability −

20 Green space
coverage GREEN Ratio of open green space coverage Adaptability −

“+” represents a positive impact to SVI and indicates the indicator will increase social vulnerability;
“−” represents a negative impact to SVI and illustrates the indicator will decrease social vulnerability.

http://lake.geodata.cn
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2.2. Case Study: The Yangtze River Delta Region

This study focused on the Yangtze River Delta region located in the easternmost part of China,
a metropolitan area with intensely developed and densely populated coastal frontages (Figure 3).
It includes a total of 16 cities in this article, eight cities in the south of Jiangsu Province (Nanjing,
Changzhou, Nantong, Suzhou, Taizhou, Wuxi, Yangzhou, and Zhenjiang), seven cities in the north and
east of Zhejiang Province (Hangzhou, Huzhou, Jiaxing, Ningbo, Shaoxing, Taizhou, and Zhoushan),
and Shanghai Municipality. According to the Constitution of China, Shanghai is a provincial-level
municipality, and the others are prefectural-level cities. These sixteen cities govern 139 county-level
districts, including city districts, counties, and county-level cities.
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Figure 3. The Yangtze River Delta, China: location and cities.

The Yangtze River Delta (YRD) region covers an area of 180,935 km2 and had a population of
81 million in 2010. Accounting for 1% of China’s land area and 7.6% of its population, this region
creates 17.6% of the country’s GDP, produces 37.6% of its exports (by value), and attracts 41.8% of
transnational investment in 2010. In terms of economy, technology, and culture, the delta region is
one of the most developed and wealthiest in China. However, with rapid economic development
and high-energy consumption, YRD has been suffering air pollution problems in the past three
decades [67]. Air pollutant emissions are increasing steadily, regional visibility is decreasing, and ozone
concentrations are increasing [68], all of which deteriorate the regional environment and pose high
potential health risks to local residents. Hence, YRD is selected for assessing social vulnerability to air
pollution in China.
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2.3. Research Method: The Projection Pursuit Cluster (PPC) Model

The projection pursuit cluster (PPC) model, a natural approach for data reduction, is used in this
study to weigh the indicators and aggregate to SVI. Projection pursuit (PP) is a technique for seeking
out a linear projection of multivariate data onto a lower dimensional space (especially one dimension)
by means of optimization of the index of “interestingness”, defined as a projection index [69]. Projection
pursuit uses a projection index computed on a projected density to measure the interestingness of the
current projection. Then it employs a numerical optimizer to move the projection direction to a more
interesting position [70]. The index of interestingness has been designed purposely to reveal clustering
characteristics hidden in the multivariate high-dimensional data. The PP technique can more clearly
group data, exclude the interference of outliers, and solve the nonlinear problems by searching for
nonlinear structures in the linear projection. The detailed procedure is as follows.

• Step 1: Normalize the values of proxy indicators

In this study, the dataset for estimating SVI is {x∗(i, j)|i = 1, 2, ..., n; j = 1, 2, ..., p}, where x∗(i, j)
represents the value of the ith observation with the jth indicators. n and p are the number of observations
and indicators, respectively. Here, n = 139 and p = 19. Different normalization formulas are used
based on an indicator’s influence on SVI. For indicators that increase SVI, the normalized variable
value x(i, j) is:

x(i, j) = [x∗(i, j)− xmin(j)]/[xmax(j)− xmin(j)] (1)

For indicators that decrease SVI,

x(i, j) = [xmax(j)− x∗(i, j)]/[xmax(j)− xmin(j)] (2)

• Step 2: Develop the index function Q(a)

The dataset of {x(i, j)|i = 1, 2, ..., n; j = 1, 2, ..., p} is converted into a one-dimensional projection
value z(i):

z(i) =
p

∑
j=1

a(j)× x(i, j), i = 1, 2, 3, . . . , n (3)

where a(j) is a p-dimensional unit vector corresponding to projection direction, a(j) ∈ [−1, 1],
and ∑

p
j=1 a(j)2 = 1. The projection value dataset varies with the projection direction a(j). Different

projection directions reveal different features of data structure and the optimal projection direction is
the direction exposing the most interesting structure of high-dimensional data. In the one-dimensional
scatter diagram, the most interesting projection corresponds to the view where there is the greatest
difference among observations from other classes and the least difference in the same class.
Thus, the index function can be depicted as follows:

Q(a) = SzDz (4)

Sz =

√√√√ n

∑
i=1

(z(i)− E(z))2

n− 1
(5)

Dz =
n

∑
i=1

n

∑
j=1

(R− r(i, j))× u(R− r(i, j)) (6)

where Sz is the standard deviation of z(i); Dz is the local density of z(i); E(z) is the mean of z(i); R is the
local density radius of the window. In this study, it is 0.1Sz; r(i, j) is the distance between the samples:
r(i, j) = |z(i)− z(j)|; u(t) is the unit step function: u(t) = 1, if r(i, j) < R or u(t) = 0, if r(i, j) ≥ R.
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• Step 3: Find the optimal projection by maximizing the index function{
MaxQ(a) = SzDz

s.t. ∑
p
j=1 a2(j) = 1

(7)

The program for a real-coded genetic algorithm implemented in PYTHON is applied to calculate
a∗(j) of the best projection direction. The values of a(j) in p-dimensions in Equation (3) corresponds
to the weights of the indicators. Since a∗(j) is the unit vector corresponding to the optimal direction
that exposes the most interesting structure of 19 indicators, it can be thought as the suitable weights of
social vulnerability indicators.

• Step 4: Calculate and classify social vulnerability index

When a∗(i) has been calculated, the aggregated value (Z∗(i)) taken as the social vulnerability index
can be obtained according to Equation (3). Thus, nineteen indicators for assessing social vulnerability
are compressed into one dimension without any loss of potentially useful information.

3. Results and Discussion

Results about weighting values of all indicators are shown in Table 3. Table 3 indicates that
the maximum of weighting values is 0.416 and the minimum is 0.024, which means the indicator of
“educated” contributes most to SVI while “urban resident” affects SVI least. The top three indicators
influencing on SVI are “educated”, “physicians in hospital” and “employees in management sector”,
and all of them are above 0.3. The next group (0.255 < value < 0.3) is composed of five indicators:
“children”, “employees in management sector”, “beds in hospital”, “employees in mining”, and “GDP
in secondary sector”. These eight indicators make up 68.3% of the SVI and four of them belong
to the dimension of “adaptability”, three of them belong to “exposure”, and only one belongs to
“susceptibility”. Which means that in the YRD region, the dimension of “adaptability” has more effect
on the SVI value.

Table 3. Weighting values for SVI to air pollution.

No. Indicators Weighting
Values No. Indicators Weighting

Values

1 Children 0.297 11 Employees in mining 0.274
2 Elderly 0.120 12 Employees in construction 0.166
3 Female 0.142 13 GDP in secondary sector 0.255
4 Ethnicity 0.082 14 GDP 0.188
5 Illiterate 0.245 15 Educated 0.416
6 Poor 0.063 16 Beds in hospital 0.283
7 Unemployed 0.040 17 Physicians in hospital 0.365
8 Population density 0.060 18 Employees in management sector 0.355
9 Urban resident 0.024 19 Green space coverage 0.044

10 Employees in 2nd industry 0.288

With the weight of each indicator, we evaluated the values of SVI dimensions (susceptibility,
exposure, and adaptability) in the YRD region (Figure 4). For 139 counties, the adaptability values
are all higher than susceptibility and exposure values. Hence, improving adaptability of the YRD
region will be an effective measure for reducing social vulnerability to air pollution. Spatial patterns of
susceptibility, exposure, and adaptability are mapped as shown in Figure 5.
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These maps address significant spatial clustering and variability in each SVI dimension (Figure 5).
With regard to the YRD region, counties in the southern and northern ends tend to be highly susceptible,
have medium exposure, but are highly adaptable, coinciding with a lower level of local economic
development, but a relatively adequate resource supply for their city size. Counties around the
periphery of Taihu Lake are less susceptible, more adaptable, but face greater exposure, since this
area has the advantage in economic development and social services, while population exposure and
urban sprawl are among the most significant and widespread in the nation. As for counties in the
metropolitan area of Shanghai, they are less susceptible, with less or medium exposure, but show less
or medium adaptability. This suggests that local infrastructure and social services cannot keep pace
with the rapid urban expansion, as even considerable development has been witnessed in Shanghai.

SVI values of all counties were evaluated and are displayed on Figure 6 and Table 4. It can be
seen that there is an evident discrepancy among the three provincial units in the YRD region. SVI in
Shanghai is generally lower than the other two: the average and maximum are both less than others.
In Jiangsu Province, though the maximum is greater than Shanghai, the minimum is the least one.
As for Zhejiang Province, the overall condition of SVI is not good: average, minimum, and maximum
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Table 4. General statistics of social vulnerability index in the YRD region.

SVI YRD Region Shanghai Municipality Jiangsu Province Zhejiang Province

Average 1.970 1.474 1.989 2.110
Minimum 0.916 0.992 0.916 1.002
Maximum 2.516 2.021 2.429 2.516

In order to get further information of the spatial variability and distribution of SVI values,
we mapped it with QGIS 2.14.10 (Quantum GIS Geographic Information System. Open Source
Geospatial Foundation Project. http://qgis.osgeo.org) (Figure 7).
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As expected, a spatial pattern of SVI at the county scale is clearly demonstrated. (1) High SVI
values are mainly distributed in the north of Jiangsu Province, and the north and south of Zhejiang
Province. It includes three county-level cities in Jiangsu Province: Qidong, Jiangdu and Jiangyan and
one city district, two county-level cities, and three counties in Zhejiang Province: Xiuzhou, Pinghu,
Deqing, Yuhuan, Sanmen, and Wenling; (2) As for the whole region, SVI is in generally poor condition,
most of them are at level 4 (the high-medium level); (3) Examining SVI on the prefecture-level city scale,
it can be found that the low value centers are always located in city districts. This means that urban
core areas are always less vulnerable than surrounding counties or county-level cities. More detailed
information is shown in Table 5.

Table 5. Statistics of SVI and SVI dimensions at the county-level in the YRD region.

Level
SVI

SVI Dimension 1 SVI Dimension 2 SVI Dimension 3

Susceptibility Exposure Adaptability

Count Percentage Count Percentage Count Percentage Count Percentage

High 9 6.47% 7 5.04% 11 7.91% 54 38.85%
High-medium 75 53.96% 39 28.06% 50 35.97% 32 23.02%

Medium 30 21.58% 28 20.14% 36 25.90% 25 17.99%
Medium-low 15 10.79% 47 33.81% 24 17.27% 17 12.23%

Low 10 7.20% 18 12.95% 18 12.95% 11 7.91%

4. Conclusions

This article proposes a method for assessing social vulnerability to air pollution. First of all,
we conceptualized social vulnerability in the context of air pollution after reviewing the literature
on social vulnerability. Then, a range of factors concerned with social vulnerability to air pollution
were identified and summarized, as well as developing a county-level dataset on a socioeconomic
and demographic profile. With the PPC model, we identified the main factors contributing to
social vulnerability in order to provide a benchmark reference for decision-makers on what social
vulnerability reduction should be focused on. Results reveal that the top three factors influencing
SVI are “educated”, “physicians in hospital”, and “employees in management sector”. Based on
the weight of each indicator, we evaluated the values of SVI dimensions (susceptibility, exposure,
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and adaptability) in the YRD region. It indicates that adaptability values are generally higher than
susceptibility and exposure values. Hence, improving adaptability of this region will be an effective
measure for reducing social vulnerability to air pollution. SVI values of all counties were also evaluated
and mapped. As for the whole region, SVI is in a poor condition, because most values belong to
level 4 (the high-medium level). SVI in Shanghai is better than Jiangsu and Zhejiang provinces.
High SVI values are mainly distributed in the north of Jiangsu Province, and the north and south of
Zhejiang Province. By examining SVI on the prefecture-level city scale, it can be found that the low
value centers of SVI are always located in urban core areas. Hence, more attention should be paid on
peripheral areas of the city than for prefecture-level management.
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