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Abstract

:

The deteriorating air quality in the Yangtze delta region is attracting growing public concern. In this paper, seasonal estimation models of the surface particulate matter (PM) were established by using aerosol optical thickness (AOT) retrievals from the moderate resolution imaging spectro-radiometer (MODIS) on board NASA’s Terra satellite. The change of the regional distribution of the atmospheric mixed layer, relative humidity and meteorological elements have been taken into account in these models. We also used PM mass concentrations of ground measurements to evaluate the estimation accuracy of those models. The results show that model estimation of PM2.5 and PM10 mass concentrations were in good agreement with the ground-based observation of PM mass concentrations (p < 0.01, the R2 value of the PM2.5 concentrations experimental model for four seasons are 0.48, 0.62, 0.61 and 0.52 respectively. The R2 value of PM10 concentrations experimental model for four seasons are 0.57, 0.56, 0.64 and 0.68 respectively). At the same time, spatial and temporal variations of PM2.5 and PM10 mass concentrations were analysed over the Yangtze delta region from 2000 to 2013. The results show that PM2.5 and PM10 show a trend of increase in the Yangtze delta region from 2000 to 2013 and change periodically. The maximum mass concentration of PM2.5 and PM10 was in January–February, and the minimum was in July–August. The highest values of PM2.5 and PM10 mass concentration are in the region of urban agglomeration which is grouped to a delta-shaped region by Shanghai, Hangzhou and Nanjing, while the low values are in the forest far away from the city. PM mass concentration over main cities and rural areas increased gradually year by year, and were increasing more quickly in urban areas than in rural areas.
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1. Introduction


Atmospheric aerosol has been one of the most important branches of atmospheric environmental scientific research for its important role in not only global climatic change but also in changes to the environment [1,2]. Atmospheric aerosol particles, particularly PM2.5 (particle matter, PM) and PM10 which can cause the decrease of visibility and are serious hazards to human health, are important indexes to evaluate air quality. Since 1980s, with the development of social industrialization and economy, the demand of energy is increasing, which results in more serious air pollution problems.



Routine measurements of ground-level PM concentration by air quality monitoring networks can give the change of PM concentrations with time. This information has high accuracy and continuous monitoring advantages, but its spatial coverage is limited. Satellite remote sensing can be an important tool to complement ground-level measurement. The relevant satellite-derived parameter is AOT, which quantifies the extinction of solar radiation at a given wavelength due to presence of aerosols in an atmospheric column. There is a correlation between AOT and PM concentrations near the surface [3,4,5,6,7,8,9,10,11]. The satellite-derived AOT is a measure of light attention in the column that is affected by ambient conditions (e.g., variable humidity, vertical profile and chemical composition etc.) [12], while PM concentration is a measure near the surface after it has dried.



Studies on the correlation between AOT and PM concentration near the surface after vertical correction and humidity correction have been conducted, respectively. Also, some studies found that the correlation between AOT and PM concentration is impacted by meteorological conditions [13,14,15,16,17,18,19], boundary layer height [20,21,22], land use [23] and geographical location, [24] etc. Recently, researchers developed approaches using various statistical methods, from linear regression models [25,26] to more complex multiple regression and neural network techniques [13,27], generalized additive mixed models (GAMs) [23,28], and mixed effects models [29,30].



Air pollution has become an increasingly serious concern in parts of China, especially in three economic zones. The Yangtze River delta has been one of the several areas affected by haze in China [31]. At present, the monitoring and analysis of PM concentrations over the Yangtze delta is rarely reported. Therefore, using MODIS AOT to estimate PM concentration and analyzing its spatial and temporal variation is of important practical significance for scientific prediction and effective control of atmospheric PM pollution over the Yangtze delta.




2. Data and Methods


2.1. Study Area


The Yangtze delta region is situated in the lower reaches of the Yangtze river, East China. The central geographical coordinates are approximately 120.5°E, 30.5°N. This region is affected by a marine monsoon and continental monsoon climate in summer and winter, respectively. Therefore, the Yangtze delta has a marine monsoon subtropical climate, and the weather is generally warm and humid. The region is a major industrial and commercial hub in China. Because of rapid economic development over the last two decades, high concentrations of aerosols with diverse properties are being emitted in the region. These pollutants may play a more significant role in urban regions and provide a unique opportunity for understanding the impact of environmental change on climate systems, especially in urban areas (Figure 1).




2.2. Data


2.2.1. MODIS Data


The Moderate-Resolution Imaging Spectroradiometer (MODIS) of the U.S.’s NASA (National Aeronautics and Space Administration) has multispectral, wide coverage and high temporal resolution. It is carried on two satellites (Terra and Aqua) and is widely used to monitor atmospheric aerosols. Currently, NASA releases a daily land atmospheric MODIS AOT product obtained using a dark pixel algorithm. The spatial resolution of the product is 10 km, the wavelength is 0.55 μm, and the error is about 15% over land [32]. For the applicability of the aerosol product over the Yangtze delta region, we used ground-based observation data obtained by a sun photometer for validation. Fourteen years (2000–2013) of MODIS Terra AOT550 data (collection 6) were downloaded from the MODIS website [33].




2.2.2. Ground-Based Observation Data


PM2.5 and PM10 concentrations data for the Yangtze delta region are obtained from the China National Environment Monitoring Centre. We obtained hourly PM2.5 and PM10 mass concentrations from 53 air quality ground-based observation sites (Figure 1). The time of the MODIS Terra satellite overpass in China is 10:30 a.m. In order to make PM concentrations of ground-based observation data match with MODIS AOT data, we selected the mean of 10:00 a.m. to 12:00 p.m. noon air quality ground-based observation data.



AOT ground-based observation data was obtained using the French CIMEL manufactured automatic tracking and scanning sun photometer (CE-318). The CE-318 is an important instrument for atmospheric aerosol observations. It is used by NASA of the United States as the main instrument in its global aerosol observation network (AERONET). In this study we used data from six AERONET sites equipped by CE-318 sun photometers located in Yangtze delta region: Shanghai_Minhang (SHM), Hangzhou_City (HZC), Hangzhou_ZFU (HZZ), LA-TM (LA), Ningbo (NB) and Qiandaohu (QDH) (shown in blue in Figure 1). Since AERONET provides AOT data at 500 nm, these values have been interpolated at 550 nm in order to coincide with MODIS AOT550 using the following equation:


AOT550 = AOT500/exp[aln(λ1/λ2)]



(1)




where a is the AE estimated between 440 and 675 nm, λ1 is 500 nm, and λ2 is 550 nm.




2.2.3. Meteorological Data


Meteorological data were obtained from the China Meteorological Data Sharing Service System. We obtained the daily meteorological data including relative humidity, wind speed, atmospheric pressure, atmospheric temperature, dew point temperature and cloud cover for 58 meteorological observation sites in the Yangtze delta region from 1 January 2000 to 31 December 2013. We obtained the spatial data of every meteorological parameter by using the common ANUSPLIN interpolation software in meteorology [34].





2.3. Method


In order to create estimation model to predict PM concentrations, five main stages have undergone.



First, check the quality of satellite-retrieved AOT measurements.



Next, get the surface aerosol extinction coefficient by vertical correlation based on AOT and mixture layer height data.



Next, get PM concentration by humidity correction using ground-level PM measurement and relative humidity data.



Next, create a multiple linear regression model considered the influence of ground-level temperature, ground-level pressure and wind speed.



Finally, verify the accuracy of the estimation model.



2.3.1. Correction of Vertical Elevation


AOT is the most important data for estimating PM concentrations near the ground by using remote sensing retrieval and is a columnar measurement of aerosol light extinction. Under the assumption of a plane parallel atmosphere, AOT is the integration of the extinction coefficient at all altitudes along the vertical direction [35].The relationship between AOT and PM concentrations is therefore affected by the vertical distribution of aerosols. Aerosol particle concentration is negatively exponentially decreased with height because of the influence of the Earth’s gravity [36] (Equation (2)).


    τ a   ( λ )  =   ∫  0 ∞   κ a   (  λ , z  )  d z   



(2)




where     τ a   ( λ )     is AOT,     κ a   (  λ , z  )     is the aerosol extinction coefficient at the height of   z  .   z   represents vertical height. Assuming that the vertical direction changes of     κ a   (  λ , z  )     are the negative exponential form, we can get the equation (Equation (3)):


    κ a   (  λ , z  )  ≈  κ  a , 0    ( λ )  exp  (  −  z   H A     )    



(3)




where     κ  a , 0    ( λ )     is the surface aerosol extinction coefficient, and     H A     is the aerosol scale height, which is the key parameter to reflect aerosol vertical height distribution. We obtain the following relationship between atmospheric AOT and the surface aerosol extinction coefficient (Equation (4)):


    τ a   ( λ )  ≈  κ  a , 0    ( λ )    ∫  0 ∞  exp  (  −  z   H A     )  d z =  κ  a , 0    ( λ )  ×  H A    



(4)




where      τ  a  ( λ )    is the AOT,     κ  a , 0    ( λ )     is the surface aerosol extinction coefficient, and     H A     is the aerosol scale height. As a result of Equation (4), based on satellite-retrieved AOT, we can get the surface aerosol extinction coefficient for each pixel, just by obtaining aerosol scale height of each pixel (Equation (5)).


    κ  a , 0    ( λ )  ≈    τ a   ( λ )     H A      



(5)







In the practical applications, the aerosol scale height can be replaced by the thickness of mixed layer or atmospheric boundary layer height [37,38]. In this study, we used the mixed layer height to replace aerosol scale height, and mixed layer height is calculated using the Nozaki method based on ground observation meteorological data [39,40].




2.3.2. Correction for Relative Humidity


Under a certain height and the size distribution of PM, there is a positive correlation between PM concentrations and the aerosol extinction coefficient [10,41,42], because water vapor has a significant impact on the physical and optical characteristics of aerosol particles, such as the complex refractive index and extinction cross section [43].Therefore, the “wet” aerosol extinction coefficient needs to be corrected, to become a “dry” aerosol extinction coefficient after correction, and this has a higher correlation with PM concentrations. The influence of air humidity on the extinction coefficient can be described by the hygroscopic growth factor (   ƒ ( RH )   , RH is the relative humidity). Its value is equal to the ratio of the “wet” aerosol extinction coefficient and “dry” aerosol extinction coefficient under the same conditions. In this paper, we use the empirical relation of White and Roberts [44] to obtain the hygroscopic growth factor (Equation (6)).


   ƒ ( RH ) =  1  1 − RH     



(6)







Using Equations (1) and (4), the “dry” surface aerosol extinction coefficient (    k  a , d r y   ( 0 , λ )   ) can be calculated by Equation (7):


    k  a , d r y   ( 0 , λ ) ≈    τ a  ( λ )    H A  ƒ ( RH )     



(7)




where     k  a , d r y    (  0 , λ  )     is the surface aerosol extinction coefficient of the surface PM after drying.




2.3.3. Statistical Model


In this paper, we estimated PM concentrations on a daily basis and used a multivariable linear regression model which was constructed by PLS (Partial Least Square) method. Since relative humidity, aerosol scale height and meteorological conditions influence the PM–AOT relationship, we select aerosol scale height, relative humidity, temperature, pressure and wind speed as influence factors to join statistical model construction in order to improve the prediction accuracy of model. We find that PM concentrations can be calculated by Equation (8):


   PM = F  (   k  a , d r y    (  0 , λ  )  ,   T ,   P ,   W  )    



(8)




where     k  a , d r y    (  0 , λ  )     is the “dry” aerosol extinction coefficient near the ground, T is ground-level measurement temperature, P is ground-level measurement pressure, and W is ground-level measurement wind speed. We express their relation by a multiple linear equation, Equation (9):


   PM =  a 0  +  a 1   k  a , d r y    (  0 , λ  )  +  a 2  T +  a 3  P +  a 4  W   



(9)




where the coefficients a0, a1, a2, a3 and a4 are determined by multivariate linear fitting based on monitoring data.



The sources of aerosols differ greatly in different seasons (spring, summer, autumn, winter) over the Yangtze delta region. In the Yangtze delta region, spring and winter are affected by the continental monsoon climate which brings mainly dust aerosols. The main aerosols are sea salt and black carbon aerosol in summer. Since aerosols from different sources exhibit different physical, chemical and optical characteristics which affect the aerosol vertical correction and humidity correction, the correlation with meteorological variables is different. Consequently we expect to find different sets of values for the coefficients a0, a1, a2, a3 and a4 for different seasons.




2.3.4. Model Validation


We obtained PM2.5 and PM10 concentrations data from a total of 53 air quality ground-based observation sites over the Yangtze delta region in 2013. We chose 36 air quality ground-based observation sites in the study region (shown in red in Figure 1) to provide data of relatively spatial uniform distribution and continuous monitoring to determine the values of the coefficients, a0, a1, a2, a3 and a4 in the model. Then we chose 17 sites (shown in green in Figure 1) to provide data on air quality in the remaining ground observation sites to validate the model and determine the accuracy of the PM2.5 and PM10 model.






3. Results and Analysis


3.1. Validation of MODIS AOT Products


MODIS AOT products were validated using ground-based observation data (sun photometer) for each of six locations. Data from the sun photometer coincides to the MODIS data within 30 min of MODIS satellite overpass time, and the MODIS data were averaged over a 3 by 3 pixels area centred at the ground observation sites. The results of the linear regression analysis are shown in Figure 2. The correlation R2 values for the six locations are also given in Table 1 and range from 0.86 to 0.62. The results show that the MODIS AOT is in good agreement with the data obtained from the 6 ground-based AERONET sets of sun photometer readings. The results show that MODIS AOT products have good applicability in this study area, and provide a guarantee of the accuracy of the data for us to estimate PM concentrations based on MODIS AOT.




3.2. PM Estimation Model and Accuracy Validation


We determine the coefficients in Equation (9) based on aerosol extinction coefficients after vertical elevation and relative humidity correction, PM concentrations of ground observation and meteorological factors according to different seasons. Table 2 shows that the R2 of seasonal experimental models of PM2.5 concentrations is 0.48, 0.62, 0.61, 0.52, respectively, and the R2 of seasonal experimental models of PM10 concentrations is 0.57, 0.56, 0.64, 0.68, respectively.



Experimental models were validated using ground-based PM concentration data. The linear regression analysis is shown in Figure 3 and Figure 4. The results show that the estimate of PM2.5 and PM10 concentrations is in good agreement for ground-based observation data. The correlation R2 values of estimated PM2.5 concentrations and ground-observation data for the seasons of spring, summer, autumn and winter were 0.45, 0.50, 0.58, 0.52, respectively. The correlation R2 values of estimated PM10 concentrations and ground-based observation data for the seasons of spring, summer, autumn and winter were 0.72, 0.76, 0.77, 0.72, respectively. The results show that using these estimate models to estimate air PM concentrations has good applicability.




3.3. Spatial and Temporal Variation of Air PM Concentrations over the Yangtze Delta Region


3.3.1. Temporal Variation of Air PM Concentrations over the Yangtze Delta Region


We obtain the monthly and seasonal mean of PM2.5 and PM10 concentrations from March 2000 to December 2013 by using Equation (9). Figure 5 and Figure 6 show the monthly mean PM2.5 and PM10 concentrations variation for the Yangtze delta region from March 2000 to December 2013. From Figure 5 and Figure 6, we find that mean values of PM2.5 and PM10 concentrations averaged over the 53 stations. This is because the 53 stations are located in urban and suburban areas, and PM concentrations in urban and suburban areas are generally higher than other regions due to human activities and anthropogenic pollutants. We used a sine function to fit the regional monthly mean PM2.5 and PM10 concentrations data. The result presents an obvious one year cycle variation, and shows a marked seasonal variation. The largest value often appears in January and February, and the smallest often appears in July or August, but in 2013 the largest value appeared in December. This pattern may relate to the local meteorological conditions. The trend line (slope is 0.045 μg·m−3·year−1, R2 is 0.52) in Figure 5 represents the variation trend of PM2.5 concentrations over the region. The trend line (slope is 0.074 μg·m−3·year−1, R2 is 0.55) in Figure 6 represents the variation trend of PM10 concentrations over the region. From the slope value of the trend line, we can draw the conclusion that the PM2.5 and PM10 concentrations increased with temporal evolution from 2000 to 2013, and PM10 concentrations increased faster than PM2.5 concentrations over the Yangtze delta region. Table 3 shows the regional seasonal mean PM2.5 and PM10 concentrations from 2000 to 2013. From Table 3, we find that the mean seasonal value of PM concentrations of winter is the highest, and that of summer is the lowest in four seasons.




3.3.2. Spatial Variation of Air PM over the Yangtze Delta Region


Figure 7 and Figure 8 represent the spatial distributions of annual mean of PM2.5 and PM10 concentrations over the Yangtze delta region from 2000 to 2013. It shows that to the north of the Yangtze delta region, there is a plain and urban centralized distribution of which PM concentrations are higher. In the mountainous south where forest coverage rate is high, PM concentrations are lower. In the triangular region of urban agglomerations, composed of Nanjing (NJ), Shanghai (SH) and Hangzhou (HZ), PM concentrations are highest. Atmospheric PM concentrations have increased gradually year by year. The yearly increasing trend of PM in cities over plains is larger than in those cities in mountainous areas, and the increasing PM in urban areas is also faster than that in rural areas. The largest values appear in big cities, and the smallest values appear in forest areas. The reason for the increase is the human activity associated with anthropogenic pollutants, and that is more apparent in urban areas. Pollutants include aerosol particles, anthropogenic emissions (industrial waste gas, automobile exhaust gas and the burning of fossil fuels) and urban construction. We consider that there are two reasons for the low PM concentrations in forest areas. The first reason is that there is less human activity in forested areas, and the second reason is that forest has a good purification effect against air PM.




3.3.3. Variation of Atmospheric PM Concentrations over Typical Cities in the Yangtze Delta Region


We chose Hangzhou (HZ), Nanjing (NJ) and Shanghai (SH) as typical cities to analyse the variation of annual mean of PM concentrations over the Yangtze delta region from 2000 to 2013. Figure 9 shows the variation of PM2.5 and PM10 concentrations from 2000 to 2013. From Figure 9, we find that the annual mean PM2.5 and PM10 concentrations of the three cities show a growth trend, and the rate of growth of PM10 concentrations is greater than the PM2.5 concentrations. PM concentrations in Shanghai have the highest value and the highest growth rate (slope of PM2.5 is 1.28 ug·m−3·year−1, slope of PM10 is 2.00 ug·m−3·year−1 (as shown in Figure 9)) compared with the other cities. We found that human activity has a great influence on PM concentrations. The statistical yearbook for the three cities shows that population density, quantity of coal combustion, quantity of gasoline combustion, quantity of diesel fuel combustion, power consumption and the expansion of the city in Shanghai are greater than in Hangzhou or Nanjing.






4. Conclusions


	(1)

	
We validated the MODIS AOT data based on ground-based monitoring AOT data; the results show that aerosol optical characteristic research and atmospheric PM concentration estimate by using satellite remote sensing retrieved MODIS AOT data has applicability over the Yangtze delta.




	(2)

	
We developed seasonal estimation model of PM2.5 and PM10 mass concentration based on satellite remote sensing. The precision validation suggest that we can monitor PM2.5 and PM10 on region scale by using satellite remote sensing.




	(3)

	
PM concentrations over the Yangtze delta presented an obvious one year cycle variation from 2000 to 2013. The largest value often appeared in January–February, and the smallest often appeared in July–August, but in 2013 the largest value appeared in December. The mean seasonal value of PM concentrations has the highest and lowest value in winter and summer, respectively. PM concentrations over main cities and rural areas have increased gradually year by year, and PM concentrations are increasing faster in urban areas than in rural areas.
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Figure 1. Location of the Yangtze Delta, distribution of sampling sites and CE-318s. 
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Figure 2. Linear regression analysis of daily AOT from CE-318 and MODIS AOT products. 
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Figure 3. Linear regression analysis of estimated PM2.5 concentrations and ground-based observation PM2.5 concentrations. 
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Figure 4. Linear regression analysis of estimated PM10 concentrations and ground-based observation PM10 concentrations. 
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Figure 5. Variation of monthly mean PM2.5 concentrations over the Yangtze Delta Region from 2000 to 2013. 
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Figure 6. Variation of monthly mean PM10 concentrations over the Yangtze Delta Region from 2000 to 2013. 
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Figure 7. Spatial distribution of annual mean PM2.5 concentrations over the Yangtze Delta Region from 2000 to 2013. Hangzhou (HZ), Nanjing (NJ), Shanghai (SH). 
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Figure 8. Spatial distribution of annual mean PM10 concentrations over the Yangtze Delta Region from 2000 to 2013. Hangzhou (HZ), Nanjing (NJ), Shanghai (SH). 
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Figure 9. Variation of annual mean PM2.5 and PM10 concentration sover typical cities in the Yangtze Delta Region from 2000 to 2013. (a) Hangzhou; (b) Nanjing and (c) Shanghai. 
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Table 1. The coefficient value of linear regression analysis of daily AOT from CE-318 and MODIS AOT products.
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Observation Site

	
Longitude (°)

	
Latitude (°)

	
Slope

	
Intercept

	
R2

	
p






	
SHM

	
121.397

	
31.131

	
1.13

	
0.030

	
0.78

	
<0.01




	
HZC

	
120.083

	
30.263

	
0.96

	
0.096

	
0.86

	
<0.01




	
HZZ

	
119.745

	
30.416

	
0.98

	
−0.120

	
0.77

	
<0.01




	
NB

	
121.583

	
29.867

	
0.77

	
0.290

	
0.76

	
<0.01




	
QDH

	
119.012

	
29.550

	
0.75

	
−0.030

	
0.71

	
<0.01




	
LA

	
119.442

	
30.317

	
0.62

	
−0.004

	
0.62

	
<0.01
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Table 2. The coefficient value of experimental models of PM2.5 and PM10 concentrations in different seasons.
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a0

	
a1

	
a2

	
a3

	
a4

	
R2

	
p

	
STD






	
PM2.5

	
Spring

	
366.69

	
179.55

	
−0.51

	
−0.28

	
−19.72

	
0.48

	
<0.01

	
17.15




	
Summer

	
0.00

	
106.4

	
−4.73

	
1.23

	
−15.83

	
0.62

	
<0.01

	
11.80




	
Autumn

	
0.00

	
258.74

	
3.03

	
3.73

	
−50.27

	
0.61

	
<0.01

	
15.21




	
Winter

	
0.00

	
356.42

	
8.6

	
6.98

	
−86.07

	
0.52

	
<0.01

	
21.59




	
PM10

	
Spring

	
33.39

	
325.96

	
1.07

	
0.03

	
−22.89

	
0.57

	
<0.01

	
22.17




	
Summer

	
0.00

	
204.6

	
−11.59

	
2.57

	
−23.17

	
0.56

	
<0.01

	
15.40




	
Autumn

	
0.00

	
302.97

	
7.76

	
8.3

	
−80.18

	
0.64

	
<0.01

	
18.15




	
Winter

	
0.00

	
341.07

	
20.14

	
8.2

	
−93.91

	
0.68

	
<0.01

	
25.50
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Table 3. Variation of seasonal mean PM2.5 and PM10 concentrations over the Yangtze Delta Region from 2000 to 2013. Units (μg·m−3).
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Year

	
PM2.5

	
PM10




	
Spring

	
Summer

	
Autumn

	
Winter

	
Spring

	
Summer

	
Autumn

	
Winter






	
2000

	
47.17

	
21.74

	
29.01

	
0.00

	
78.49

	
39.25

	
42.07

	
0.00




	
2001

	
47.12

	
20.75

	
38.77

	
51.85

	
78.97

	
37.68

	
41.19

	
86.77




	
2002

	
34.28

	
22.42

	
52.46

	
53.84

	
57.54

	
40.86

	
72.29

	
93.54




	
2003

	
39.40

	
34.17

	
40.64

	
58.52

	
63.16

	
52.36

	
58.11

	
99.30




	
2004

	
46.80

	
30.80

	
50.04

	
66.95

	
77.57

	
56.33

	
69.80

	
113.20




	
2005

	
47.06

	
29.79

	
46.69

	
55.28

	
77.64

	
54.38

	
65.30

	
100.60




	
2006

	
54.20

	
27.24

	
44.97

	
57.15

	
90.86

	
49.51

	
63.15

	
97.17




	
2007

	
54.93

	
30.42

	
49.68

	
59.28

	
92.16

	
56.17

	
69.07

	
101.13




	
2008

	
52.81

	
28.36

	
48.65

	
73.49

	
88.29

	
52.40

	
71.91

	
123.65




	
2009

	
49.88

	
31.73

	
44.37

	
56.81

	
82.69

	
58.98

	
62.51

	
98.71




	
2010

	
40.10

	
28.43

	
41.44

	
56.85

	
65.82

	
52.08

	
64.25

	
103.01




	
2011

	
61.27

	
25.67

	
45.19

	
73.47

	
102.44

	
47.15

	
63.62

	
125.77




	
2012

	
41.72

	
25.47

	
51.43

	
58.65

	
68.61

	
46.03

	
72.44

	
102.71




	
2013

	
47.97

	
22.85

	
41.58

	
64.55

	
79.22

	
39.53

	
61.04

	
107.61
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media/file4.png
. -3,
PM, _ estimates(pg m”)

.3,

PM, , estimates(pg m™)

Spring

0.478x+32.36

PM, _ estimates(pg m'J)

Summer
596x+11.85
0 P<0.01

PM

25!
uhwrvaunm(u;, m*)

50 100 150 200 ZéO
. 3
PM, , observations(ug m”)

e Autumn

673x+17.94
.58 P<0.01

Sh ’ 160 ’ 1%0 ’ 2[)0
PM, , observations(ng m*)

250

3

estimates(ug m

PM,

Winter
=0.621x+30.68
0.52 P<0.01

50

PM observa(lum(pgm )






nav.xhtml


  sustainability-08-00932


  
    		
      sustainability-08-00932
    


  




  





media/file11.png
—*— Averaged value of 53 stations's PM_ |

1 — e —Mean value of PM
180 - 10
] — The sine curve fitting
16091 y=0.077x+66.99
140 - R*=0.54 P<0.001
120 4 . *
1004 /| * :
,*,\ R <
0N Al V|
*
601 \ 1/ /SN
40 - o e
20] * .

2000-01 2000-12 2001-12 2002-12 2003-12 2004-12 2005-12 2006-12 2007-12 2008-12 2009-12 2010-12 2011-12 2012-12 2013-12

Time(Year-Month)






media/file1.png
80°Q'0“E 90°q‘0"E 1 00°9'0"E 1 20"9'0"E

140°9'0“E

LoVt Yot Tt N

20°0'0"N

100q|0i1N

Tooo-wN

oorollN

A

N

A

20°0'0"N 30°0'0"N 40°0'0"N 50°0

aolonN

90°0I'0"E 100°0'0"E

0
|

110°0'0"E 120°0'0"E
385 770 1540 km
T R [

1 1

130°0'0"E

30°0'0"N 31°0'0"N 32°0'0"N 33°0'0"N

29°0'0"N

28°0'0"N

118°00'E 119°00'E 120°00"E 121°00°E 122°00"E 123°00"E
N
E A
[=]
5]
b
o)
=
5
£
o
o)
z
=]
S,
” B =
T334
IQ
:Z '(7“" (™
= R
o
o
; 4
S]] DEM Legend
> 1507
Q E
b4
-1 m

118°0'0"E 119°0'0"E 120°0'0"E 121°0'0"E 122°0'0"E 123°0'0"E

Legend

e Modeling of sampling sites 0 40 80 160km

e Validation sampling sites i b § a9 |

e [ocation of CE-318






media/file16.png
PM, (ug m®)

Time(year)

PM, (ug m?)

100
T w
2
=2 e
g N — 3
=
w| ¥ w©
—x PM,, —— y=094x+49.53 R'=0.33
o PN, — y=1.51'x+80.11 R=0.35
2 »
2000 2001 2002 2009 2004 2505 2006 2007 2006 2009 20102011 2012 2013
Time(year)
() e
100 100
. Ea
wf wp
£
* 3
o * = Jeo
H
o “©
—x P, 2605277 Ri=0.48
0018492 R=0.45

100
it —
A Ela
g ES
o . ——=, {%F
© o
—4— PM,, — y=087x:5026R’=033
PM,* — ya1.49%:81.54 Ra039
Time(year)






media/file2.png
o hze
—— 209610006
)5 92P<0.01
2 9
20
15
10
05
00 05 1o 15 20 25 30
. e
—y=077x+0.200
b5 Re067 P<0.01 S
2 Net8s 2
20 20 20
2s Is .
10 10
0s 0s 3
00 05 20 25 30 o0 05 10 15 20 25






media/file13.png
31°0'0"N  33°0'0"N

29°0'0"N

31°0'0"N  33°0'0"N

29°0'0"N

31°0'0"N 33°0'0"N
T T

29°0'0"N

2010

2011

33°0'0"N
T

31°0'0"N
T

29°0'0"N

121°0'0"E  123°0'0"E 119°0'0"E  121°0'0"E  123°0'0"E

1 1 | 1 1 1 1 1
119°0'0"E  121°0'0"E  123°0'0"E119°0'0"E  121°0'0"E  123°0'0"E

A unit: pg m”

0

85

80

75

70

65

60

55

50

45

40

35

30

25

20





media/file7.png
400
® Spring
=0.85x+25.
350 - y2085x 25.60
R™=0.72 P<0.01 o
~ 3001
=
& 2501
A
&
]
= 200
£
~d
7]}
®_ 150
A~ 100
50 -
0 T T T T T T T T T T T T T T
0 50 100 150 200 250 300 350 400
PM  observations(ng m>)
400
| e Autumn
=0.82x+14.53
350 - P
R™=0.77 P<0.01
300 -
(?A
£ 2501
)
=
7z
g 2001
=
E
= 150-
Y
S
= 1001
A
50
0 T T T T T T T T T T T T T T
0 50 100 150 200 250 300 350 400

PM observations(ug m's)

. -3
PM,  estimates(pg m ")

. -3
PM  estimates(pg m ')

400

350

300

N

(o)

o
]

N

o

o
1

—x

n

o
1

=

o

o
1

50

e  Summer
y=0.79x+12.24

R’=0.76 P<0.01

400

. -3
PM  observations(ug m ")

J \ T T J T x T A T )
50 100 150 200 250 300

—
350

400

350 +

300 4

N

(¢

o
]

N

o

o
1

RN

n

(@]
1

RN

(@]

o
1

50 -

e Winter
y=0.81x+29.72
R’=0.72 P<0.01

PM observations(ng m's)

50 100 150 200 250 300

350

400





media/file9.png
PM_ _ concentration(p

~ 1204 —®Meanvalueof PM . — — Averaged value of 53 stations's PM_
§= 1 — The sine curve fitting
o0 1004 y=0.047x+40.76 ‘
‘ R*=0.52 P<0.001 ‘q‘ /
d b s A WA ‘) |
60 / \ / / 1 e A /'\\ .\ /\//L\//.% \4;\\/- ! /';./ \.% \m L‘\‘I{\q j
- \Vl\\ AR ;4. % o o\a /\ o // \ w N \ //,’/\/,’ \Y : ;{/ 00\\\\ ///
R /YA e VAR VERVIEVARY.
20 'Y-"/"‘I Y \JV ‘;/ ' \ l - ) le %./'-/

0 T I T I Al T T T T T T T T T T T
2000-01 2000-12 2001-12 200212 2003-12 2004-12 2005-12 2006-12 2007-12 2008-12 2009-12 2010-12 2011-12 2012-12 2013-12
Time(Year-Month)





media/file10.png
—+—Mean value of PM

The sine curve fitting
77x466.9

+66.99
P<0.001

01 200012 2001-12 200212 2003-12 2004-12 2005-12 2006-12 2007-12 2008-12 200912 2010-12 2011-12 201212 2013

Time(Year-Month)

12





media/file5.png
300

250

Spring
y=0.478x+32.36
R’=0.45 P<0.01

2004

estimates(pg m'3)
&

% 1001

PM

50

T i T i T T T L T
50 100 150 200 250

PM, , observations(ng m’”)

300

300

250 4

200

150 4

. -3
PM, _estimates(pg m )
=

50 +

Autumn
y=0.673x+17.94
R’=0.58 P<0.01

T T T T T T T
50 100 150 200

. -3

PM, , observations(pg m ")

T
250

300

-3

estimates(pg m ")

300

2504

N

o

o
1

150+

% 100 -

PM

50 +

*  Summer
v=0.596x+11.85
R’=0.50 P<0.01

50

100 150 200
. -3
PM,  observations(pg m ')

T
250

300

300

250

200

. -3
PM, . estimates(pg m ")
8 g

50 +

Winter
y=0.621x+30.68

n

R™=0.52 P<0.01

160 | ‘15IO ' 2(50
PM, _ observations(pg m”)

T
250

300





media/file15.png
29°0'0"N

29°0'0"N

29°0'0"N

29°0'0"N

135

33°0'0"N

31°0'0"N

125

115

33°0'0"N

105

95

31°0'0"N

85

33°0'0"N

75

65

31°0'0"N

55

2010 2011

119°0'0"E  121°0°0"E  123°0'0"E119°0'0"E  121°0'0"E  123°0'0"E

N 45

.. =3
A unit: ug m 2

0 187.5 375 750 Kilometers

33°0'0"N

31°0'0"N

12012 2013

119°0'0"E  121°0'0"E  123°0'0"E 119°0'0"E  121°0'0"E  123°0'0"E






media/file12.png
31°00"N  33°0'0"N  29°0°0"N  31°0°0"N  33°0'0"N

29°00"N

2000

31°00°N  33°0'0"N

29°00"N

31°0'0"N  33°0'0"1

29°0'0"N

119°0'0"E  121°0°0"E  123°0'0""

119°00°E  121°0°0"E  123°0'C

"E

100" 121°00°E  123°00"E119°00"E  121°00"E  123°0'0"E

N

A unit: pg m*

0 187.5 375

750 Kilometers






media/file3.png
MOD04 AOT

MOD04 AOT

30 T T T T T
e HZC
y=0.96x+0.096 b
R=0.92 P<0.01
2.5 N=196 ]

30 T T T T I
e NB
y=0.77x+0.290
R=0.67 P<0.01
2.5 N=185 T

T
0.5 1.0

T T T
1.5 2.0 2.5
CE-318 AOT

2.5

T T T T T

e JD ®
y=1.13x+0.03
R=0.88 P<0.01
N=176

2.5
30 T T T T I
e QDH

y=0.73x-0.03

R=0.84 P<0.01
2.5 N=278 T
2.0+ -

°
1.5 ® °, 4
® .
L °
10 - [ .. .‘ -
00.;0 ° ®
o Y ..'. H [ ]
:’O > .: ® ¢

° °

0.5 - J'. e © 7
L
00 T T T T T
0.0 0.5 1.0 1.5 2.0 2.5
CE-318 AOT

T
e HZZ

y=0.98x-0.120
R=0.89 P<0.01
N=331

2.5+

e LA
y=0.62+0.040
R=0.74 P<0.01
N=261

1.5
CE-318 AOT

T
2.0

2:5

3.0





media/file0.png
20°00N

10°00°N

000E 10000 1000°E 120°00°E 130°00°E
0 385 770 1540km
[P

000N 00N

20008

000N 300N 200N 300N "

20°00N

00 M900°E 12000 121°00°E  122°00°E  123°00°E

¢
DEM Legend

2000N 000N 300N 200N BOON

260N

d

«Modeling of sampling sites

© Validation sampling sites
cation of CE-318

O 12000

E  2IOVE  12200E 1200
0 40 80 160km
[





media/file17.png
120

| (a)

K —%k *

60 |- * g
M
I —

*

A

40FL K

—%— PM,, —— y=0.94"x+49.53 R°=0.33
e PM, — y=1.51"x+80.11 R’=0.35

‘ _

120

80

60

PM, (ug m”)

40

1 I 1 I I I I I 1 I 1 | 1 |
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Time(year)

(c)

o——o/ i e

| —k— PM, —— y=1.28x+52.77 R’=0.44
—e— PM,, —— y=2.00x+84.92 R’=0.45

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Time(year)

20

120

100

80 @

60

40

PM,,(ug m™)

—%— PM,, —— y=0.87"x+50.26 R’=0.33
—e—PM, —— y=1.49"'x+81.54 R°=0.39

l 4

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Time(year)

120

100

[e2]
o

3
-3
PM,,(ug m™)

40





media/file14.png
31°00"N  33°0'0"N

29°0'0"N

31°0'0"N  33°0'0°N  29°0'0"N  31°0'0"N_ 33°0'0"N

29°0'0"N.

2011
MYVOE  121°00°E  123°00"ENM9°00"E  121°0'0"E  123°0'0"E]

31°00"N_ 33°0'0"N

29°0'0"N

N

A unit: pg m*

[ 187.5 375 750Kilometers
[ A

119°0'0"E  121°0'0"E  123°0'0"E 119°0'0"E  121°0'0"E  123°0'0"E





media/file8.png
PM,  concentration(ug m")

N
8

—Mean value of PM,, .
— The sine curve fitting 1 i

0047544076

52 P<0.001

200(

-01 2000-12 200112 2002-12 200312 200412 2005-12 2006-12 2007-12 2008-12 2000-12 2010-12 2011-12° 201212 201312
Time(Year-Month)





media/file6.png
Spring © Summer
¥=0.85x+25.60 ¥=0.79x+12.24
R™=0.72 P<0.01 R'=0.76 P<0.01

.~ 300
H e
EE So 2
8 =
% 20 % 2
]
£ H
% £
©_ 150 g1
> 2
B =z
100 = 1

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
. 3 E
PM,  observations(ug m™) PM, observations(ug m *)
« Autumn « Winter
L 082x+14.57 [ .
50 y=0.82x+14.53 0 ¥=0.81x+29.72
R*=0.77 P<0.01 .72 P<0.01
300 300
L L
E 250 E 250
0 0
= 2
& 200 & 200
] 3
£ £
2 150 2 150
g g
= =
= 00 = 00
50 50
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

PMm observations(pg m 3) PMIu observations(pg m")





