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Abstract: Sustainability research faces many challenges as respective environmental, urban and
regional contexts are experiencing rapid changes at an unprecedented spatial granularity level, which
involves growing massive data and the need for spatial relationship detection at a faster pace. Spatial
join is a fundamental method for making data more informative with respect to spatial relations.
The dramatic growth of data volumes has led to increased focus on high-performance large-scale
spatial join. In this paper, we present Spatial Join with Spark (SJS), a proposed high-performance
algorithm, that uses a simple, but efficient, uniform spatial grid to partition datasets and joins
the partitions with the built-in join transformation of Spark. SJS utilizes the distributed in-memory
iterative computation of Spark, then introduces a calculation-evaluating model and in-memory spatial
repartition technology, which optimize the initial partition by evaluating the calculation amount of
local join algorithms without any disk access. We compare four in-memory spatial join algorithms
in SJS for further performance improvement. Based on extensive experiments with real-world data,
we conclude that SJS outperforms the Spark and MapReduce implementations of earlier spatial join
approaches. This study demonstrates that it is promising to leverage high-performance computing
for large-scale spatial join analysis. The availability of large-sized geo-referenced datasets along with
the high-performance computing technology can raise great opportunities for sustainability research
on whether and how these new trends in data and technology can be utilized to help detect the
associated trends and patterns in the human-environment dynamics.

Keywords: spatial join; parallel computing; Spark; performance

1. Introduction

Sustainability research faces many challenges as respective environmental, urban and regional
contexts are experiencing rapid changes at an unprecedented spatial granularity level, which involves
growing massive data and the need for spatial relationship detection at a faster pace. The amount
and diversity of new data sources have grown dramatically in complex ways at degrees of detail
and scope unthinkable until now. As a fundamental method of spatial analysis, spatial join relates
an object or event at a certain location to other related data sources in the spatial context. Spatial
join links unrelated data using space and, thus, integrates knowledge from scattered sources. It can
make data more informative and reveal patterns that may be invisible [1]. For example, researchers
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quantify the contextual determinants of human behaviors and place-based information by analyzing
data from mobile-phone subscribers, social media, floating cars, etc. [2–6]. The size of spatial data
has grown dramatically. For instance, in China, the second national land survey has produced about
150 million polygons and 100 million linear roads yearly since 2007. In addition, the first national
geography census produced about 2.4 trillion bytes of vector data. These datasets provide a goldmine
for sustainability studies across spatial scales. However, existing spatial join tools can only deal with
a limited amount of data due to computation constraints. In the face of such massive spatial data,
the performance of traditional spatial join algorithms encounters a serious bottleneck. There is a
growing consensus that improvements in high-performance computation will pave the new direction
for distributed spatial analysis [7]. By deploying a high-performance spatial join computing framework,
this study demonstrates that it is promising to leverage cutting-edge computing power for large-scale
spatial relationship analysis.

Analyzing the spatial relationship among large-scale datasets in an interdisciplinary, collaborative
and timely manner requires an innovative design of algorithms and computing resources. The solutions
to these research challenges may facilitate a paradigm shift in spatial analysis methods. The research
agenda is being substantially transformed and redefined in light of the data size and computing speed,
which can transform the focus of suitability science towards human-environment dynamics in the
high-performance computing environment.

Parallelization is an effective method for improving the efficiency of spatial joins [8–11]. With the
emergence of cloud computing, many studies use open source big data computing frameworks, such as
Hadoop MapReduce [12] and Apache Spark [13], to improve spatial join efficiency. These Hadoop-like
spatial join algorithms including SJMR (Spatial Join with MapReduce) [14], DJ (Distributed Join)
in SpatialHadoop [15] and Hadoop-GIS [16]. However, all of them need data preprocessing and
cannot perform the entire spatial join in a single MapReduce job; hence, these methods may result in
significant disk I/O and additional communication costs. SpatialSpark [17] uses Spark to implement
broadcast-based spatial join and partition-based spatial join, then performs an in-depth comparison
with SpatialHadoop and Hadoop-GIS [18]. Inheriting the advantages, such as low disk I/O and
in-memory computing, of Spark, SpatialSpark improves the join efficiency significantly.

For distributed spatial join in a Hadoop-like framework, spatial data partition is a key point
that affects the performance of spatial join. All current algorithms use the following method to do
spatial partition: (1) sample the datasets to reduce the data volume; (2) create a spatial index on one
or both dataset; (3) use the spatial index to partition the datasets or map the indexes, then do global
join directly. However, all of the methods partition the datasets based on the spatial index, which
considers the data size or number of data only, which may cause the processing skew of each partition.
SpatialSpark partitions both input datasets with the spatial index of one dataset, thus resulting in
an imbalance because of the data skew mismatch of the two datasets. Furthermore, both sampling
and spatial indexing require extra computing cost, which is expensive, especially for the MapReduce
framework. Faced with massive vector data, the performances of current Hadoop-like spatial join
algorithms run into a bottleneck.

Based on the analysis of existing Hadoop-like high-performance spatial join algorithms,
we found that the key factors for improving the performance of spatial join are: (1) simplification of
the spatial partitioning algorithm to reduce the preprocessing time; (2) optimization of the partition
results for both CPU and memory requirements; and (3) improvement of the performance of the local
join algorithm. In this study, we propose a new spatial join method with Spark: Spatial Join with
Spark (SJS). SJS uses a proven, extremely efficient fixed uniform grid to partition the datasets. Global
join is achieved through built-in join transformation. Utilizing the iterative computation of Spark, we
propose a calculation evaluating model and in-memory spatial repartition technology, which refine
the initial partition results of both datasets to limit the processing time of each partition by estimating
the time complexity of the local spatial join algorithm. In the last local join stage, we implement and
compare the performances of plane-sweep join, R-tree, quadtree and R*-tree index nested-loop join.
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The experiments show that the R*-tree index nested-loop join is the best method with regard to high
space utilization and query efficiency. From extensive experiments on real data, it is observed that SJS
performs better than the earlier Hadoop-like spatial join approaches.

This research focuses on solving the computation challenge emerging from the large data
size, which will serve as the solid foundation for further spatial analysis with other covariates and
contextual information.

The main contributions of this study are as follows:

(1) We propose SJS, a universally-distributed spatial join method with Spark. Experiment results
show that SJS exhibits better performance than the earlier Hadoop-like spatial join approaches.

(2) We utilize the in-memory iterative computing of Spark and present a non-disk I/O spatial
repartition technology to optimize the initial partition based on the calculation-evaluating model.

(3) We make performance comparisons among four common in-memory spatial join algorithms in
Spark and conclude that the R*-tree index nested-loop join exhibits better performance than other
algorithms in a real big data environment.

2. Background and Related Work

2.1. Spark Parallel Computing Framework

Spark is a fast and general engine for large-scale data processing. When compared with
MapReduce, the most significant characteristics of Spark are the support for iterative computation
on the same data and distributed in-memory computing. Spark uses Resilient Distributed Datasets
(RDD) [19] to “transform”-persistent datasets on a disk to distributed main memory and provides
a series of “transformations” and “actions” to simplify parallel programming. Spark inherits the
advantages of MapReduce, such as high scalability, fault tolerance and load balancing. Further,
Spark overcomes challenges, such as iterative computing, join operation and significant disk I/O and
addresses many other issues. Currently, Spark is widely used in high-performance computing with big
data. In addition, any MapReduce project can easily “translate” to Spark to achieve high performance.

2.2. Spatial Join Query

The spatial join method includes two-way and multi-way spatial join. It is a basic GIS tool to
conduct impact assessments of change and development. This study focuses on two-way spatial join.
For spatial datasets R and S, the two-way spatial join is defined as follows:

SpatialJoin (R, S) = {(r, s)|r ∈ R, s ∈ S} , where SP (r, s) = true (1)

where SP is a spatial predicate for the relationship between two spatial objects. A spatial predicate can
be a topological relationship or spatial analysis function, such as the K Nearest Neighbor (KNN) query
and buffer analysis. A spatial join is typically performed in two stages [20]: filter stage and refinement
stage. In the filter stage, each r ∈ R and s ∈ S is expressed as an approximation, such as a Minimum
Boundary Rectangle (MBR). Then, all of the pairs in R and S whose MBRs overlap are determined.
In the refinement stage, each spatial approximate pair is restored to the full object pair, and finally,
the object pairs that satisfy the given spatial predicate are provided as output.

Without any optimization, the time complexity of the basic nested loop spatial join is
O(

∣∣∣∣R∣∣∣∣ × ∣∣∣∣S∣∣∣∣), where
∣∣∣∣R∣∣∣∣ and

∣∣∣∣S∣∣∣∣ represent the sizes of the two join datasets, R and S, respectively.
Certain improved methods that can be classified as internal and external memory spatial join have
been proposed, such as plane-sweep [21], iterative spatial join [22], Partition Based Spatial-Merge join
(PBSM) [11], TOUCH [23] and the index nested-loop join using R-tree [24], R*-tree [25] or quadtree.
In spatial index synchronous approaches, spatial join is performed by indexing both datasets with
a single [26] or double [8] R-tree variant. However, all of these approaches focus on the basic



Sustainability 2016, 8, 926 4 of 19

improvement of spatial join algorithms in a single-node case, which is difficult for managing massive
spatial datasets.

Parallelization is an effective method for improving the performance of spatial join. The concept
of parallel spatial join originated in the 1990s. The early parallel spatial join methods focused on
fine-grained parallel computing, the creation of a spatial index in parallel and synchronous traversal
of the index to perform a spatial join [8]. As data size increases, these parallel algorithms are no
longer suitable. Patel and DeWitt evaluated many parallel partition-based spatial join algorithms in
parallel databases and recommend the use of clone and shadow join [27]. Zhou et al. proposed the
first parallel spatial join method based on grid partition [10]. Hoel and Samet [28] presented efficient
data-parallel spatial join algorithms for PMR quadtrees and R-trees; spatial objects (line segments in the
paper) are organized using hierarchical spatial data structures and joined through the map intersection.
The Scan-And-Monotonic mapping (SAM) model is used for parallel computing. However, all of the
spatial decomposing strategies in these approaches are based only on the number or size of objects in
one or both datasets. None considers the computing cost of spatial join algorithms in each partition.

Many other works focus on parallel spatial join in distributed spatial databases. Niharika [29]
is a parallel spatial data analysis infrastructure that exploits all available cores in a heterogeneous
cluster. Spatial declustering in Niharika aims to assign neighboring tiles to the same node and reduce
the data skew. However, the partition strategy in Niharika considers memory only; in other words,
the recursive tiling is only based on the numbers of objects, which may cause uneven spatial join
processing in each partition, especially when the number of objects of the two datasets are similar
in the same partition. Skew-resistant Parallel IN-memOry spatial Join Architecture (SPINOJA) [30]
focuses on the performance of the refinement stage by considering that the efficiency bottleneck is the
processing skew caused by the uneven work metrics, including object size and point density. However,
in this approach, objects ore decomposed by clipping against the tile boundaries in order to reduce
processing skew on large objects, which could require additional storage space or calculation costs
and increase the number of objects. In addition, SPINOJA focuses mainly on the running time of the
refinement stage, but ignores the time complexity of the entire spatial join algorithms.

2.3. Hadoop-Like Spatial Join Approaches

MapReduce is a new and popular platform to parallelize spatial join. The first spatial join
algorithm with MapReduce, SJMR [14], uses the map function to divide the uniform space into grid
tiles ordered by Z-value and then maps the tiles to partitions using a round-robin approach to balance
the processing. Then, each partition corresponds to a reducer, and the reduce function executes the
local join. However, this study does not improve the performance by refining the grid-partition or
using the spatial index.

SpatialHadoop is a MapReduce extension to Apache Hadoop designed specifically for spatial data.
Eldawy and Mokbel [15] presented a MapReduce-based spatial join method built in SpatialHadoop.
The method consists of three phases: (1) in the preprocessing stage, spatial indexes are created and
used to partition the datasets; (2) in the global join stage, a new MapReduce job is created to join
the partition and perform repartitioning, if necessary; and (3) in the local join stage, the filter and
refinement step of each partition pair is performed using the pre-created spatial indexes. Thus, the
algorithm includes at least two MapReduce jobs, and all intermediate results are serialized to the
Hadoop Distributed File System (HDFS), which results in significant disk I/O. Further, although a
partition with R+-tree can achieve better space utilization, it is considerably more time consuming,
whereas a partition with the grid index consumes less time, but yields a result that is affected by data
skew. A repartition step was designed to refine the partitions and only consider the memory and a
single dataset; this step increases the burden of disk access for additional MapReduce jobs.

An improved spatial partitioning method, Sample-Analyze-Tear-Optimize (SATO) [31] in
Hadoop-GIS [16], has been proposed. Using SATO, Hadoop-GIS reduces data skew in the
preprocessing stage. In the local join stage, Hadoop-GIS builds an R*-tree on both datasets to perform
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a synchronous traversal spatial join. However, the spatial join in Hadoop-GIS, which is based on
MapReduce, also has the same limitations as SpatialHadoop and SJMR.

The increasing demand for real-time computing has resulted in the emergence of many distributed
in-memory computing frameworks, such as Apache Spark, which offer the potential of further
improving the efficiency of spatial join. Some Spark-based spatial processing engines have been
developed in the last several years, such as SpatialSpark, GeoSpark, SparkGIS and Simba.

SpatialSpark implements broadcast-based [17] and partition-based [18] spatial join with Spark.
Broadcast-based spatial join resembles a “global” index nested-loop join. A spatial index is created
on one dataset and broadcast to all nodes. Then, the other dataset is read into the main memory in
the form of RDD and then traversed to perform an index nested-loop join with map transformation.
However, this approach is suitable only for the point-in-polygon spatial join. The growth of the
polygon dataset can cause the index building or broadcasting and in-memory storage to become a
bottleneck, specifically in the case of insufficient main memory.

Partition-based spatial join uses the SATO partition method provided by Hadoop-GIS, but
the partition method is applied on only one dataset. By querying the same index that is created
after SATO, the Spark built-in join transformation is used to perform global join, which is more
efficient. SpatialSpark avoids repartitioning and implements the local join using the index nested-loop
in-memory join method. Finally, the built-in distinct transformation is used to remove duplicates
after refinement; unfortunately, repetitive calculations already occur. In the case of SpatialSpark, the
researchers believe that the partition result of SATO on one dataset is also applicable to the other
dataset, and hence, they did not implement any refinement in the following stage. However, in most
cases, the two datasets might not have the same data-skew; searching for the same index in one dataset
could cause a serious skew in the other set. Although the in-memory parallel framework of Spark
can handle skew by default, the extremely large partitions could lead to CPU and memory overload.
In addition, duplicates are not avoided in a timely manner before the refinement phase of the local
join phase. Furthermore, the researchers did not conduct a performance analysis of the Spark submit
parameters or a comparison of the various in-memory spatial join methods.

GeoSpark [32] extends Spark with a Spatial Resilient Distributed Datasets (SRDD) layer and
a spatial query processing layer. The approach of spatial join in GeoSpark does not involve any
algorithm refinement. Spark-GIS [33], the Spark version of Hadoop-GIS, implements spatial join based
on the Hadoop-GIS Real-time Spatial Query Engine (RESQUE). In addition, Spark-GIS improves the
computational efficiency mainly through the Spark framework instead of the algorithm refinement.
Simba [34] extends the Spark SQL engine to support rich spatial queries and analytics. Their studies
mainly focus on providing a user-friendly programming interface and building a spatial query
planner or optimizer. Spatial join in Simba concentrates on distance join instead of topological join
as SpatialSpark and our approach do. As SpatialSpark first proposed a comprehensive Spark-based
spatial join and others made few improvements, our approach mainly compares with SpatialSpark.

3. Methods

This section describes a novel spatial join method, SJS, that combines the key concept of clone-join
with index nested-loop join and is implemented with Spark. The SJS phases are summarized as follows:

Phase 1. Partition phase: perform parallel calculation of the partition IDs of the uniform grid for
each spatial object.

Phase 2. Partition join phase: group the objects with the same partition ID in each dataset, and join
the datasets with the same partition ID.

Phase 3. Repartition phase: evaluate the calculation costs of each partition, and repartition those
partitions whose costs result in overrun.

Phase 4. In-memory join phase: perform the R*-tree index nested-loop join on each repartition.
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Different from other Hadoop-like spatial join algorithms, the SJS partition phase does not perform
additional tasks, such as data sampling and spatial index building on one or both datasets, and does
not execute any partition packaging or sorting tasks, such as round-robin tile-to-partition mapping [35]
and Z-curve or Hilbert tile coding sort [36]. The reason for this behavior is discussed in Section 3.1.
The partition join phase (similar to the global join phase) of SJS differs from MapReduce-based join
methods because it uses a built-in join transform in Spark instead of separating the “IndexText” of
the reduced input value. Next, the initial partition results are repartitioned by evaluating the time
complexity of the in-memory join in each partition to decrease the process skew. All SJS repartition
tasks are performed in memory with the RDD transformation, which improves the performance by
eliminating the disk I/O. The in-memory join phase (similar to the local join phase) of SJS differs from
the plane-sweep in SJMR or SpatialHadoop and the synchronous traversal of both R*-trees on each
dataset in Hadoop-GIS. In this phase, SJS uses a single R*-tree index built on one dataset and traverses
the other dataset in order to perform the index nested-loop join. Duplicates are avoided using the
reference point method before calculating.

3.1. Uniform Spatial Grid Partition

The goal of spatial partitioning is to reduce the data volume such that it fits in the memory and to
perform coarse-grained parallel computing (bulk computing). As shown in Figure 1, Grid Tiles 1–16
represent the uniform grids. The spatial objects are partitioned into the tile overlap with their MBRs.
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Figure 1. Partition of spatial objects. A1 is partitioned to Tile 3 because its Minimum Boundary
Rectangle (MBR) lies in Tile 3. A2 is copied into four duplicates, and each duplicate is partitioned to
the corresponding tile because its MBR overlaps Tiles 5, 6, 9 and 10. In the case of point P2 that lies at
the intersection of four tiles, the object is partitioned into the left-top tile, Tile 2.

Grid count is the key factor in the algorithm. If the number of grids is low, each partition fitting in
the memory or the CPU computing requirements cannot be guaranteed. If the number of grids is high,
the large number of duplicates could increase the calculation. Therefore, we determine the number of
partitions in a manner similar to the method described in [11]. Furthermore, we propose a dynamic
spatial repartition technology to refine the partition result.

For datasets R and S stored in the distributed file system, we use the “textFile” action in
Spark to read the files to RDDs cached in the distributed main memory. Then, the “flatMapToPair”
transformation, indicated in Algorithm 1, is used to perform the spatial partitioning. Each flatMap
calculates the grid tiles that overlap with their MBR. Then, the spatial partitioning phase returns the
pairs of partition ID and geometry of each spatial object.
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Algorithm 1 Spatial Partitioning

PairRDD<Partition ID, Geometry>←RDD<Geometry>.flatMapToPair(SpatialPartition)
Input: line: each line of spatial dataset file
Output: R: partitioned objects
Function SpatialPartition(line)
1 R = ∅;
2 o = read the geometry o f the spatial object f rom line;
3 T = o tain overlap grid tiles o f o.MBR;
4 foreach t ∈ T do
5 R← R ∪ (t.getID, o) ;
6 emit (R) ;

3.2. In-Memory Spatial Partition Join

This phase consists of the following two steps. Step 1: group the spatial objects of both the datasets
with the same partition ID using the “groupByKey” transformation in Spark. Step 2: use the “join”
transformation to join both datasets with the same partition ID. As shown in Figure 2, the first and
second layers represent the R and S dataset partition groups, respectively. A gray tile implies that it
contains at least one spatial object, whereas a white tile implies that there are no spatial objects inside
it. The partitions are joined, and the result is shown in the third layer. The operation executes only on
the partitions whose corresponding R and S partitions are gray. Partitions with only one or no gray
partitions are removed from the main memory.
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The spatial join operation of the entire R and S datasets is reduced to the join operation on the
partition pairs; this is the first filter of the entire spatial join. By utilizing this feature, SJS reduces
disk I/O costs further in the partition phase when compared with other spatial join techniques with
MapReduce [15,16], where the objects in the dotted partition as shown in Figure 2 are moved to the
disk in order to execute the reduce function.

3.3. Calculation Evaluating-Based Spatial Repartition Technology

3.3.1. Spatial Repartition Strategy in Spark

From the previous two phases, we know that the proposed spatial partition refers to uniform
grid tiles. As mentioned in Section 3.1, the goal of spatial partitioning is to reduce the amount of data
in order to accommodate data in the memory of nodes and to increase computational parallelism.
However, based on the grids specified for the partitioning of spatial data and considering the data
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skew and data replication, partitions that contain an excessive number of spatial objects would directly
affect the performance of the overall spatial join.

The traditional method is to reset the grid size and repartition the dataset to meet the requirements.
However, this approach discards the initial partition computation, and the partition results after
adjustment might still not meet the requirements. Another method is to optimize the partition strategy,
by iteratively decomposing the tiles when the number of objects in the partition exceeds the threshold.
This strategy contributes to limiting the size of data in each partition, but only works on one dataset,
respectively, and requires an additional structure to map the partitions of two datasets. In particular,
this strategy considers memory only; the uniform total number in each partition cannot guarantee
uniform processing time, and thus, the CPU cost in each partition must be taken into consideration. In
the most recent spatial join algorithms with MapReduce, the spatial partitioning occurs during the
entire map stage or MapReduce job, and the partition results must be written to HDFS for subsequent
calculations. When the partition fails, the entire process must be executed again, thus resulting in
considerable unnecessary disk I/O.

The Directed Acyclic Graph (DAG) scheduler of Spark dispatches the calculation of each partition
to those nodes whose current number of running tasks has not reached the maximum number. Thus,
when a node completes a task, the next task is allocated to the node and executed immediately. The
total number of tasks that run on each node is considerably fewer than the number of partitions; hence,
the bottleneck of spatial join in Spark is the extremely large partition caused by data skew and not the
lack of balance in the intensity of the partition. Therefore, we use grid tiles as partitions directly and
the tile ID as the partition ID.

Based on this analysis, if data skew or a large number of data replications occur, the bottleneck of
spatial join is the overhead from the calculation of partitions. When the original grid is not sufficiently
appropriate, the large partition could lead to CPU overload. Hence, the repartition strategy for
refinement in Spark must take the calculation amount of large partitions into consideration. We propose
an improved in-memory spatial repartition method based on the calculation amount of local join
algorithms in order to refine the partition results.

3.3.2. Calculation Evaluating Model

For partition P, we define the calculation evaluating model as follows:

CalculationAmount (P) = f (n, p, O) (2)

where O denotes the time complexity of the algorithm; n denotes the number of spatial objects in P; p
denotes the total number of vertices of every object in P, which also refers to the complexity of objects.
For different algorithms, the valid parameters and parameter values are different. For instance:

(1) For the area calculating algorithm, the time complexity is only related to parameter p:

CalculationAmount (P) = f (null, p, O (p)) = p (3)

(2) For the nested-loop spatial join algorithm, the time complexity is mainly related to parameter n:

CalculationAmount (P) = f ((nr, ns) , null, O (nr·ns)) = nr × ns (4)

Here, since after partition join, each P contains spatial objects belong to R and S, thus n is expressed
as tuple (nr, ns). nr denotes the number of spatial objects that belong to R in P, the same with ns.

This study uses the calculation evaluating model to compute the calculation amount of each
partition, then judges the partition for whether it needs repartition or not. Repartition is a course of
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iteration, so a Threshold Value (TV) is imported to terminate recursion. For dataset R, we define the
Equation of TV as follows:

TV = f (N, S, M) = k× N ×M
S

(5)

where N denotes the number of objects in R; S denotes the data size of R; M denotes the total allocated
memory size of all nodes; k denotes the ratio factor, which is determined by the algorithm. For the
R*-tree index nested-loop spatial join algorithm, we set k = 0.01 as the reference value.

3.3.3. Spatial Repartition Phase in SJS

In SJS, the partitions of two datasets are joined directly without any other correspondence or
mapping, such that the repartition strategy can consider both datasets. Because the objects of two
datasets are cached as forms of RDD in memory, disk I/O skew no longer exists. Thus, the repartition
phase in SJS focuses mainly on the processing skew of each partition. In order to evaluate the calculation
amount of the in-memory spatial join algorithm and estimate the CPU consumption of each partition,
we choose the typical nested-loop spatial join to represent others. In the calculation evaluating model,
we use Equation (4) to calculate the valuation. By setting a threshold value using Equation (5),
the calculation amount of each partition is limited.

Spark supports iterative calculation with the same data; any intermediate results from the
calculations are cached in memory in the form of RDD. We use the “flatMapToPair” transformation to
transform the initially-partitioned RDD to the repartitioned RDD. As shown in Algorithm 2, first, the
sizes of R and S within the current partition are calculated; if their product (the valuation) is greater
than a preset threshold value, the current partition is divided into four equivalent sub-partitions, and
the divide and replicate strategy is the same as that in the previous phase. If the product is less than
the threshold value, the original partition is returned. Algorithm 2 executes recursively (Line 12) on
each initial partition distributed among the nodes; the iterative processes need not communicate with
each other. Thus, the in-memory spatial repartition technology completely utilizes the advantage
of the in-memory computing architecture of Spark, and the disk I/O is reduced to a minimum.
The repartition result is sufficient for the various in-memory join algorithms to execute the next phase.

Algorithm 2 Dynamic In-Memory Spatial Repartition

PairRDD<pid, Tuple<RP, SP>>←PairRDD<pid, Tuple<RP, SP>>.flatMapToPair (Repartition)
Input: RP, SP: two partial datasets in current partition;

pid: ID of current partition
Output: RP: the repartition result of the current partition
Data: TV: preset threshold value
Function Repartition (pid, RP, SP)
1 RP = ∅;
2 n = size o f RP;
3 m = size o f SP;
4 if n × m ≥ TV then
5 RRP, SRP = ∅;
6 RRP = repartition RP to f our equal sub− parts;
7 SRP = repartition SP to f our equal sub− parts;
8 foreach rrp ∈ RRP and srp ∈ SRP do
9 rpid = sub− part id;
10 if rrp 6= ∅ and srp 6= ∅ then
11 RP← RP ∪

(
rpid,rrp,srp

)
;

12 RepartitionFun
(
rpid,rrp,srp

)
;

13 else
14 RP = (pid, RP, SP) ;
15 emit (RP) ;
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3.4. In-Memory Spatial Join

After the partition adjustment, theoretically, we can use any type of in-memory method to
complete spatial join. All spatial entities have been cached as RDD, and hence, we can process the
filter and refinement step of the spatial join synchronously. Furthermore, the traditional random access
of data entities in the refinement stage, which could lead to high disk I/O costs, will be omitted. In
this study, we implement four methods, i.e., the classic plane-sweep, in addition to the R-tree, R*-tree
and quadtree index nested-loop join. Finally, we choose the R*-tree index for SJS because of its high
space utilization and the retrieval speed. Several experiments show that the R*-tree index nested-loop
join has better performance in most cases. The R*-tree nested-loop join is described as follows
(see Algorithm 3):

Algorithm 3 R*-Tree Nested-Loop Join

PairRDD<rid, sid>←PairRDD<pid, Tuple<RP, SP>>.flatMapToPair(LocalJoin)
Input: pid: ID of current partition

RP, SP: two spatial datasets in the current partition;
Output: P: the spatial join result pairs of the current partition
Function LocalJoin(pid, RP, SP)
1 P = ∅;
2 I = build R ∗ −tree index o f RP;
3 foreach s ∈ SP do
4 T = search I by s.MBR f or overlap items;
5 foreach t ∈ T do
6 r = obtain object f rom RP by t.ID;
7 RP = re f erence point o f r.MBR and s.MBR;
8 if RP is in partition pid then
9 i f r and s have the preset spatial relation then
10 P← P ∪ (r.ID, s.ID) ;
11 emit (P) ;

where the pid denotes the ID of the current partition and RP and SP denote the sub-datasets of input
datasets R and S, respectively, in partition pid. First, the R*-tree index of RP is built. Next, each spatial
object s in SP is traversed; R*-tree is searched for the spatial objects in RP whose MBR overlaps with the
MBR of s. Prior to the spatial predicate verification, we use the reference point method [37] to avoid
duplicates. If the reference point of r and s is not in the partition, the current calculation is terminated.
As shown in Figure 3, the black area represents the intersect-MBR of spatial objects r and s; we define
the left-top corner of the intersect-MBR as the reference point of r and s, i.e., RP. RP lies in Partition 1.
Hence, although the spatial objects r and s are divided into four partitions (as stated in Section 3.1),
the spatial relationship is calculated only in Partition 1. Thus, the calculations are not repeated for
Partitions 2, 3 and 4.

Finally, if two spatial entities meet a predetermined spatial predicate, their ID pairs are the output,
i.e., the in-memory spatial join result of the current partition.

The data storage, data flow and main processing stage of the SJS are shown in Figure 4.
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4. Experiments and Evaluation

In this section, we measure the impact of cluster scale, partition number, repartition threshold
value and dataset characteristics on the performance of SJS. Given the same operating environment,
we compare SJS with the three spatial joins designed for MapReduce and Spark, i.e., SJMR on
SpatialHadoop (SHADPOOP-SJMR), Distributed Join on SpatialHadoop (SHADOOP-DJ) [15] and
SpatialSpark (SSPARK) [18]. In addition, we also compare three other in-memory spatial join
algorithms for SJS: plane-sweep, quadtree index nested-loop and R-tree index nested-loop. The nested
loop spatial join is the theoretical worst case of a join and shows poor performance for large datasets,
and thus, we did not consider it.

4.1. Experiment Setup and Datasets

The experiments are performed with Hadoop 2.6.0 and Spark 1.0.2 running on JDK 1.7 on DELL
PowerEdge R720 servers, each consisting of an Intel Xeon E5-2630 v2 2.60-GHz processor, 32 GB main
memory and 500 GB SAS disk. SUSE Linux Enterprise Server 11 SP2 operating system and ext3 file
system are present on each server. In order to compare the performance with that of SpatialHadoop,
we deploy SpatialHadoop release Version 2.3 with Hadoop 1.2.1 on the same hardware environment
described above.

The datasets used in the experiments are from Topologically-Integrated Geographic Encoding
and Referencing (TIGER) and OpenStreet Map, as listed in Table 1. All of the files can be downloaded
from the website of SpatialHadoop [38].

Table 1. Datasets.

Dataset Abbreviation Records Size Format

all ways AWY 164,448,446 Polylines 59.55 GB tsv
edges ED 72,729,686 Polygons 62 GB csv

linearwater LW 5,857,442 Polylines 18.3 GB csv
areawater AW 2,298,808 Polygons 6.5 GB csv

arealm LM 121,960 Polygons 406 MB csv
primaryroads PR 13,373 Polylines 77 MB csv

We deploy the Spark projects on a Hadoop cluster and perform the execution on Hadoop YARN
(next generation of MapReduce). In the case of Spark in YARN mode, executor number, executor cores
and executor memory refer to the total task progression on all nodes, task threads per executor and
maximum main memory allocated in each executor, respectively. All of the parameters should be
preset before submitting the Spark job, which are shown in detail in Table 2.

Table 2. Experiment parameters.

Experiment-Figure Datasets Spatial
Predicate Partitions Nodes Executors Executor

Cores
Executor
Memory

Section 4.2-Figure 5 LW and AW intersects 150 × 300 X-axis nodes series 2 GB
Section 4.3-Figure 6 LW and ED intersects X-axis 8 8 6 6 GB
Section 4.3-Figure 7 LW and ED intersects 250 × 500 8 8 6 6 GB
Section 4.4-Figure 8 X-axis intersects 200 × 400 8 8 6 6 GB
Section 4.4-Figure 9 AWY and ED X-axis 400 × 400 8 8 6 6 GB
Section 4.5-Figure 10a X-axis intersects 150 × 300 8 8 6 6 GB
Section 4.5-Figure 10b LW and AW intersects X-axis 8 8 6 6 GB

4.2. Impact of Number of Nodes and Executor Cores

Figure 5 shows the impact of the number of nodes and executor cores on SJS performance. There is
a direct relationship between SJS performance and the number of nodes. When the number of executors
per node is fixed at one, SJS performance improves significantly with an increase in the number of
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nodes. Thus, in this case, SJS shows high scalability. However, with an increase in the number of cores
per executor, the execution time of SJS may not always decrease. For instance, notwithstanding the
number of nodes, the execution time for eight cores per executor is significantly greater than that for
six cores per executor. Hence, when the number of executors equals the number of nodes (each node
runs one executor) and the cores per executor is set to six, which is equal to the CPU cores of each node,
SJS performs the best. As the number of cores per executor increases, the number of tasks scheduled
on a CPU also increases, thus leading to poor performance.
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4.3. Impact of Number of Partitions and Repartitioning

As shown in Figure 6, when the number of partitions is small, there is a large amount of data in
each partition, which can trigger memory overflow or larger computation time. Furthermore, as the
number of partitions increases, an excessive number of duplicates can lead to unnecessary calculation.
Repartitioning can refine the data size and limit the processing time of each partition to support
the in-memory spatial join in a better manner. Notwithstanding the number of partitions, SJS with
repartitioning can reduce total execution time by 5%–25%, without considering the initial partitioning.
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Figure 7 shows the impact of the threshold value in repartitioning on saved execution time.
The negative value means the time is wasted by repartitioning; negative contributes to improve the
performance. First, we sort the execution time of the processing threads (each partition is processed in
one thread) of SJS without repartitioning in every node to obtain a list of the top 10 longest threads.
Then, we vary TV from 100,000–1,000,000,000 in order to compare the time saved by repartitioning for
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each corresponding thread. From the results, we can observe that when TV is 10,000,000, significant
time is saved by repartitioning. Thus, as TV decreases, the number of duplicates increases. However,
as TV increases, partition refinement decreases. Hence, by efficiently reducing the execution time of
the longest threads of SJS without repartitioning, in-memory repartitioning improves the performance
of SJS significantly.
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4.4. Comparison between SHADOOP-SJMR, SHADOOP-DJ, SSPARK and SJS

In order to compare the performance of other spatial join algorithms designed for MapReduce
or Spark, such as SHADOOP-SJMR, SHADOOP-DJ and SSPARK, we performed a comparison test
using the various dataset sizes that are listed in Section 4.1 as input. For the algorithms that run on
SpatialHadoop, we measure the execution time including the preprocessing time (such as the index
creation time). All of the tests are executed on the same cluster with a suitable software framework.

We vary the input dataset size from 0.1 GB × 0.5 GB to 18 GB × 62 GB. From Figure 8, it is
observed that SJS’s performance is significantly better than that of the other algorithms. The results
prove that SJS can manage massive spatial datasets and also deliver the best performance among the
parallel spatial join algorithms.

Both Hadoop-GIS and SpatialHadoop are Hadoop-based and write their intermediate results
to disk, and thus, we make a detailed comparison with SpatialSpark. Given that SpatialSpark uses
Java Topology Suite (JTS) as the topological analysis library, we performed the comparison test using
various spatial predicates, such as overlaps, touches, disjoints and contains. In the case of SpatialSpark,
we use the sort tile partition method, set the sample ratio at 0.01, and the others are same as SJS.

Since transformations in Spark only execute when an action occurs, the actions in SJS are only
“groupBy” in the partition phase and “saveAsTextFile” (“distinct” in SSPARK) in the last. Thus, we
separate both SJS and SSPARK mainly in two phases, one is the partition phase; the other is the
partition join and local join phase (including the repartition phase in SJS).

As shown in Figure 9, because SJS uses grid partition, which is more efficient than SATO in
SSPARK, the execution time in the partition and partition join phase of SJS is significantly reduced.
Given that (1) the repartition phase in SJS limits the processing time of each partition, which is
suitable for the task schedule strategy of Spark; (2) the duplicates are avoided before refinement; and
(3) the R*-tree local join algorithm in SJS outperforms R-tree nested-loop join in SpatialSpark, SJS
performs better than SpatialSpark. Figure 9 also shows that both SpatialSpark and SJS support various
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topological analyses on large spatial datasets, and different spatial predicates obviously affect the
final performance.
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4.5. Performance Comparison between Various in-Memory Spatial Join Algorithms for SJS

In order to test the performance of various in-memory join algorithms used in the SJS in-memory
join phase, Plane-Sweep (SJS-PS), Quadtree index nested-loop join (SJS-Q) and R-tree index nested-loop
join (SJS-R) are compared. Figure 10a shows the performance comparison results for various input data
sizes. Figure 10b shows the performance comparison results for various grid sizes using linearwater
(LW) and areawater (AW) as the input datasets.

We can observe that the default R*-tree index nested-loop join has the best performance for all
input and grid sizes in most cases. The size of each partition is suitable for every in-memory spatial
join method after repartitioning refinement; thus, although the data scale is large, the performance
difference between the methods is smaller than the approaches in [23].

5. Conclusions and Future Work

Recent advances in geocomputation techniques greatly enhance the abilities of spatial and
sustainability scientists to conduct large-scale data analysis. Such large-scale data analytics will
stimulate the development of new computational models. In turn, these newly-developed methods
get adopted in real-world practice, forming a positive feedback loop [39]. Rigorous spatial analysis
and modeling of socioeconomic and environmental dynamics opens up a rich empirical context for
scientific research and policy interventions [40]. A robust spatial join can serve as a fundamental
analytical power to understand how everything is related and to what extent, such as how a firm’s
location is related to a specific site in a large national dataset [41] or disaster risk related to multiple
spatially-related factors [42,43]. In this study, we proposed and described SJS, a high-performance
spatial join algorithm with Spark. SJS can be deployed easily on large-scale cloud clusters, and it
significantly improves the performance of spatial join on massive spatial datasets. This research proves
that the availability of large-size geo-referenced datasets along with the high-performance computing
technology can raise great opportunities for sustainability research on whether and how these new
trends in data and technology can be utilized to help detect the associated trends and patterns in the
human-environment dynamics. In other words, such computing power allows for the measuring and
monitoring of sustainability in a very large datasets and can respond within a very short time period.
The iterative computation characteristics of Spark make it possible to perform in-memory parallel
spatial join with minimal disk access. In particular, the calculation-evaluating-based in-memory
repartition technology evaluates the CPU cost of each partition, thus differing from the repartitioning



Sustainability 2016, 8, 926 17 of 19

method that considers only the memory or a single dataset; hence, the result is more suitable for
in-memory spatial join in Spark. The reference point method that we implemented in Spark was
adopted in order to avoid duplicates instead of the built-in distinct transformation, which eliminates
repetitive calculations. Benefitting from the high space utilization and retrieval speed of R*-tree,
each partition executes a high-performance index nested-loop spatial join in parallel. Based on
extensive evaluation of real datasets, we demonstrate that SJS performs significantly better than earlier
Hadoop-like spatial join approaches.

The coupling relationship between multiple driving forces in the spatial context has been heatedly
debated in a variety of environmental studies [44]. This pilot study demonstrated the promising feature
of high-performance computing on the solution of large-scale spatial join to explore geographical
relationships. In future work, we will improve the accuracy of the calculation evaluating model and
apply recent in-memory spatial join methods, such as TOUCH, to Spark in order to maximize local join
performance. In addition, the temporal dimension will also be added to investigate spatiotemporal
join, and high-dimensional geographic objects will also be explored. It warrants noticing that an
efficient 2D spatial index, such as R*-tree, will no longer be suitable in the high dimensional space.
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