Impact of Environmental Regulation and Technical Progress on Industrial Carbon Productivity: An Approach Based on Proxy Measure
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Model Specification
3.2. Indicators Selection
- Carbon productivity (cp):
- Environmental regulation intensity (regu):
- Technical progress (pat):
- Foreign capital dependence (fdi):
- Energy consumption structure (ecs):
- Industrialization level (ind):
- Industrial structure (stru):
3.3. Data Sources
4. Typical Fact and Research Hypotheses
4.1. Changing Trend Analysis of Environmental Regulation and Carbon Productivity
4.2. Changing Trend Analysis of Technical Progress and Carbon Productivity
4.3. Research Hypotheses
5. Empirical Results
5.1. Estimation Results of Full Sample
5.2. Estimation Results of Subgroups
5.3. Endogeneity Problem
6. Conclusions and Policy Implications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kaya, Y.; Yokobori, K. Environment, Energy and Economy: Strategies for Sustainability; United Nations University Press: Tokyo, Japan, 1997. [Google Scholar]
- Beinhocker, E.; Oppenheim, J. The Carbon Productivity Challenge: Curbing Climate Change and Sustaining Economic Growth; McKinsey Global Institute: Chicago, IL, USA, 2008. [Google Scholar]
- Zaim, O.; Taskin, F. Environmental efficiency in carbon dioxide emissions in the OECD: A non-parametric approach. J. Environ. Manag. 2000, 58, 95–107. [Google Scholar] [CrossRef]
- Meng, M.; Niu, D.X.; Gao, Q. Decomposition Analysis of Chinese Provincial Economic Growth through Carbon Productivity Analysis. Environ. Prog. Sustain. Energy 2014, 33, 250–255. [Google Scholar] [CrossRef]
- Azomahou, T.; Laisney, F.; Van, P.N. Economic development and CO2 emissions: A nonparametric panel approach. J. Public Econ. 2006, 90, 1347–1363. [Google Scholar] [CrossRef]
- Davidsdottir, B.; Fisher, M. The odd couple: The relationship between state economic performance and carbon emissions economic intensity. Energy Policy 2011, 39, 4551–4562. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Han, J.Y. Total factor carbon emission performance: A Malmquist index analysis. Energy Econ. 2010, 32, 194–201. [Google Scholar] [CrossRef]
- Zhou, G.H.; Chung, W.; Zhang, X.L. A study of carbon dioxide emissions performance of China’s transport sector. Energy 2013, 50, 302–314. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, X. Dynamic total factor carbon emissions performance changes in the Chinese transportation industry. Appl. Energy 2015, 146, 409–420. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, P.; Kung, C.C. Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis. Renew. Sustain. Energy Rev. 2015, 41, 584–593. [Google Scholar] [CrossRef]
- Hu, X.C.; Liu, C.L. Carbon productivity: A case study in the Australian construction industry. J. Clean. Prod. 2016, 112, 2354–2362. [Google Scholar] [CrossRef]
- Sun, M.X.; Yuan, Y.; Zhang, J.Y.; Wang, R.Q.; Wang, Y.T. Greenhouse gas emissions estimation and ways to mitigate emissions in the Yellow River Delta High-efficient Eco-economic Zone, China. J. Clean. Prod. 2014, 81, 89–102. [Google Scholar] [CrossRef]
- Shao, C.F.; Guan, Y.; Wan, Z.; Guo, C.X.; Chu, C.L.; Ju, M.T. Performance and decomposition analyses of carbon emissions from industrial energy consumption in Tianjin, China. J. Clean. Prod. 2014, 64, 590–601. [Google Scholar] [CrossRef]
- Kortelainen, M. Dynamic environmental performance analysis: A Malmquist index approach. Ecol. Econ. 2008, 64, 701–715. [Google Scholar] [CrossRef]
- Meng, M.; Niu, D.X. Three-dimensional decomposition models for carbon productivity. Energy 2012, 46, 179–187. [Google Scholar] [CrossRef]
- Chang, Y.F.; Lin, S.J. Structural decomposition of industrial CO2 emission in Taiwan: An input-output approach. Energy Policy 1998, 26, 5–12. [Google Scholar] [CrossRef]
- He, J.K.; Deng, J.; Su, M.S. CO2 emission from China’s energy sector and strategy for its control. Energy 2010, 35, 4494–4498. [Google Scholar] [CrossRef]
- Guo, W.; Sun, T.; Dai, H.J. Effect of Population Structure Change on Carbon Emission in China. Sustainability 2016, 8, 225. [Google Scholar] [CrossRef]
- Long, R.Y.; Shao, T.X.; Chen, H. Spatial econometric analysis of China’s province-level industrial carbon productivity and its influencing factors. Appl. Energy 2016, 166, 210–219. [Google Scholar] [CrossRef]
- Kaya, Y. Impact of Carbon Dioxide Emission on GNP Growth: Interpretation of Proposed Scenarios; IPCC: Paris, France, 1989. [Google Scholar]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change (IPCC) Climate Change 2007: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Apergis, N.; Ozturk, I. Testing Environmental Kuznets Curve hypothesis in Asian countries. Ecol. Indic. 2015, 5, 16–22. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.R. Determining the trade-environment composition effect: The role of capital, labor and environmental regulations. J. Environ. Econ. Manag. 2003, 46, 363–383. [Google Scholar] [CrossRef]
- Mani, M.; Wheeler, D. In Search of Pollution Havens? Dirty Industry in the World Economy, 1960 to 1995. J. Environ. Dev. 1998, 7, 215–247. [Google Scholar] [CrossRef]
- Griliches, Z. Patent statistics as economic indicators: A survey. J. Econ. Lit. 1990, 28, 1661–1707. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook, 2007–2015; China Statistics Press: Beijing, China, 2007–2015. (In Chinese)
- National Bureau of Statistics of China. China Industry Statistical Yearbook, 2007–2015; China Statistics Press: Beijing, China, 2007–2015. (In Chinese)
- National Bureau of Statistics of China. China Statistical Yearbook on Science and Technology, 2007–2015; China Statistics Press: Beijing, China, 2007–2015. (In Chinese)
- National Bureau of Statistics of China. China Energy Statistical Yearbook, 2007–2015; China Statistics Press: Beijing, China, 2007–2015. (In Chinese)
- National Bureau of Statistics of China. China Statistical Yearbook on Environment, 2007–2015; China Statistics Press: Beijing, China, 2007–2015. (In Chinese)
- Wang, Q.W.; Zhou, P.; Shen, N.; Wang, S.S. Measuring carbon dioxide emission performance in Chinese provinces: A parametric approach. Renew. Sustain. Energy Rev. 2013, 21, 324–330. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Y.M. Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator. Energy Econ. 2016, 54, 50–59. [Google Scholar] [CrossRef]
- Krautzberger, L.; Wetzel, H. Transport and CO2: Productivity Growth and Carbon Dioxide Emissions in the European Commercial Transport Industry. Environ. Res. Econ. 2012, 53, 435–454. [Google Scholar] [CrossRef]
- Gao, W.J.; Zhao, G.H. The analysis of the Generalized Carbon-productivity in China’s Sub-Industrial sectors. In Renewable and Sustainable Energy, Pts 1–7; Pan, W., Ren, J.X., Li, Y.G., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2012; Volume 347–353, pp. 1326–1330. [Google Scholar]
- Tan, Q.L.; Zhang, X.P.; Wei, Y.M. Exploring the changes of carbon emissions performance using data envelopment analysis. In Advances in Energy Science and Technology, Pts 1–4; Tang, X., Chen, X., Dong, Y., Wei, X., Yang, Q., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2013; Volume 291–294, pp. 1433–1438. [Google Scholar]
Energy Name | Standard Coal Coefficient (kg-s.c./kg) | Calorific Value (kJ/kg) | Carbon Emission Coefficient (Ton-Carbon/TJ) | Carbon Oxidation Rate | CO2 Emission Coefficient (kg-CO2/kg) |
---|---|---|---|---|---|
coal | 0.7143 | 20,908 | 26.37 | 0.94 | 1.9003 |
coke | 0.9714 | 28,435 | 29.5 | 0.93 | 2.8604 |
crude oil | 1.4286 | 41,816 | 20.1 | 0.98 | 3.0202 |
gasoline | 1.4714 | 43,070 | 18.9 | 0.98 | 2.9251 |
kerosene | 1.4714 | 43,070 | 19.5 | 0.98 | 3.0179 |
diesel oil | 1.4571 | 42,652 | 20.2 | 0.98 | 3.0959 |
fuel oil | 1.4286 | 41,816 | 21.1 | 0.98 | 3.1705 |
natural gas | 1.3300 | 38,931 | 15.3 | 0.99 | 2.1622 |
Variable | Definition |
---|---|
Carbon productivity (cp) | gross industrial output value /carbon dioxide emissions amount |
Environmental regulation (regu) | annual expenditure for operation on industrial waste water and gas treatment facility /cost of main operation |
Technical progress (pat) | the number of patent applications |
Foreign capital dependence (fdi) | Hong Kong, Macau, Taiwan capitals and actual receipt foreign capital /gross industrial output value |
Energy consumption structure (ecs) | each industrial sector’s coal consumption amount /total industries coal consumption amount |
Industrialization level (ind) | the number of employees of each industrial sector /the total number of employees of industrial sectors |
Industrial structure (stru) | the output value of each industrial sector /the total output value of all industries |
Sectoral Code | Sector | Sectoral Code | Sector |
---|---|---|---|
S1 | mining and washing of coal | S19 | raw chemical materials and chemical products |
S2 | petroleum and natural gas extraction | S20 | medical and pharmaceutical products |
S3 | ferrous metals mining and dressing | S21 | chemical fiber |
S4 | nonferrous metals mining and dressing | S22 | manufacture of rubber and plastic |
S5 | nonmetal minerals mining and dressing | S23 | nonmetal mineral products |
S6 | processing of food from agricultural products | S24 | smelting and pressing of ferrous metals |
S7 | food production | S25 | smelting and pressing of nonferrous |
S8 | wine, beverage and refined tea production | S26 | metal products |
S9 | manufacture of tobacco | S27 | manufacture of general purpose machinery |
S10 | textile industry | S28 | equipment for special purposes |
S11 | manufacture of textile wearing apparel, footwear and caps | S29 | transport equipment |
S12 | manufacture of leather, fur, feather and its products | S30 | electric equipment and machinery |
S13 | processing of timbers, manufacture of wood, bamboo, rattan, palm and straw products | S31 | manufacture of communication equipment, computer and other electronic equipment |
S14 | furniture manufacturing | S32 | measuring instrument, cultural and office machinery |
S15 | papermaking and paper products | S33 | production and supply of electric power and heat power |
S16 | printing and record medium reproduction | S34 | production and distribution of gas |
S17 | culture, educational, art and sports goods | S35 | production and distribution of water |
S18 | processing of petroleum, coking, processing of nucleus fuel |
Dependent Variable: cp | VIF | 1/VIF |
---|---|---|
regu | 1.31 | 0.761842 |
pat | 2.1 | 0.475452 |
fdi | 1.05 | 0.949457 |
ecs | 1.16 | 0.860189 |
ind | 3.53 | 0.283286 |
stru | 3.35 | 0.298904 |
Mean VIF | 2.08 |
cp | regu | pat | fdi | ecs | ind | stru | |
---|---|---|---|---|---|---|---|
cp | 1 | ||||||
regu | −0.6031 | 1 | |||||
pat | 0.2957 | -0.1687 | 1 | ||||
fdi | 0.2684 | −0.1212 | −0.0496 | 1 | |||
ecs | −0.1255 | 0.151 | −0.1615 | 0.0454 | 1 | ||
ind | 0.1344 | −0.1303 | 0.6949 | 0.0131 | −0.0491 | 1 | |
stru | −0.1673 | 0.1398 | 0.6152 | −0.1281 | −0.2003 | 0.7629 | 1 |
Variable | Description | Unit | Obs | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|---|---|
lncp | natural logarithm of carbon productivity | - | 315 | 3.6369 | 0.6902 | 1.9688 | 5.0966 |
regu | environmental regulation intensity | % | 315 | 0.2429 | 0.2995 | 0.0001 | 1.9526 |
pat | natural logarithm of the numbers of patent application | - | 315 | 3.3729 | 0.8382 | 0.9031 | 5.015 |
fdi | FDI inflow | % | 315 | 5.0083 | 4.2171 | 0.0061 | 36.1881 |
ecs | energy consumption structure | % | 315 | 67.636 | 23.8102 | 3.7614 | 98.1196 |
ind | industrialization level | % | 315 | 0.3361 | 0.2585 | 0.0194 | 1.1735 |
stru | industrial structure | % | 315 | 2.8467 | 2.383 | 0.1395 | 10.4481 |
Explanatory Variables | (1) lncp | (2) lncp | (3) lncp | (4) lncp | (5) lncp |
---|---|---|---|---|---|
regu | −0.0852 * (−1.84) | −0.0787 * (−1.72) | −0.0858 * (−1.87) | −0.0861 * (−1.88) | −0.0806 * (−1.70) |
pat | 0.2705 *** (17.95) | 0.2526 *** (15.54) | 0.2567 *** (15.59) | 0.2425 *** (13.62) | 0.2431 *** (13.59) |
fdi | −0.0082 *** (−2.75) | −0.0084 *** (−2.82) | −0.0081 *** (−2.71) | −0.0081 *** (−2.68) | |
ecs | −0.0011 (−1.44) | −0.0011 (−1.45) | 0.2389 (−1.39) | ||
ind | 0.2463 ** (2.04) | 0.2389 ** (1.96) | |||
stru | 0.0083 # (0.47) | ||||
_cons | 2.7451 *** (49.91) | 2.8454 *** (43.45) | 2.9146 *** (35.94) | 2.8779 *** (34.83) | 2.8503 *** (28.11) |
R2 | 0.1259 | 0.0932 | 0.0994 | 0.0868 | 0.0708 |
F-statistic | 182.28 [0.00] | 126.90 [0.00] | 96.07 [0.00] | 78.56 [0.00] | 65.32 [0.00] |
Hausman Test | 10.80 [0.00] | 12.36 [0.00] | 15.29 [0.00] | 11.38 [0.04] | 18.98 [0.00] |
model | FE | FE | FE | FE | FE |
obs | 315 | 315 | 315 | 315 | 315 |
Explanatory Variables | (1) K-T | (2) K-T | (3) Res | (4) Res | (5) L | (6) L |
---|---|---|---|---|---|---|
regu | 0.0743 (0.36) | 0.1025 (0.47) | −0.1065 * (−1.68) | −0.0699 (−1.04) | −0.1696 *** (−2.82) | −0.1382 ** (−2.39) |
pat | 0.2809 *** (7.44) | 0.2797 *** (7.27) | 0.1456 *** (5.09) | 0.1601 *** (4.72) | 0.1390 *** (4.38) | 0.1448 *** (4.65) |
fdi | −0.0007 (−0.20) | −0.0501 *** (−5.83) | −0.0496 *** (−5.72) | −0.0367 *** (−4.48) | −0.0431 *** (−5.23) | |
ecs | 0.0004 (0.46) | 0.0005 (0.51) | −0.0118 *** (−6.16) | −0.0113 *** (−5.79) | −0.0022 (−1.40) | |
ind | 0.2884 * (1.81) | 0.2998 * (1.83) | −0.3456 (−0.69) | −0.4839 # (−1.46) | ||
stru | 0.0107 (0.44) | 0.0623 # (1.48) | −0.0134 (−0.42) | 0.0774 # (1.48) | ||
_cons | 2.5230 *** (18.79) | 2.4729 *** (12.53) | 4.0078 *** (20.12) | 3.8512 *** (17.32) | 3.5804 *** (20.08) | 3.7394 *** (19.74) |
R2 | 0.2077 | 0.1461 | 0.0685 | 0.1143 | 0.0960 | 0.0286 |
F-statistic or Wald | 38.45 [0.00] | 25.22 [0.00] | 50.64 [0.00] | 34.35 [0.00] | 203.00 [0.00] | 41.20 [0.00] |
Hausman Test | 349.88 [0.00] | 114.04 [0.00] | 14.94 [0.00] | 57.18 [0.00] | 1.38 [0.85] | 30.02 [0.00] |
model | FE | FE | FE | FE | RE | FE |
obs | 117 | 117 | 99 | 99 | 99 | 99 |
Dependent Variable: cp | |||
---|---|---|---|
Excluded | Chi-sq | df | Prob. |
regu | 4.646303 | 2 | 0.098 |
pat | 8.47996 | 2 | 0.0144 |
fdi | 0.312423 | 2 | 0.8554 |
ecs | 3.421889 | 2 | 0.1807 |
ind | 2.689937 | 2 | 0.2605 |
stru | 0.093402 | 2 | 0.9544 |
All | 23.83384 | 12 | 0.0214 |
Explanatory Variables | (1) All | (2) K-T | (3) Res | (4) L |
---|---|---|---|---|
regu | −1.0987 *** (−8.67) | −1.7628 *** (−4.94) | −1.0505 *** (−5.9) | 0.4319 ** (1.96) |
pat | 0.3671 *** (6.11) | 0.6099 *** (3.98) | 0.5893 *** (4.82) | 0.7345 *** (8.39) |
fdi | 0.0262 *** (3.60) | 0.0130 (1.38) | 0.0346 ** (2.30) | −0.0592 *** (−4.58) |
ecs | −0.0019 (−1.43) | 0.0005 (0.30) | 0.0086 *** (3.75) | −0.0162 *** (−8.06) |
ind | 0.4085 * (1.81) | 0.3656 (0.93) | −1.5465 *** (−3.51) | 2.6057 *** (8.60) |
stru | −0.1424 *** (−5.58) | −0.0849 ** (−2.26) | −0.0832 * (−1.67) | −0.7354 *** (−11.35) |
_cons | 2.9052 *** (13.80) | 1.6734 *** (2.69) | 1.5877 *** (4.15) | 3.1889 *** (−14.40) |
R2 | 0.5524 | 0.7706 | 0.6204 | 0.8513 |
F-statistic | 49.00 [0.00] | 46.59 [0.00] | 19.18 [0.00] | 68.51 [0.00] |
Anderson Canon LM | 193.85 [0.00] | 60.65 [0.00] | 63.58 [0.00] | 28.45 [0.00] |
Cragg-Donald Wald F | 223.57 [7.56] | 40.96 [7.56] | 80.52 [7.56] | 9.96 [7.56] |
Sargan | 0.03 [0.98] | 0.56 [0.76] | 2.56 [0.28] | 0.38 [0.82] |
obs | 245 | 91 | 77 | 77 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Xu, K. Impact of Environmental Regulation and Technical Progress on Industrial Carbon Productivity: An Approach Based on Proxy Measure. Sustainability 2016, 8, 819. https://doi.org/10.3390/su8080819
Zhang H, Xu K. Impact of Environmental Regulation and Technical Progress on Industrial Carbon Productivity: An Approach Based on Proxy Measure. Sustainability. 2016; 8(8):819. https://doi.org/10.3390/su8080819
Chicago/Turabian StyleZhang, Huan, and Kangning Xu. 2016. "Impact of Environmental Regulation and Technical Progress on Industrial Carbon Productivity: An Approach Based on Proxy Measure" Sustainability 8, no. 8: 819. https://doi.org/10.3390/su8080819
APA StyleZhang, H., & Xu, K. (2016). Impact of Environmental Regulation and Technical Progress on Industrial Carbon Productivity: An Approach Based on Proxy Measure. Sustainability, 8(8), 819. https://doi.org/10.3390/su8080819