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Abstract: With the limitations of conventional energy becoming increasing distinct, wind energy is
emerging as a promising renewable energy source that plays a critical role in the modern electric
and economic fields. However, how to select optimization algorithms to forecast wind speed
series and improve prediction performance is still a highly challenging problem. Traditional single
algorithms are widely utilized to select and optimize parameters of neural network algorithms,
but these algorithms usually ignore the significance of parameter optimization, precise searching,
and the application of accurate data, which results in poor forecasting performance. With the aim
of overcoming the weaknesses of individual algorithms, a novel hybrid algorithm was created,
which can not only easily obtain the real and effective wind speed series by using singular spectrum
analysis, but also possesses stronger adaptive search and optimization capabilities than the other
algorithms: it is faster, has fewer parameters, and is less expensive. For the purpose of estimating the
forecasting ability of the proposed combined model, 10-min wind speed series from three wind farms
in Shandong Province, eastern China, are employed as a case study. The experimental results were
considerably more accurately predicted by the presented algorithm than the comparison algorithms.

Keywords: renewable and sustainable energy; multi-step rolling wind speed forecasting; singular
spectrum analysis; APSOSA algorithm

1. Introduction

Energy plays a vital part in modern social and economic development. Along with the rapid
development of technology in the last few decades, energy demands continue to increase rapidly [1].
In accordance with the IEA World Energy Outlook 2010, China and India will be responsible
for approximately 50% of the growth in global energy demand by 2050. The consumption of
energy in China will be close to 70% greater than the energy consumed by the United States today.
Second only to America, China will become the second leading energy-consuming country in the
world. Nevertheless, China’s per capita energy consumption will remain lower than 50% of that
of the USA [2]. Since conventional energy sources such as coal, natural gas, and oil for electricity
generation are being quickly depleted, sufficient energy reserves and sustainable energy problems
are garnering increased attention. Additionally, using traditional resources produces large amounts
of carbon dioxide, which may lead to global warming, and is considered an international security
threat. Therefore, it not only affects the environment, it also threatens the safety of individuals and
the planet [3].
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Consequently, to alleviate the pressure of this energy shortage, renewable energy sources are
being explored and the sustainable development of green energy has become a significant measure of
global energy development success [4]. Obviously, it has become necessary to seek and develop
new environmentally friendly sources of renewable energy. Wind energy, the most significant
new type of green renewable energy [5], is steady, abundantly available, reliable, inexhaustible,
widespread, pollution-free, and economical. It contains enormous power and its usage does not
harm the environment by creating greenhouse gas emissions. Furthermore, it has been considered
or applied in the production and development for energy in a host of countries. In modern times,
wind energy has become the most indispensable and vital renewable energy source globally. The fast
growth of the power system enables the absorption of large amounts of wind power. However, in
consideration of stochastic factors such as temperature, atmospheric pressure, elevation, and terrain,
it is still difficult to make an accurate forecast, which can also give rise to trouble in terms of the energy
transmission and the balance of the power grid. Hence, developing an effective approach to overcome
these challenges is necessary.

In order to reduce time series prediction errors, thousands of methods have already been studied.
First, many effective data denoising tools, including the Wavelet Transform (WT), the Empirical Mode
Decomposition (EMD) [6–8], the Wavelet Packet Transform (WPT), the Singular Spectrum Analysis
(SSA) [9], and the Fast Ensemble Empirical Mode Decomposition (FEEMD) algorithm [10], have been
applied to process the original data to achieve a relatively higher forecasting accuracy. For instance,
SSA, as a novel analytical method, is especially suitable for research into periodic oscillation, which has
proven to be an effective tool for time series analysis in diverse applications; the results indicate
that it can effectively remove the noise of the wind speed data to improve forecasting performance.
Secondly, different prediction approaches are applied to time series forecasting, including SVM,
ARMA, ANNS, etc. According to various researchers, these methods can be categorized into four
classes [11]: (i) purely physical arithmetic [12–14]; (ii) mathematical and statistical arithmetic [15–21];
(iii) spatial correlation arithmetic; and (iv) artificial intelligence arithmetic [22].

Purely physical arithmetic not only utilizes physical data such as temperature, density, speed,
and topography information, but also physical methods, including observation, experiment, analogy,
and analysis, to forecast the future wind speed. However, these approaches do not possess unique
advantages for short-term prediction. Mathematical and statistical methods, such as the famous
stochastic time series models, typically make use of historical data to forecast the wind speed, which
can be easy to employ and simple to realize. Therefore, some categories of time series models are often
used in wind speed forecasting. Some examples that can be utilized to obtain excellent results include
the exponential smoothing model, the autoregressive moving average (ARMA) model [18], filtering
methods, and the autoregressive integrated moving average (ARIMA) model [23,24]. Distinct from
other methods, spatial correlation arithmetic may achieve better prediction performance. Nevertheless,
it is extremely difficult to obtain a perfect application due to the abundant amount of information that
must be considered and collected. In recent years, as artificial intelligence technology has developed
and become widely used, many researchers have utilized intelligence algorithms in their papers,
including artificial neural networks (ANNs) [25–29], Support Vector Machine (SVM) [30,31], and fuzzy
logic (FL) methods [32,33], which can be applied to combine new algorithms for enhancing wind speed
forecasting ability.

In this research, a hybrid algorithm was proposed with the goal of achieving better forecasting
performance. Firstly, in comparison with other methods, including WNN (Wavelet Neural Network)
and GRNN (generalized regression neural network), BPNN provides the best prediction performance
for both half-hour and one-hour time frames. Therefore, BPNN was selected for use in our models.
Next, as a different analytical method, SSA is employed to construct, decompose, and reconstruct the
trajectory matrix. SSA can extract different components of the original signal, such as the long-term
trend of the signal, a periodic signal, and noise signals, and is capable of removing the noise from the
original signal. Next, the optimization algorithm APSOSA, combining APSO [34–38] and SA [39–42],



Sustainability 2016, 8, 754 3 of 25

can enhance the prediction accuracy and convergence of the basic PSO algorithm. Moreover, APSOSA
is able to avoid falling into local extreme points so that the parameters of the Back Propagation neural
network (BPNN) can be better optimized. Finally, to achieve better forecasting performances, the wind
speed data after noise elimination are input into the BPNN. In addition, four commonly used error
criteria (AE, MAE, MAPE, and MSE) are applied to assess the performance of the raised hybrid
algorithm. The main aspects of the model are introduced as follows: (1) data preprocessing; (2) the best
forecasting method, BPNN, is selected and its parameters are tuned by an artificial intelligence
(APSOSA) model; (3) forecasting; and (4) comparison and analysis.

The main contributions of this paper are summarized as follows:

(1) With the aim of reducing the randomness and instability of wind speed, the Singular Spectrum
Analysis technique is applied to decompose the wind series data, revealing real and useful signals
from the wind series.

(2) The best prediction system, BPNN, is selected from the different methods, including WNN,
GRNN, and BPNN.

(3) In view of the shortcomings of the PSO algorithm, APSOSA is developed to optimize parameters,
which can assist the individual PSO in jumping out of the local optimum. Ultimately, parameters
are selected and optimized by combining their respective advantages.

(4) To examine the stability and accuracy of the new combined forecasting algorithm, 10-min
wind speed series from three different stations are used in the experimental simulations.
The experimental results indicate that the novel hybrid algorithm has a higher performance,
significantly outperforming the other forecasting algorithms.

(5) Giving full consideration to the other influential factors in the experiments, such as the seasonal
factors, the geographical factors, etc., according to the results, this action proves that the new
combined algorithm has a powerful adaptive capacity, which can be widely applied to the
prediction field.

(6) The Bias-Variance Framework and statistical hypothesis testing are employed to further illustrate
the stability and performance of the proposed algorithm.

The remainder of this paper is designed as follows. The methodology is described specifically
in Section 2. To verify the prediction accuracy of the raised algorithm, a case study is examined in
Section 3. Next, the wind farms area and datasets are introduced in Section 3.1, whereas Section 3.2
displays the performance criteria of the forecast results. In Section 3.3, the results of the different
algorithms are listed and compared with the proposed algorithm. In order to further illustrate the
stability and performance of the proposed algorithm, in Section 4, the Bias-Variance Framework and
statistical hypothesis testing are employed. Finally, the conclusions are provided in Section 5.

2. Methodology

In this section, all of the algorithms involved in this work are described. The full list of algorithms
to be discussed in this section is as follows: the singular spectrum analysis algorithm, an efficient
technology for time series analysis; the particle swarm optimization algorithm; the simulated annealing
algorithm, which overcomes PSO falling into the local minima, and the back propagation neural
network. The hybrid algorithm-APSOSA, raised to search for the optimal parameters of BPNN,
will also be introduced in detail.

2.1. Singular Spectrum Analysis

Compared with other nonparametric approaches, such as EMD, which exhibits a potential
mode-mixing problem, and EEMD, which does not completely neutralize the added white noise,
singular spectrum analysis (SSA), which overcomes the traditional analysis methods’ (such as Fourier
analysis) shortcomings, has been proven to be one of the most effective and powerful methods in time
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series analysis. It was developed by Broomhead and King in 1986 [43]. Figure 1 shows the decomposed
series of wind speed by SSA. The details are shown in Appendix A.1.Sustainability 2016, 8, 754 4 of 26 
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2.2. Intelligent Optimization Algorithms

In this section, several optimization algorithms will be introduced.

2.2.1. Particle Swarm Optimization

Inspired by imitating the social behavior of flocks of bird and schools of fish, an effective approach
for optimization, Particle swarm optimization (PSO), was first developed by Dr. Eberharts and
Dr. Kennedy in 1995 [44]. It is a stochastic, population-based evolutionary algorithm, which involves
searching for solutions [39] (details in Appendix B.1).

2.2.2. Back Propagation Neural Network

First proposed by Rumelhart and McCelland (1986) [45], the Back Propagation Neural Network
(BPNN) is one of the most widely employed artificial neural network (ANN) models (details in
Appendix B.2). It is not only capable of learning and storing a large amount of input–output mode
mappings without needing to reveal the mathematical equations of the mapping relationship, but can
also apply the steepest descent method, by back propagation, to constantly adjust the network weights
and thresholds, resulting in the minimum square error. In addition, BPNN [46] consists of three
layers: the input layer, the hidden layer, and the output layer. The experimental parameters are listed
in Table 1.

Table 1. The experimental parameters of BPNN.

Experimental Parameters Default Value

neuron number in the input layer 4
neuron number in the hidden layer 8
neuron number in the hidden layer 1

the learning velocity 0.1
the maximum number of trainings 1500

training requirements precision 0.0001
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2.2.3. Simulated Annealing

The concept of Simulated Annealing was first introduced by N. Metropolis et al. in 1953. In 1983,
Kirkpatrick et al. succeeded in introducing SA in the field of combinatorial optimization [47]. Based on
the Monte-Carlo iteration solving method, currently the SA algorithm has become one of the most
popular heuristic random search methods. Unlike the PSO algorithm, SA can jump out of the trap of
local minima in a timely manner to update the solutions and obtain the global optimum (details in
Appendix B.3).

2.2.4. The Proposed Optimization Algorithm, APSOSA

This paper proposes a hybrid APSO algorithm by employing the SA algorithm to prevent the
PSO from falling into local minima (the algorithm of SA-APSO is shown in Table 2). The major steps
of the hybrid optimization algorithm are as follows. First, enhance the accuracy and convergence
rate of the basic PSO algorithm by applying a compression factor and selecting suitable parameters.
Next, by combining the Simulated Annealing characteristics, PSO can more easily and quickly obtain
the optimal solution in a larger search space. SA can also cancel the restrictions on speed border.
Moreover, the Roulette Wheel Selection Strategy is chosen, shown in Figure 2, in this algorithm.

PSO can obtain better results in a faster setting with fewer parameters and is cheaper than other
methods. It is also currently being widely used for promising results in continuous problems. However,
the movement directionality of the particles is not certain, and particles are likely to jump out to obtain
near-optimal solutions and their local search ability is relatively weak and easily trapped by the
local optimum. Therefore, PSO is combined with the simulated annealing algorithm. The annealing
algorithm is used when poor quality is probable to temporarily accept some solution features to
construct a particle swarm algorithm, based on simulated annealing. A multitude of papers have
verified that the improved particle swarm optimization algorithm obtains better results and have
documented the effectiveness of the method through experimental simulation results. The velocity
and position updating formula are as follows:

vi,jpk` 1q “ χ rvi,jpkq ` c1r1ppi,jpkq ´ xi,jpkqq ` c2r2ppg,jpkq ´ xi,jpkqqs (1)

xi,jpk` 1q “ xi,jpkq ` vi,jpk` 1q, j “ 1, ..., n (2)

where r1 and r2 are set randomly between 0 and 1, and the learning factors c1 and c2 are positive
numbers, where χ is computed by the following formula:

χ “
2

ˇ

ˇ

ˇ
2´ C´

?
C2 ´ 4C

ˇ

ˇ

ˇ

, C “ c1 ` c2, C ą 4 (3)

In Equation (3), applying the best group positions, all particles fly to the best group positions,
and then tend to the local minima solution if the best group positions are in the local minimum.
Accordingly, this situation will cause the search dispersability and ability to become worse.
To overcome this weakness, a new position p1g will be selected from among the pi to replace pg.
Finally, in this paper, the Equation (1) is rewritten as the following formula, Equation (4):

vi,jpk` 1q “ χ rvi,jpkq ` c1r1ppi,jpkq ´ xi,jpkqq ` c2r2pp1i,jpkq ´ xi,jpkqqs (4)

However, how to address the suitable position pi is one of the most critical steps of the combined
algorithm. Clearly, better performance of pi shall be considered a higher priority. Under the
characteristics of the SA algorithm, the best solutions of every particle pi should be taken as the
special one, which may be worse than the global optimal solution pg. Therefore, in the case of
temperature T, we can calculate the leap probability using Equation (5):

Plpppiq “ e´pFppiq´Fppgqq{KT (5)
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where F is the objective function value of the particle position.
The leap probability can be computed by the following formula, Equation (6):

Pppiq “
e´pFppiq´Fppgqq{KT

N
ř

j “ 1
e´pFppiq´Fppgqq{KT

(6)

where N is the population, on the side; considering the Roulette Wheel Selection strategy, we can
randomly choose the pi, which will be regarded as p1g.

The chief steps of the APSOSA algorithm are as follows, and a flowchart is depicted in Figure 2.

Step 1: Set the initial temperature, and initialize the population along with every particle velocity
and position.
Step 2: Compute Fppiq pi “ 1, .., Nq, where N is the updated population.
Step 3: Update the present position and fitness value of each particle by using pi, Fppiq and pg,
Fppgq, respectively.
Step 4: Compute the initial temperature using Equation (7):

T0 “ ´Fppgq{ln p0.2q (7)

Step 5: Update the particle position and velocity and compute Pppiq.
Step 6: Through the roulette wheel selection strategy, the new global optimal solution p1g is not regarded
as pg until Pppiq ą rand p q.
Step 7: Update every particle velocity and position by the pre-set update formula.
Step 8: Compute every particle Fpp1iq, and then do not apply pi Fppiq to update the current global
position pg and optimal fitness value Fppgq, respectively, until Fppiq>Fppgq.
Step 9: By applying the pre-set rules, the temperature reduces slowly.
Step 10: Analyze whether the pre-set conditions are met; if they have been met, output the information
of pg and then end running. Otherwise, repeat the above steps, beginning with Step 5.
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Table 2. A rudimentary SA-APSO algorithm is outlined as follows.

Algorithm: SA-APSO

Input:

xp0qs “

´

xp0q p1q , xp0q p2q , . . . , xp0q plq
¯

–a sequence o f training data.

xp0qp “

´

xp0q pl` 1q , xp0q pl` 2q , . . . , xp0q pl` nq
¯

–a sequence o f veri f ying data.

Output:

Pg—the value of x with the best fitness value in population of particles
Parameters:
Itermax—the maximum number of iterations
n—the number of particles
Fi—the fitness function of particle i
xi—particle i
g—the current iteration number
d—the number of dimension

1: /* Set the parameters of PSO and SA. */
2: /* Initialize population of n particle xi (i = 1, 2,..., n) randomly */
3: FOR EACH i: 1 ď i ď n DO
4: Evaluate the corresponding fitness function Fi
5: END FOR
6: /* Determine the global best position */
7: FOR EACH i: 1 ď i ď n DO
8: Determine the global best position Pg by using F(xi).
9: {F(Pg), g}=max{(F(P1), . . . , F (PN)}
10: END FOR
11: WHILE (g < Itermax) DO
12: /* Determine the initial temperature. */
13: FOR EACH i: 1 ď i ď n DO
14: T0=´F(Pi)/ln(0.2)
15: END FOR
16: FOR EACH i = 1:n DO
17: FOR EACH j = 1:n DO
18: /* Calculate the probability P(Pi) */
19: /* Judge the relationship of the probability P(Pi) and rand () */
20: IF (P(Pi) > rand()) THEN
21: Pg = P1g = Pi
22: END IF
23: /* Update the velocity and position of each particle */
24: FOR EACH i: 1 ď i ď n DO
25: vi(t + 1) = w(t)vi(t) + c1r1(pi ´ xi(t)) + c2r2(pg ´ xi(t));
26: xi(t + 1)= xi(t) + vi(t + 1);
27: END FOR
28: /* Evaluate the new position P1i and fitness function F(P1i). */
29: FOR EACH i: 1 ď i ď n DO
30: Evaluate the corresponding fitness function F(P1i)
31: END FOR
32: /* Judge the relationship of fitness function F(P1i) and F (Pi). */
33: IF (F(P1i) > F (Pi)) THEN
34: Pi = P1i and F (Pi) = F(P1i)
35: END IF
36: /* Judge the relationship of fitness function F(Pi) and F(Pg). */
37: IF (F (Pi) > F (Pg)) THEN
38: Pg = Pi and F (Pg) = F(Pi)
39: END IF
40: /* Cooling the temperature */
41: FOR EACH i: 1 ď i ď n DO
42: Ti + 1 = a ˆ Ti
43: END FOR
44: END FOR
45: END FOR
46: END WHILE
47: RETURN Pg
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2.2.5. SSA–APSOSA–BPNN Algorithm

In this section, we will introduce the hybrid model (SSA–APSOSA–BPNN) more clearly.
The flowchart of the model is described in Figure 3. And the experimental parameters of APSOSA are
given in Table 3. The hybrid algorithm contains four main stages.

Table 3. The experimental parameters of APSOSA.

Experimental Parameters Default Value

The population size: N 30
maximum initial velocity 2
minimum initial velocity ´2

the learning factor: C1 2.2
the learning factor: C2 1.8

The evolution number: M 200

Stage I: Data prepossessing. Utilize the SSA method to process the original wind speed signals;
as a result, the noise signals are removed, and the real and effective signals, which are shown in
Figure 1, can be preserved. Lastly, the useful processed signal will be fed into the abovementioned
hybrid model.
Stage II: Data selection. The processed valid data from Stage I is classified into three parts: the training
set, the validation set, and the test set for model training, validation, and testing, respectively.
Stage III: Algorithm training and validation. Here, the SSA–APSOSA–BPNN algorithm is utilized for
wind speed forecasting. Additionally, the detailed rules are given as below:

Step 1: Determine and initialize the parameters of APSOSA.
Step 2: Set the fitness function; the mean absolute error (MAE) of validation is taken as the fitness of
the particles:

f itness “ MAE “
1
N

N
ÿ

i “ 1

|yi ´ ŷi| (8)

where N is the number of validation sets and ŷi and yi stand for the predictive value and the observed
value, respectively.
Step 3: Update the historical extremum pj of every particle and the global extremum pg and then
repeat the above rules for the next particles.
Step 4: Set the conditions and judge whether the fitness value meets the conditions; if it does, save the
corresponding optimal parameters and then stop running. Otherwise, run Step 3 again and continue to run.

Stage IV: Forecasting. In this stage, the optimal parameters from Step 4 of Stage III will be applied into
the BPNN model to forecast. Finally, the wind speed forecasting data will be obtained by completing
all of the above steps.
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3. Case Study

To examine the accuracy of the novel combined algorithm, four different multi-step forecasting
algorithms are compared by analyzing the three-step-ahead-prediction (half–1-h-ahead) and the
six-step-ahead-prediction (1-h-ahead) of a 10-min wind speed series at three different wind
power stations.

3.1. Study Area and Datasets

Shandong, located on the east coast of China, is not only one of the provinces with the largest
economy, but also one of the biggest energy consumers. However, 99% of the electrical energy comes
from coal power generation. As a result, Shandong faces enormous energy pressures.

However, as a coastal province, Shandong possesses one of China’s largest wind farms,
with an installed capacity of 58 million kilowatts. A simple map of the research area is depicted in
Figure 4. With the aim of satisfying social development, achieving energy conservation, and protecting
the environment, Shandong has begun developing wind power stations. Due to the area’s unique
geographical advantages, capacity reached 260 billion KWH in 2007. In addition, the Shandong
Province Bureau of Meteorology assessment notes that the entire output of wind energy resources in
Shandong province is 67 million kilowatts, which is equivalent to the installed capacity of 3.68 times
the capacity of the Three Gorges Hydro-power Station (18.20 million kilowatts), which ranks in the
top three. To actively build wind power green energy bases, promote wind energy development,
and protect the environment, Shandong has been focusing on building large-scale wind farms in
Weihai, Yantai, Dongying, Weifang, Qingdao, and other coastal areas, and is gradually developing
offshore wind power projects.
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resources. The specific advantages are as follows: (i) higher elevation but relatively flat hilltops, 
ridges, and a special terrain that has much potential as an air strip; (ii) longer cycle of efficient power 
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Figure 4. The study area, Penglai in Shandong province, eastern China. 
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In this work, Penglai, which is located north of Shandong and lies north of the Yellow Sea and the
Bohai Sea, was chosen as the area of study. It has tremendous, potentially valuable wind resources.
The specific advantages are as follows: (i) higher elevation but relatively flat hilltops, ridges, and a special
terrain that has much potential as an air strip; (ii) longer cycle of efficient power generation; (iii) suitable
climatic conditions that are conducive to the normal operation of wind turbines; and (iv) small diurnal
and seasonal variations of wind speed, which can reduce the impact on power.

In this study, the 10-min wind speed data from Penglai wind farms are used to obtain a detailed
example for evaluating the performance of the proposed model. First, the wind speed data are
divided into four parts according to the seasons, so that the impact of seasonal variations can be
considered to increase the stability of the proposed model. Next, every seasonal wind speed dataset
is divided into three parts: a training set, a validation set, and a testing set. Additionally, the noise
is removed from the data by using SSA. Finally, the processed data are entered into the model and,
judging from the forecasting results, we determine whether the raised algorithm can be widely
employed for real-world farm use. In this study, the experiment is applied to three different sites
(Site 1, 2, and 3). The above-described experiment is scientific and is used to validate the performance
of the proposed model.

3.2. Performance Criteria of Forecast Accuracy

To evaluate the prediction accuracy of the raised hybrid algorithm, four indexes are applied to
measure the quality of the forecasting methods: absolute error (AE), mean absolute error (MAE),
root mean square error (RMSE), and mean absolute percent error (MAPE), shown in Table 4 (here
N is the number of test samples, and ŷi and yi represent the real and forecast values, respectively).
Here, the absolute error (AE) and the mean absolute error (MAE) are both selected so that the level of
error can be more clearly reflected. RMSE is chosen because it can easily reflect the degree of changes
between the actual and forecasted value. Additionally, MAPE is chosen because of its ability to reveal
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the credibility of the forecasting model. Wind speed forecasting errors are related to not only the
forecasting models but the selected samples. Consequently, the forecasting errors within a certain
scientific range can be accepted. Moreover, in order to better evaluate performance, four percentage
error criterions are also applied in this study, listed in Table 5.

Table 4. Four metric rules.

Metric Definition Equation

AE The average forecast error of i times forecast results AE “ 1
N

N
ř

i“1
pyi ´ ŷiq

MAE The average absolute forecast error of i times forecast results MAE “ 1
N

N
ř

i“1
|yi ´ ŷi|

RMSE The root average of the prediction error squares RMSE “

d

1
N

N
ř

i“1
pyi ´ ŷiq

2

MAPE The average of absolute error MAPE “ 1
N

N
ř

i“1

ˇ

ˇ

ˇ

yi´ŷi
yi

ˇ

ˇ

ˇ
ˆ 100%

Table 5. Four metric rules.

Metric Definition Equation

QAE The percentage error of AE QAE “
ˇ

ˇ

ˇ

AE1´AE2
AE1

ˇ

ˇ

ˇ

QMAE The percentage error of MAE QMAE “
ˇ

ˇ

ˇ

MAE1´MAE2
MAE1

ˇ

ˇ

ˇ

QRMSE The percentage error of RMSE QRMSE “
ˇ

ˇ

ˇ

RMSE1´RMSE2
RMSE1

ˇ

ˇ

ˇ

QMAPE The percentage error of MAPE QMAPE “
ˇ

ˇ

ˇ

MAPE1´MAPE2
MAPE1

ˇ

ˇ

ˇ

3.3. Experimental Simulations

In this subsection, three single models, WNN, GRNN, and BPNN, are compared to obtain the
best prediction approach. As a result, whether for half-hour (rolling three-step) or one-hour (rolling
six-step) predictions, BPNN gives the best prediction accuracy (see Tables 6 and 7) of the four proposed
models. Next, the APSOSA-BPNN is selected from BPNN, PSO-BPNN as the best prediction algorithm.
Finally, the hybrid SSA–APSOSA–BP algorithm was proposed as our best prediction model.

The BPNN, PSO-BPNN, and APSOSA–BPNN hybrid algorithms were selected to compare the
forecasting results. Three sites from the Shandong–Penglai wind farms were selected, and then
a sample (the 10-min wind speed series) of every season from each site was selected and entered
into the above algorithms. Next, the multi-step predicted results were displayed. The specific results
of the three sites are shown in Tables 6 and 7, respectively. Additionally, the results from Site 1 are
displayed in Figure 5 and the absolute errors of the three sites are shown in Tables 6 and 7. Using the
four percentage error criteria, the improvement percentages between each set of algorithms are shown
in Tables 8 and 9.
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Table 6. Comparison of errors of rolling three-step (half an hour ahead) forecasts.

Indexes
Site 1 Site 2 Site 3

Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter

AE
WNN ´0.0538 0.2344 ´0.0193 0.0733 0.1236 0.2813 0.0000 ´0.0225 0.0654 0.2584 0.0863 0.0065

GRNN ´0.2328 ´0.1134 0.0624 ´0.1384 ´0.3321 0.6803 ´0.1214 0.1004 0.1447 0.2302 0.2108 ´0.0541
BPNN ´0.1562 0.1230 0.0414 0.1203 0.0431 0.4185 ´0.2744 ´0.0795 ´0.1986 0.0094 ´0.0927 0.0843

PSO–BP ´0.1106 0.3070 ´0.1049 ´0.0652 0.0242 0.3804 ´0.1223 ´0.0294 ´0.0670 ´0.0296 ´0.0619 0.0137
APSOSA–BP ´0.1181 0.0890 ´0.0571 0.0024 0.103 0.3321 ´0.1111 0.0022 ´0.0396 0.0774 ´0.0779 0.0099

Proposed model ´0.0132 0.0223 ´0.0014 ´0.0112 0.0136 0.0343 ´0.0415 ´0.0007 ´0.0125 0.0078 ´0.0198 0.0012

MAE
WNN 0.8690 0.8388 0.7417 0.7927 0.8135 1.1342 0.5676 0.7151 0.7487 1.1515 0.5629 0.6335

GRNN 0.7394 0.6962 0.6873 0.6305 0.7157 1.0850 0.4713 0.5811 0.6138 0.9031 0.4673 0.5075
BPNN 0.7233 0.7007 0.5990 0.6311 0.6388 1.0317 0.5050 0.5335 0.5825 0.7996 0.4293 0.4833

PSO–BP 0.7011 0.7612 0.5777 0.5884 0.6233 0.9436 0.4664 0.5276 0.5634 0.7945 0.4245 0.4726
APSOSA–BP 0.6975 0.6545 0.5549 0.5761 0.6230 0.9133 0.4571 0.5143 0.5514 0.7938 0.4243 0.4681

Proposed model 0.4493 0.4151 0.3437 0.3489 0.4211 0.5312 0.3289 0.3351 0.4152 0.5312 0.3171 0.2900

RMSE
WNN 1.1530 1.1683 0.9791 1.0244 1.0591 1.5757 0.7316 0.9383 0.9778 1.5987 0.7564 0.8070

GRNN 0.9784 0.9479 0.9999 0.8147 0.9165 1.6059 0.6052 0.7680 0.8038 1.2759 0.6333 0.6539
BPNN 0.9624 0.9478 0.8343 0.8145 0.8454 1.6364 0.6543 0.7169 0.7637 1.1838 0.5812 0.6207

PSO–BP 0.9381 1.1005 0.7735 0.7628 0.8267 1.3967 0.6005 0.6995 0.7453 1.1612 0.5747 0.6242
APSOSA–BP 0.9317 0.9134 0.7268 0.7472 0.8308 1.3191 0.5885 0.6927 0.7345 1.1585 0.5745 0.6155

Proposed model 0.5918 0.5454 0.4637 0.4466 0.5531 0.7008 0.4177 0.4336 0.5411 0.7297 0.4068 0.3688

MAPE
WNN 12.8299 19.2123 24.2180 16.2978 9.4978 15.1054 20.8225 16.5005 11.6877 19.4706 16.7789 14.4603

GRNN 11.4804 17.6432 21.5985 13.5994 8.5776 12.8413 18.5481 13.0970 9.6661 15.0889 13.3686 12.5040
BPNN 11.0930 16.8607 18.5380 13.5335 7.4083 12.6158 19.6453 12.4060 9.4392 13.8388 13.0224 11.4632

PSO–BP 10.614 16.485 18.3886 12.3106 7.2490 11.9383 17.8111 12.1286 9.0266 13.7641 12.9241 11.2132
APSOSA–BP 10.5341 15.7025 18.2165 12.2418 7.1397 11.6154 17.4022 11.6352 8.5133 13.5678 12.8307 11.0325

Proposed model 6.6397 10.6659 11.3723 7.1128 4.7589 7.2473 12.2559 7.3750 6.4101 9.0027 9.7494 6.7077
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Table 7. Comparison of errors of rolling six-step (one hour ahead) forecasts.

Indexes
Site 1 Site 2 Site 3

Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter

AE
WNN ´0.1612 0.3295 0.2508 ´0.0631 0.1107 0.1754 ´0.0188 ´0.0603 ´0.0458 0.0132 ´0.2371 0.0187

GRNN ´0.2724 ´0.1850 0.0224 ´0.1431 ´0.4668 0.8426 ´0.1809 0.1734 0.4493 0.3922 ´0.1192 0.0486
BPNN 0.1676 ´0.3026 ´0.0800 ´0.2177 ´0.1111 ´0.4045 0.4497 0.1120 0.2548 0.0088 0.1565 ´0.1241

PSO–BP 0.1473 ´0.5359 0.1845 0.0699 ´0.0914 ´0.4642 0.2082 0.0088 0.0262 0.0737 0.1042 0.0238
APSOSA–BP 0.1399 ´0.1435 0.0799 ´0.0624 ´0.2008 ´0.3763 0.1782 ´0.0185 0.0301 ´0.1283 0.1222 0.0253

Proposed model 0.0595 ´0.0926 0.0235 0.0484 ´0.0067 ´0.1530 0.0557 0.0154 0.0285 ´0.0040 0.0179 0.0175

MAE
WNN 0.9833 0.9770 0.8332 0.8760 0.9599 1.2853 0.6176 0.7797 0.8332 1.2598 0.6525 0.7299

GRNN 0.8536 0.8151 0.8137 0.7500 0.8960 1.2891 0.5554 0.6993 0.8127 1.0877 0.5414 0.6148
BPNN 0.8325 0.958 0.7776 0.7954 0.7912 1.1887 0.6559 0.6417 0.7162 1.0157 0.5450 0.5919

PSO–BP 0.8327 1.0344 0.7430 0.7376 0.7576 1.1411 0.5542 0.6172 0.6848 1.0046 0.5343 0.5540
APSOSA–BP 0.8185 0.7955 0.6777 0.7117 0.7688 1.0920 0.5373 0.6143 0.6691 0.9946 0.5311 0.5542

Proposed model 0.5653 0.5078 0.4241 0.4086 0.4582 0.6306 0.3611 0.4061 0.4584 0.6643 0.3502 0.3678

RMSE
WNN 1.2823 1.3406 1.1123 1.1349 1.2184 1.7978 0.7893 1.0301 1.0823 1.7689 0.8557 0.9242

GRNN 1.1125 1.1131 1.1222 0.9838 1.1428 1.8827 0.7175 0.9207 1.0658 1.5277 0.7282 0.7770
BPNN 1.0941 1.3032 1.1154 1.0336 1.0326 1.8427 0.8288 0.8449 0.9369 1.4813 0.7345 0.7541

PSO–BP 1.1012 1.4900 1.0244 0.9608 0.9898 1.6665 0.7132 0.8172 0.9073 1.4648 0.7238 0.7195
APSOSA–BP 1.0828 1.1063 0.8987 0.9423 1.0126 1.5784 0.6941 0.8151 0.8939 1.4294 0.7193 0.7202

Proposed model 0.7603 0.7360 0.5539 0.5295 0.6067 0.9561 0.4579 0.5322 0.6016 0.9269 0.4559 0.4783

MAPE
WNN 15.6774 22.1542 26.5838 18.1273 11.4313 17.4636 22.7555 18.3793 13.9774 21.4955 21.0411 16.5445

GRNN 13.5174 22.0269 25.5008 16.4622 11.0234 15.7856 22.4828 15.6796 12.1603 17.6853 17.4406 14.5046
BPNN 13.2144 22.3227 23.5108 16.7841 9.3530 15.5730 26.6649 15.1189 11.8778 17.3869 17.5410 13.8192

PSO–BP 13.1579 21.6265 23.1254 15.5045 9.0061 14.8893 22.2483 14.5565 11.1359 17.3802 17.0869 13.4498
APSOSA–BP 12.7057 19.6883 22.3076 15.0001 8.9472 14.6322 21.2674 14.2413 10.5363 16.8365 16.756 13.1057

Proposed model 8.2895 12.4004 13.7975 8.8285 5.2338 8.2761 13.5699 9.2167 7.1493 11.6401 10.9296 8.3685



Sustainability 2016, 8, 754 14 of 25

Table 8. Improvement percentages among different forecasting models of rolling three-step (half an hour ahead) forecasts.

Indexes
Site 1 Site 2 Site 3

Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter

QAE
BP vs. Proposed model 91.5470 81.8408 103.3182 109.3035 68.3453 91.7930 84.8808 99.1144 32.0906 34.9459 25.1336 41.4849

PSO vs. Proposed model 88.0618 92.7230 98.6902 82.8185 43.6765 90.9706 66.0777 97.6089 28.9866 34.5929 24.5642 40.1803
APSOSA vs. Proposed model 88.8219 74.9061 97.5929 564.8312 86.7541 89.6562 62.6562 131.4576 24.7049 33.6466 24.0151 39.2005

QMAE
BP vs. Proposed model 37.8819 40.7592 42.6210 44.7156 34.0795 48.5122 34.8713 37.1884 28.7210 33.5668 26.1356 39.9959

PSO vs. Proposed model 35.9150 45.4677 40.5055 40.7036 32.4402 43.7050 29.4811 36.4860 26.3046 33.1403 25.3004 38.6373
APSOSA vs. Proposed model 35.5842 36.5775 38.0609 39.4376 32.4077 41.8373 28.0464 34.8435 24.7008 33.0814 25.2651 38.0474

QRMSE
BP vs. Proposed model 38.5079 42.4562 44.4205 45.1688 34.5753 57.1743 36.1608 39.5174 29.1476 38.3595 30.0069 40.5832

PSO vs. Proposed model 36.9150 50.4407 40.0517 41.4525 33.0954 49.8246 30.4413 38.0129 27.3984 37.1598 29.2152 40.9164
APSOSA vs. Proposed model 36.4817 40.2890 36.1998 40.2302 33.4256 46.8729 29.0229 37.4044 26.3308 37.0134 29.1906 40.0812

QMAPE
BP vs. Proposed model 40.1451 36.7411 38.6541 47.4430 35.7626 42.5538 37.6141 40.5530 32.0906 34.9459 25.1336 41.4849

PSO vs. Proposed model 37.4439 35.2994 38.1557 42.2222 34.3509 39.2937 31.1895 39.1933 28.9866 34.5929 24.5642 40.1803
APSOSA vs. Proposed model 36.9695 32.0751 37.5714 41.8974 33.3459 37.6061 29.5727 36.6148 24.7049 33.6466 24.0151 39.2005

Table 9. Improvement percentages among different forecasting models of rolling six-step (one hour ahead) forecasts.

Indexes
Site 1 Site 2 Site 3

Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter

QAE
BP vs. Proposed model 64.5124 69.3882 129.3627 122.2531 93.9478 62.1808 87.6194 86.2288 39.8096 33.0525 37.6911 39.4429

PSO vs. Proposed model 59.5977 82.7136 87.2727 30.7280 92.6464 67.0416 73.2619 74.6921 35.7995 33.0267 36.0352 37.7797
APSOSA vs. Proposed model 57.4865 35.4692 70.6258 177.6135 96.6529 59.3472 68.7603 183.3262 32.1460 30.8639 34.7720 36.1461

QMAE
BP vs. Proposed model 32.0961 46.9937 45.4604 48.6296 42.0880 46.9505 44.9459 36.7150 35.9955 34.5968 35.7431 37.8611

PSO vs. Proposed model 32.1124 50.9087 42.9206 44.6041 39.5195 44.7375 34.8430 34.2029 33.0607 33.8742 34.4563 33.6101
APSOSA vs. Proposed model 30.9346 36.1659 37.4207 42.5882 40.4006 42.2527 32.7936 33.8922 31.4901 33.2093 34.0614 33.6341

QRMSE
BP vs. Proposed model 30.5091 43.5236 50.3407 48.7713 41.2454 48.1142 44.7514 37.0103 35.7882 37.4266 37.9306 36.5734

PSO vs. Proposed model 30.9571 50.6040 45.9293 44.8897 38.7048 42.6283 35.7964 34.8752 33.6934 36.7217 37.0130 33.5233
APSOSA vs. Proposed model 29.7839 33.4719 38.3665 43.8077 40.0849 39.4260 34.0297 34.7074 32.6994 35.1546 36.6189 33.5879

QMAPE
BP vs. Proposed model 37.2692 44.4494 41.3142 47.3996 44.0415 46.8561 49.1095 39.0386 39.8096 33.0525 37.6911 39.4429

PSO vs. Proposed model 36.9998 42.6611 40.3362 43.0585 41.8861 44.4158 39.0070 36.6833 35.7995 33.0267 36.0352 37.7797
APSOSA vs. Proposed model 34.7576 37.0164 38.1489 41.1437 41.5035 43.4391 36.1939 35.2819 32.1460 30.8639 34.7720 36.1461
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From Tables 6 and 7, we can see following:

(a) Different forecasting algorithms have different forecasting results;
(b) All the algorithms’ forecasting results from the three sites are effective. Examples are included

in Figure 5;
(c) For different seasons at the same site, the hybrid algorithms show strong forecasting stability;
(d) Among the algorithms studied, the hybrid SSA–PSOSA–BP algorithm (see in Figure 6) obtained

better accuracy than the others. Moreover, to further illustrate the quality of the proposed hybrid
algorithm, four percentage error criterions are used in Table 5.

It can be analyzed in detail that:

(a) When comparing the hybrid PSO–BP algorithm with the single BP algorithm, we can make a
conclusion that the PSO selects excellent parameters to run BP model, but the prediction accuracy
of PSO–BP is increased only slightly. From Tables 6 and 7, in the spring, the three-step MAPE
results of the PSO–BP and the BP are 7.2490% and 7.4083%, respectively. For the six-step, they are
9.0061% and 9.3530%, respectively.

(b) When comparing the hybrid PSOSA–BP algorithm with the combined PSO–BP algorithm,
the former combines the advantages of simulated annealing, and further optimizes the parameters;
as a result, with respect to (a), the predicted quality rises again, but not particularly clearly.
The specific upgrade percentages are provided in Tables 8 and 9.

(c) When comparing the hybrid SSA–APSOSA–BP algorithm with the hybrid PSOSA–BP algorithm,
the former MAPE results are better than the latter. In other words, the forecasting quality of the
new combined algorithm is better because of the higher accuracy when comparing it with the BP,
PSO–BP, and PSOSA–BP algorithms.

(d) The forecasting quality of the hybrid SSA–APSOSA–BP algorithm is better than that of the
hybrid PSO–BP algorithm. The decreases in MAPE results in comparison with the PSO–BP and
SSA–APSOSA–BP algorithm of three-step and six-step forecasts are 37.4439% and 36.9998% in
Tables 8 and 9 for the spring season, respectively.

(e) When comparing the hybrid SSA–APSOSA–BP algorithm with the single BP algorithm, the accuracy
of the wind speed forecasting, is improved more obviously. As an example, in Table 6, the three-step
forecasting MAPE results for the latter are 9.4392%, 13.8388%, 13.0224%, and 11.4632%,
respectively. However, for the former, the three-step forecasting MAPE results are 6.4101%,
9.0027%, 9.7494%, and 6.7077%, respectively.

(f) From (a) to (e), the reasons include:

(1) The combination of the SA algorithm and the PSO algorithm has increased the forecasting
ability and accuracy of the single BP algorithm effectively.

(2) The SSA algorithm removes the noise signal from the original wind speed data and, due
to the APSOSA algorithm, the best initial weights and thresholds are given to optimize
the BP algorithm, which can lead to high-precision forecasting results.

(3) The scientific and rational data selection used in this paper is also one of the paramount
reasons for the outstanding performance achieved.

In different seasons at the same site, the proposed algorithms’ forecasting qualities can also
be different. This phenomenon indicates that wind speed can be affected by seasonal factors.
In this paper, we also consider this factor, and the different seasons’ forecasting results are listed
in Tables 6 and 7. Tables 10 and 11 are chosen as examples, and the detailed descriptions of this
phenomenon are as follows:

(a) Different sites can give different results. In Table 10, for the hybrid SSA–PSOSA–BP algorithm,
the MAPE results of the three-step and six-step are 8.9477% and 10.8290%, respectively, at Site 1.
However, for Sites 2 and 3, they are 7.9093% and 7.0741% vs. 7.9675% and 9.5219%, respectively.
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(b) In Table 11, for the hybrid SSA–APSOSA–BP algorithm in spring and winter, the MAPE of the
three-step and six-step are 5.9362% and 6.8909% vs. 7.0652% and 8.8046%, respectively. However,
in summer and autumn, they are 8.9720% and 10.7722% vs. 11.1259% and 12.7657%, respectively.
Obviously, in spring and winter, the MAPE results are less than 9%, but in summer and autumn,
the wind speed forecasting errors are all more than 10%, especially in autumn when they are
close to 12%.

(c) As can be clearly observed from the circumstances described above, geographical and seasonal
factors must be considered in the wind speed prediction. From (b), it can be concluded that the
prediction accuracy in spring and winter is better than that in summer and autumn. However,
comparing with the other proposed algorithms, the forecasting errors of the hybrid algorithm are
still effectively less.

Table 10. Average errors of the different rolling forecasting models at the three sites.

BP PSO–BP APSOSA–BP SSA–APSOSA–BP

Area Average 3-Step 6-Step 3-Step 6-Step 3-Step 6-Step 3-Step 6-Step

Site 1

AE (m/s) ´0.0321 ´0.1082 ´0.0066 ´0.0336 0.0210 0.0035 0.0009 0.0097
MAE (m/s) 0.6635 0.8409 0.6571 0.8369 0.6208 0.7509 0.3893 0.4765
RMSE (m/s) 0.8898 1.1366 0.8937 1.1441 0.8298 1.0075 0.5119 0.6449
MAPE (%) 15.0063 18.9580 14.4496 18.3536 14.1737 17.4254 8.9477 10.8290

Site 2

AE (m/s) ´0.0269 0.0115 ´0.0632 ´0.0847 ´0.0816 ´0.1044 ´0.0014 ´0.0222
MAE (m/s) 0.6773 0.8194 0.6402 0.7675 0.6269 0.7531 0.4041 0.4640
RMSE (m/s) 0.9633 1.1373 0.8809 1.0467 0.8578 1.0251 0.5263 0.6382
MAPE (%) 13.0189 16.6775 12.2818 15.1751 11.9481 14.7720 7.9093 9.0741

Site 3

AE (m/s) 0.0494 0.0740 0.0362 0.0570 0.0076 0.0123 0.0058 0.0150
MAE (m/s) 0.5737 0.7172 0.5638 0.6944 0.5594 0.6873 0.3884 0.4602
RMSE (m/s) 0.7874 0.9767 0.7764 0.9539 0.7708 0.9407 0.5116 0.6157
MAPE (%) 11.9409 15.1562 11.7320 14.7632 11.4861 14.3086 7.9675 9.5219

Table 11. Average errors of the different rolling forecasting models in different seasons.

BP PSO–BP APSOSA–BP SSA–APSOSA–BP

Season Average 3-Step 6-Step 3-Step 6-Step 3-Step 6-Step 3-Step 6-Step

Spring

AE (m/s) 0.1039 0.1038 0.0511 0.0274 0.0182 ´0.010 0.0040 0.0271
MAE (m/s) 0.6482 0.7800 0.6293 0.7584 0.6240 0.7521 0.4285 0.4940
RMSE (m/s) 0.8572 1.0212 0.8367 0.9994 0.8323 0.9964 0.5620 0.6562
MAPE (%) 9.3135 11.4817 8.9632 11.100 8.7290 10.729 5.9362 6.8909

Summer

AE (m/s) ´0.1836 ´0.2328 ´0.2193 ´0.3088 ´0.166 ´0.2160 ´0.021 ´0.083
MAE (m/s) 0.8440 1.0541 0.8331 1.0600 0.7872 0.9607 0.4925 0.6009
RMSE (m/s) 1.2560 1.5424 1.2195 1.5404 1.1303 1.3714 0.6586 0.8730
MAPE (%) 14.4384 18.4275 14.0625 17.965 13.628 17.0523 8.9720 10.772

Autumn

AE (m/s) 0.1086 0.1754 0.0964 0.1656 0.0820 0.1268 0.0209 0.0324
MAE (m/s) 0.5111 0.6595 0.4895 0.6105 0.4788 0.5820 0.3299 0.3785
RMSE (m/s) 0.6899 0.8929 0.6496 0.8205 0.6299 0.7707 0.4294 0.4892
MAPE (%) 17.0686 22.5722 16.3746 20.8202 16.1498 20.1103 11.1259 12.7657

Winter

AE (m/s) ´0.0417 ´0.0766 0.0270 0.0342 ´0.0048 ´0.0185 0.0036 0.0271
MAE (m/s) 0.5493 0.6763 0.5295 0.6363 0.5195 0.6267 0.3247 0.3942
RMSE (m/s) 0.7174 0.8775 0.6955 0.8325 0.6851 0.8259 0.4163 0.5133
MAPE (%) 12.4676 15.2407 11.8841 14.5036 11.6365 14.1157 7.0652 8.8046
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4. Discussion

In this section, the bias–variance framework and the Diebold–Mariano (DM) are used to examine
the accuracy, the stability, and the forecasting performance of the forecast models.

4.1. Bias–Variance Framework

In order to evaluate the different models’ accuracy and stability, in this subsection, we utilize
the bias–variance framework, which includes bias and variance. The bias-variance framework can be
shown as follows:

var “ Erpŷ´ yq ´ Epŷ´ yqs2 (9)

Bias2 “ Erŷ´ ys2 ´ Erŷ´ Epŷq2s (10)

where y and ŷ are the observed values and the forecasting values respectively.
The higher the bias, the lower the forecasting accuracy. Similarly, the bigger the variance, the worse

the prediction performance. The results of the models are shown in Tables 12 and 13. Obviously, the bias
and variance of the proposed hybrid model are smaller than the comparison models (GRNN, WNN,
APSOSA–BPNN, etc.). In other words, the developed model possesses a higher accuracy and stability
in wind-speed forecasting and performs much better than the comparison models in forecasting.

Table 12. Bias–variance and Diebold–Mariano test of different models (half an-hour ahead).

Different Models
Bias–Variance Framework

Diebold–Mariano Statistic
Bias2 Var

WNN 0.019750 1.186340 15.016983 *
GRNN 0.067441 0.849879 12.978130 *
BPNN 0.030799 0.820297 13.903475 *

PSO–BP 0.024353 0.758024 13.244862 **
APSOSA–BP 0.014342 0.706074 12.841336 **

Proposed model 0.000375 0.278953 —

* is the 1% significance level; ** is the 5% significance level.

Table 13. Bias–variance and Diebold–Mariano test of different models (one hour ahead).

Different Models
Bias–Variance Framework

Diebold–Mariano Statistic
Bias2 Var

WNN 0.025612 1.497107 16.081645 *
GRNN 0.124355 1.170295 13.999003 *
BPNN 0.055763 1.211757 12.749358 *

PSO–BP 0.052717 1.144234 12.080501 **
APSOSA–BP 0.024791 1.029058 12.739267 **

Proposed model 0.003605 0.424805 —

* is the 1% significance level; ** is the 5% significance level.

4.2. Statistical Hypothesis Testing

Hypothesis testing is a basic method of statistical inference, also called confirmatory data analysis.
Its basic principle can be described as below: firstly, making some assumptions, then statistical
reasoning, and lastly determining whether to reject or accept the hypothesis under a level of significance
that is defined beforehand [4]. There are many commonly used methods of hypothesis testing such as
T-test, F-test, rank and inspection, etc.
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In this subsection, another hypothesis testing approach is employed to assess the models’
efficiency, called the Diebold–Mariano test [10]. The concrete content is described as follows:

H0 : ErpLpe1
t qs “ ErpLpe2

t qs

H1 : ErpLpe1
t qs ‰ ErpLpe2

t qs

where the Loss function L is the function of the prediction error, e1
t and e2

t are the forecasting errors of
the two comparison models.

Establishing the DM Statistics:

DM “
d

b

2π f̂dp0q
N

d
Ñ Np0, 1q (11)

d “
1
N

N
ÿ

t “ 1

rLpe1
t q ´ Lpe2

t qs (12)

where 2π f̂dp0q represents a consistent estimator of the asymptotic variance, f̂dp0q is the zero spectral
density, and N is the length of forecasting results.

Comparing the calculated DM with the Zα{2, which can be found in the normal distribution table,

the null hypothesis will be rejected if
ˇ

ˇ

ˇ
DM

ˇ

ˇ

ˇ
ą

ˇ

ˇ

ˇ
Zα{2

ˇ

ˇ

ˇ
; this means that under the significance level α, there

is a significant difference between the two models (the proposed model and the compared models
including WNN, GRNN, BPNN, etc.) in terms of their prediction performance. The concrete results
are shown in Tables 12 and 13.

4.3. Analysis

From Tables 12 and 13, we can see that:

(a) No matter the bias or the variance, the values of the proposed model are far smaller than those of
the other five models, which means that the hybrid model has a higher accuracy and stability
than the other five models.

(b) The smallest value of the |DM| in both tables is 12.080501, which is much larger than the Zα{2
(Z0.005 “ 2.58, Z0.025 “ 1.96); as a consequence, the null hypothesis can be rejected and the hybrid
model observably outperforms the other five models.

5. Conclusions

With the conventional energy for electricity generation being quickly depleted, wind energy has
become the most significant new type of green renewable energy available, and contains enormous
power. However, due to the uncertainty of meteorological factors, it is still an extremely challenging
task to forecast wind speed. In this paper, we put forward a novel hybrid SSA–APSOSA–BP model
based on SSA and simulated annealing—adaptive particle swarm optimization algorithm (the specific
process is given in Figure 6). From the above discussion and analysis, the conclusions are expressed
as follows:

(1) Among the three single prediction methods (WNN, GRNN, and BPNN), the best one is BPNN,
which possesses a stronger prediction performance than the others (see Tables 6 and 7).

(2) In summer and autumn, wind speed forecasting errors are larger than in another two seasons
because of the more complex features of wind speed in Penglai.

(3) The experimental simulations indicate that the hybrid SSA–APSOSA–BP algorithm can perform
better than the other five algorithms. There is no difference between the means of the forecasting
series and the real series, and the accuracy of the wind speed forecasting results can be acceptable
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and credible within a reasonable range. The detailed reasons are provided in the above
experimental simulations Section 3.3.

Overall, the proposed hybrid model adds a new viable option for wind speed forecasting, and the
excellent performance and reasonable prediction accuracy reveal that they can be employed for time
series forecasting, especially for wind-speed forecasting in some cases.
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Appendix A

Appendix A.1 Singular Spectrum Analysis (SSA)

Standard SSA is made up of two stages, decomposition and reconstruction, and each stage
contains two steps.

Given a one-dimensional time series py1, ¨ ¨ ¨ , yNq of length N, where L (integer) is the window
length Lp1 ă L ă Nq, and K is the number of lagged vectors pK “ N ´ L` 1q, the specific steps are
as follows:

Stage 1: Decomposition

In this stage, there are two steps: embedding and singular value decomposition (SVD).

Step 1: Embedding.

Form the trajectory matrix of the series X px1, ¨ ¨ ¨ , xKq, which can be expressed by:

X “

»

—

—

—

—

—

—

–

y1 y2 y3 ¨ ¨ ¨ yk
y2 y3 y4 ¨ ¨ ¨ yk`1
y3 y4 y5 ¨ ¨ ¨ yk`2
...

...
...

. . .
...

yL yL`1 yL`2 ¨ ¨ ¨ yN

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

LˆK

(A1)

what is noteworthy is that Tij, an element of X, stands for the i-th line and the j-th column, which
possess the characteristic Tij “ Ti ´ 1,j ` 1.

Step 2: SVD

Calculate the matrix SpS “ XXTq and the eigenvalues λ1, ..., λL. of S, which are the decreasing
sequence λ1 ě ... ě λL ě 0. Furthermore, U1, ... , UL represent the corresponding orthogonal
eigenvectors of the matrix S. Lastly, the SVD of the trajectory matrix X can be expressed through
Equation (A2):

X “ X1 ` ...`Xd (A2)

where Xi “
a

λiUi vT
i having rank 1, d “ ti, such that λi ą 0u and vi “ XTUi{

a

λi pi “ 1, ..., dq are
elementary matrices. The group p

a

λi, Ui, vT
i q will be known as the i-th eigentriple (abbreviated as ET).

Stage 2: Reconstruction

This stage is subdivided into two steps: grouping and diagonal averaging.
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Step 3: Grouping

Firstly, we divide the abovementioned matrix Xi into m groups, which are different from each
other, and then add up the total matrices in each group. Next, let I “

 

i1, ..., ip
(

, i1, ..., ip stand for
the indices of each group, and then the I-th group resultant matrix XI can be described as below:
XI “ Xi1 ` ...` Xip . Here, we divide I “ t1, ..., du into two different subsets I1 “ t1, ¨ ¨ ¨ , ru , and
I1 “ tr` 1, ¨ ¨ ¨ , du, then XI can be written as Equation (A3):

XI “ XI1 ` ...`XIm (A3)

Step 4: Diagonal Averaging

In this step, transform the mentioned grouped matrix XI into a new series of length N and set
X “ pxijqL ˆ K, if L ą K, x˚ij “ xji, otherwise x˚ij “ xij. Finally, p f1, ¨ ¨ ¨ , fNqcan be converted to a series
by Equation (A4):

fk “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1
k`1

k`1
ř

m“1
ym,k´m`2 0 ď k ď L˚ ´ 1

1
L˚

L˚
ř

m“1
ym,k´m`2 L˚ ď k ď k˚

1
k`1

k`1
ř

m“1
ym,k´m`2 k˚ ď k ď N ´ 1

(A4)

in which L˚ “ minpL, kq, k˚ “ maxpL, kq. In this method, the first r main constituents can be viewed as
the most vital information, the rest are considered the noise of the original data.

Appendix B

Appendix B.1 Particle Swarm Optimization

The core of the PSO is learning the foraging behavior of birds. Assuming a forest setting, the birds
do not know the position of the food. However, they can receive some information concerning the
food location, and then search for the nearest food. These birds can be treated as the particles in the
PSO algorithm; each particle can be regarded as a candidate solution in search space (n dimensions).
Each particle continues to search for a better position by adjusting its velocity viptq “ rv1

i , v2
i , . . . , vn

i s
T;

in light of their flying memory, birds decide on the personal best (pbest) solution. Finally, the global best
(gbest) solution can be obtained by comparing the personal best solutions with each other. The updated
position and velocity rules are defined as Equations (B1) and (B2):

vipt` 1q “ ωptqviptq ` c1r1ppbest´ xiptqq ` c2r2pgbest´ xiptqq (B1)

xipt` 1q “ xiptq ` vipt` 1q (B2)

where t is the current iteration, ω stands for the inertia weight, the particle position is xiptq “
rx1

i , x2
i , ¨ ¨ ¨ , xn

i s, r1 and r2 are random numbers in [0, 1], and the learning factors c1 and c2 stand
for weights of pbest and gbest, respectively.

Appendix B.2 Back Propagation Neural Network (BPNN)

We determined the input vector by normalizing each input value by Equation (B3):

V “ tViu “
xi ´ ximin

ximax ´ ximin
(B3)

where ximin and ximax are the minimal and maximal value of each input factor, respectively.
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Step 1: Calculate the outputs of all hidden layer nodes. Based on the input vector X, the weight ωij,
which is between the input layer and the hidden layer, and the hidden layer threshold O, compute
outputs H of the whole hidden layer node in Equation (B4). S is the number of the hidden layer nodes.

Hj “ Gp
n
ÿ

i“1

ωijxi ´ ajq, j “ 1, ¨ ¨ ¨ , s (B4)

Gpxq “
1

1` e´x (B5)

Step 2: Make a calculation about the output data of neural network, according to outputs H of all
hidden layer nodes, the weights ωij, and the weight λ using Equation (B6):

Ok “

l
ÿ

j“1

Hjωjk ´ λk, k “ 1, . . . , p (B6)

Step 3: Depending on the predicted output O and the expected output Y, calculate the error using
Equation (B7):

ek “ Yk ´Ok, k “ 1, . . . , p (B7)

Step 4: Update the weights by using the predicted error and the weights ωij ωjk in Equations (B8) and (B9):

ωij “ ωij ` ηHjp1´Hjqxi

m
ÿ

k“1

ωikek, i “ 1, . . . , n; j “ 1, . . . , s (B8)

ωij “ ωij ` ηHjek, k “ 1, . . . , p, j “ 1, . . . , s (B9)

Step 5: Update the thresholds using Equations (B10) and (B11):

aj “ aj ` ηHjp1´Hjq

m
ÿ

k“1

ωjkek, j “ 1, . . . , s (B10)

λk “ λk ` ek, k “ 1, . . . , p (B11)

Step 6: Repeat the above steps until the errors reach the preset accuracy.

Appendix B.3 Simulated Annealing (SA)

Definition 1. The main steps of simulated annealing are given as follows:

Step 1: Parameter initialization. Set the initialization temperature T0 as high as feasible and randomly
generate initial solution x0.
Step 2: Repeat the following until equilibrium temperature is reached: Tpkq pk “ 1, .., Lq pL is the
number of iteration).

(1) Generating the new solution x1 in the range of the solution X, set objective function Fpxq and
calculate Fpxq and Fpx1q:

∆F “ Fpx1q ´ Fpxq (B12)

(2) If ∆F ă 0, accept x1 as the new solution, else accept the worse solution x1 as the new one with
the probability in Equation (B13):

P “ e´∆Fpxq{KT (B13)

where K is the Boltzmann Constant.

Step 3: Repeat step 2 until the declining temperature reaches zero or the pre-set temperature T.
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