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Abstract: Water erosion causes reduced farmland productivity, and with a longer period of cultivation,
agricultural productivity becomes increasingly vulnerable. The vulnerability of farmland productivity
needs assessment due to long-term water erosion. The key to quantitative assessment is to propose a
quantitative method with water loss scenarios to calculate productivity losses due to long-term water
erosion. This study uses the agricultural policy environmental extender (APEX) model and the global
hydrological watershed unit and selects the Huaihe River watershed as a case study to describe the
methodology. An erosion-variable control method considering soil and water conservation measure
scenarios was used to study the relationship between long-term erosion and productivity losses and
to fit with 3D surface (to come up with three elements, which are time, the cumulative amount of
water erosion and productivity losses) to measure long-term water erosion. Results showed that:
(1) the 3D surfaces fit significantly well; fitting by the 3D surface can more accurately reflect the
impact of long-term water erosion on productivity than fitting by the 2D curve (to come up with two
elements, which are water erosion and productivity losses); (2) the cumulative loss surface can reflect
differences in productivity loss caused by long-term water erosion.

Keywords: long-term water erosion; productivity loss; 3D surface

1. Introduction

The soil controls the hydrological, erosional, biological, ecological and geochemical cycles and is
also important for humankind as the source of goods, resources and services [1–4]. Approximately
80% of the world’s agricultural land suffers moderate to severe land degradation due to long-term
soil erosion [5], such as Africa [6], Europe [7–9], South America [10] and Asia [11]. Cropped land
is particularly vulnerable to erosion due to the exposure of bare soil for lengthy periods and the
disturbance of the soil structure during farming operations, such as tillage [12]. Long-term water
erosion results in the loss of organic matter and, as a consequence, the loss of production and the
elimination of fertile land [13–15]. As a result of long-term water erosion, over the last 40 years, about
30% of the world’s cropland has become unproductive, and much of it has been abandoned [5,16]. Each
year, an estimated 10 million ha of cropland worldwide are abandoned due to the loss of productivity
caused by water erosion [17–19]. This in turn threatens food security and poverty, as well [20,21], and
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affects the sustainable development of agriculture. A quantitative assessment of farmland yield loss
caused by long-term water erosion is thus important.

The methods used to assess farmland yield loss are mainly long-term field experiments and model
simulations under soil loss scenarios. In long-term field experiments, the relationship between water
erosion (amount of water erosion or erosion depth) and crop yield is evaluated with a dimensional
curve [22]. Gao et al. [23] conducted a long-term field experiment and established the relationship
between erosion depth and the reduction of yield and biomass of the past 10 years by a dimensional
curve. Larney et al. [24] set erosion depths (0, 5, 10, 15 and 20 cm) of surface soil, which were removed
to represent different erosion severity for the past 16 years, and used multiple dimensional curves to
find the relationship between water erosion and crop yield. The long-term field experiment method can
more accurately simulate the dynamic change and the reduction of yield due to water erosion at present.
However, it needs long-term measured data in the field, and there are difficulties to characterize the
relationship of yield loss with long-term water erosion by limited field experiments [25].

The model simulation method was used to simulate soil erosion and productivity under soil
loss scenarios based on the natural, process-based simulation model [26]. Ye and Van Ranst [26]
used land degradation scenarios (the no degradation scenario, the current scenario and the double
degradation scenario) to quantify the long-term water erosion impact on food crops based on the
web-based land evaluation system (WLES) model. However, the yield loss they simulate considered
little the cumulative amount of water erosion. Other studies [22,23] have found that with a longer
planting time, there would be a cumulative increase in the amount of water erosion and an accelerated
reduction in crop yield. Therefore, the combination of the WLES model and land degradation scenarios
is not suitable for expressing the relationship between the cumulative amount of water erosion and the
loss in productivity.

In order to assess the effect of long-term water erosion on a large or global scale, an effective
method with the 3D (three-dimensional) surface [27] considering accumulated soil loss scenarios is
needed. The method comes up with three elements, which are time, the cumulative amount of water
erosion and losses in agricultural productivity. The 3D surface is able to quantify the relationship
by three elements, while the 2D curve can only express two elements, which are soil erosion and
productivity losses [24,28].

This paper proposes a quantitative method with the 3D surface to calculate productivity loss due
to long-term water erosion at a large scale with a lack of field experiments. This paper selected the
agricultural policy environmental extender (APEX) model with localization parameters to estimate soil
erosion and its effect on crop. After that, an erosion variable-controlled method was used to consider
the effect of the cumulative amount of water erosion and the developed 3D surface to (come up with
three elements, which are time, the cumulative amount of water erosion and productivity losses) based
on the logistic curve model [28] to study the relationship between long-term erosion and productivity
loss. The 3D surface is important for understanding the effects of long-term erosion on productivity.

2. Materials and Methods

2.1. Study Area

This paper chose the middle and upper reaches of the Huaihe River watershed as the study area,
as shown in Figure 1. The Huaihe River watershed is one of the seven major river watersheds in China.
It flows from the west to the east, bordering the Huanghe River (Yellow River) in the north and the
Yangtze River in the south. Starting in the Tongbai Mountains in Henan province, its waterway is about
1000 km long, and its catchment area is about 1.9ˆ 105 km2 [29]. The area of its cropland is 120,542 km2,
and the cropland is characterized by extreme slopes covering 10,413 km2 of the overall cropland area.
Water erosion rates as high as 35 Mg¨ha´1¨year´1 occur across nearly 22% of the watershed area.
Inappropriate land use practices, such as extensive cultivation, cultivating on steep slopes (over 27%)
and deforestation, in combination with the lack of conservation practices and mismanaged construction



Sustainability 2016, 8, 675 3 of 18

projects, aggravate water-induced erosion [30]. Average annual precipitation is 728 mm; the yearly
average maximum daily temperature is 20.6 ˝C; and the yearly average minimum daily temperature is
10.0 ˝C. The main crops are maize and rice. Based on HydroSHEDS (WWF, Washington, DC, USA),
the study area can be divided into 21 small watershed units and 68 subarea units.
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Figure 1. Study area (the basin ID was adopted from HydroSHEDS).

The APEX model was developed to extend the Environmental Policy Integrated Climate (EPIC)
model [31] capabilities to whole farms and small watersheds, based on watershed and subarea
units [32]. According to the HydroSHEDS basin [33], the world can be divided into a subarea global
scale to fit the APEX model precision requirement. The most important data for each subarea, such as
weather and environment, were used as input data to simulate the characteristics of each watershed.

2.2. Basic Idea and Research Framework

‚ Numerical simulation of the natural geography process:

Natural, process-based simulation models can help to interpret complex natural geography
process, environmental evolution and policy [34,35]. The agricultural policy environmental extender
(APEX) model was developed to estimate soil productivity as affected by erosion, and it simulates
approximately eighty crops with a crop growth model using unique parameter values for each
crop [34,36]. The APEX model was constructed to evaluate various land management strategies
considering sustainability, erosion (wind, sheet and channel), economics, water supply and quality, soil
quality, plant competition, weather and pests [34]. Based on localization parameters and localization
data, the APEX model can effectively simulate the natural environment process of the study area.
Therefore, this paper selected the APEX model with localization parameters to estimate soil erosion
and its effect on crops.

‚ Relationship between erosion and productivity:

Currently, field experiments find that there is a cumulative effect on productivity with long-term
water erosion [22,23]. However, the models with soil loss scenarios consider little of the cumulative
amount of water erosion. Therefore, this paper considered all water erosion scenarios from the most
severe erosion scenario to the moderate to no erosion scenarios and used the yield under the no erosion
scenario as the optimal yield, as well as the other yield under erosion scenarios as the erosion yield.
The residual between the erosion yield and optimal yield is the yield loss by erosion. In each year, the
yield loss by erosion was affected by the cumulative soil erosion. This study is concerned with the
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productivity losses in particular years compared to the productivity in a scenario of no water erosion.
Therefore, the length of time that the farmland had been planted was not considered.

‚ Logistic fitness model:

The logistic curve model could quantify the relationship of hazard and loss [28]. However, curves
will lose the information when there are three elements, such as time, the cumulative amount of soil
erosion and losses in agricultural productivity. The 3D surface was able to quantify the relationship by
three elements [37], while the 2D logistic curve could only express two [24,28]. Therefore, this paper
selected the 3D surface to quantify the long-term water erosion impact on food crops.

The study consists of three basic steps: (1) build the APEX model with the localization parameters
and the localization data of the study area; (2) based on the erosion variable-controlled method, the
long-term relationship between erosion and loss of productivity is constructed; (3) the cumulative
years, the cumulative amount of water erosion and the loss of productivity are used to build the 3D
surfaces expressed as water erosion intensity-cumulative years-yield loss. The research framework is
described in Figure 2.
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Figure 2. Research framework: (a) build the agricultural policy environmental extender (APEX) model
with localization parameters and localization data of the study area in order to simulate long-term
water erosion and productivity; (b) use the soil and water conservation measures’ scenarios to get a
group of samples of long-term water erosion intensity and yield and build the relationship between
cumulative years, cumulative soil erosion and the yield loss, which is the residual between the erosion
yield and optimal yield; (c) use the 3D surface based on the logistic model to quantify the loss of
productivity affected by long-term water erosion.

We selected the middle and upper reaches of the Huaihe River watershed as a case and used
the agricultural policy environmental extender (APEX) model [38], which is an emerging tool for
landscape and watershed environmental analyses, as a tool to simulate erosion and productivity, and
we used the IPCCAR5 scenario 2P6 data [39,40] as the long-term future climate data in the APEX
model. Then, we built accumulated soil loss scenarios, with different soil and water conservation
measure factors to represent accumulated erosion severity, and we used 3D surfaces to express the
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relationship between the cumulative amount of water erosion, the loss of productivity and cumulative
years; thus, we quantitatively assessed the loss of productivity due to long-term water erosion.

2.3. Data

Table 1 shows the contents of the database used for the global-scale water erosion evaluation.

Table 1. Datasets for global-scale water erosion evaluation.

Data Name Data Content Spatial Resolution Temporal
Resolution Data Sources and url

DEM Global elevation 0.00833˝ ˆ 0.00833˝ 1997 USGS [41], ftp://edcftp.cr.usgs.gov/
data/gtopo30/global/

Slope Global slope 0.0833˝ ˆ 0.0833˝ 1997 GAEZ [42], http://www.gaez.iiasa.ac.at/

Soil Properties

Global soil distribution
raster image and physical
and chemical characteristics,
such as: pH, soil depth and
other information

0.0833˝ ˆ 0.0833˝ 1995
ISRIC, http://www.isric.org/data/isric-
wise-derived-soil-properties-5-5-arc-
minutes-global-grid-version-12 [43]

Meteorological
Global precipitation,
temperature, solar radiation
and other information

0.5˝ ˆ 0.5˝ 1971–2099
Inter-Sectoral Impact Model
Intercomparison Project RCP2.6 [44],
http://pcmdi9.llnl.gov/

Planting Area Global cultivation
crop region 0.0833˝ ˆ 0.0833˝ 1992

Sustainability and the Global
Environment, University of
Wisconsin-Madison [45],
http://nelson.wisc.edu/sage/data-and-
models/1992-croplands/index.php

Growth Period Planting time and growth
period length 0.0833˝ ˆ 0.0833˝ 2000–2015

Nelson Institute for Environmental
Studies at the University of
Wisconsin-Madison [46], http://nelson.
wisc.edu/sage/data-and-models/crop-
calendar-dataset/index.php; China’s crop
growth and soil moisture late value
farmland collection data [47],
http://data.cma.cn/data/detail/
dataCode/AGME_AB2_CHN_TEN.html

Irrigation Global annual irrigation
water of agriculture(mm) 0.5˝ ˆ 0.5˝ 1995

Institute of Industrial Science, University
of Tokyo [48], http:
//hydro.iis.u-tokyo.ac.jp/GW/result/
global/annual/withdrawal/index.html

Fertilizer Global annual fertilizer
application for maize 0.0833˝ ˆ 0.0833˝ 2012 Earth stat [49], http:

//www.earthstat.org/data-download/

River basin unit Global hydrological data Vector unit 2010 HydroSHEDS [33], http:
//hydrosheds.cr.usgs.gov/index.php

According to the Paris Agreement [50], the expected key result was an agreement to set a goal of
limiting global warming to less than 2 degrees Celsius (˝C), and the IPCCAR5 scenario 2P6 [38,39]
was similar to the Paris Agreement. Therefore, the IPCCAR5 scenario 2P6 was adopted as the
meteorological data, and productivity losses for 2000–2099 were simulated based on the year 2000.

Based on the APEX model requirements, the most important environmental data (such as
slope, elevation) and field management data were used to simulate each watershed and subarea
as Table 2. The basin number adopted a HydroSHEDS number. The soil number was adopted from
the ID provided by FAO and ISRIC. The field management data were adopted from the average
agro-meteorological station data for the study area; the sowing time is 8 June; the harvest time is
15 September; and the farming system is sole cropping. Meteorological data were adopted from
the IPCCAR5 scenario 2P6 in the study area. The daily maximum temperature, daily minimum
temperature, daily relative humidity, daily solar radiation and daily wind speed from 2000–2099 were
input into the APEX model.

The study area includes four dominant soil types [43], Mollic Gleysols (4339), Eutric Gleysols
(4329, 4326), Calcaric Gleysols (4319), lithosols with Chromic Cambisols (3085) [43]. The soil property
stratification data are shown in Table 3.

ftp://edcftp.cr.usgs.gov/data/gtopo30/global/
ftp://edcftp.cr.usgs.gov/data/gtopo30/global/
http://www.gaez.iiasa.ac.at/
http://www.isric.org/data/isric-wise-derived-soil-properties-5-5-arc-minutes-global-grid-version-12
http://www.isric.org/data/isric-wise-derived-soil-properties-5-5-arc-minutes-global-grid-version-12
http://www.isric.org/data/isric-wise-derived-soil-properties-5-5-arc-minutes-global-grid-version-12
http://pcmdi9.llnl.gov/
http://nelson.wisc.edu/sage/data-and-models/1992-croplands/index.php
http://nelson.wisc.edu/sage/data-and-models/1992-croplands/index.php
http://nelson.wisc.edu/sage/data-and-models/crop-calendar-dataset/index.php
http://nelson.wisc.edu/sage/data-and-models/crop-calendar-dataset/index.php
http://nelson.wisc.edu/sage/data-and-models/crop-calendar-dataset/index.php
http://data.cma.cn/data/detail/dataCode/AGME_AB2_CHN_TEN.html
http://data.cma.cn/data/detail/dataCode/AGME_AB2_CHN_TEN.html
http://hydro.iis.u-tokyo.ac.jp/GW/result/global/annual/withdrawal/index.html
http://hydro.iis.u-tokyo.ac.jp/GW/result/global/annual/withdrawal/index.html
http://hydro.iis.u-tokyo.ac.jp/GW/result/global/annual/withdrawal/index.html
http://www.earthstat.org/data-download/
http://www.earthstat.org/data-download/
http://hydrosheds.cr.usgs.gov/index.php
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Table 2. Major natural geographic features and attributes of the field management of maize.

Basin Number Slope (˝) Elevation (m) Basin Area (ha) Farming Area (ha) Soil ID * Irrigation (mm)

434220 2 30 936,950 5380 4339 15
434240 2 34 1,314,620 5296 4339 68
434250 5 25 312,450 3264 4329 614
434260 2 43 1,526,660 6302 4319 68
434270 2 28 1,662,910 8386 4326 83
434283 2 23 712,520 6811 4326 97
434282 30 31 672,040 10 3085 0
434284 16 56 678,050 6880 3085 8
434285 5 59 240,920 550 4326 1220
434291 2 27 200,540 4115 4339 310
434293 2 52 633,070 6949 4319 51
434292 2 46 406,800 4819 4319 189
434286 2 43 1,313,270 8133 4319 11
434287 2 27 56,680 4924 4326 86
434288 5 50 233,960 695 4326 86
434289 2 45 1,309,830 4966 4326 48
434294 2 88 607,860 5692 4319 113
434297 2 71 388,330 2185 4319 33
434296 2 53 694,240 1450 4319 2
434298 8 52 357,500 941 3085 0
434281 5 23 6830 10 4326 0

* Note: The soil ID was adopted from FAO and ISRIC.
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Table 3. Soil properties used in the simulation for the study site.

Soil ID
Property Soil

Layer
Depth

(m)
Bulk Density

(Mg¨ m´3)
Soil Water Content at Field

Capacity (mm´1)
Sand
(%)

Silt
(%)

Soil
pH

Organic
Carbon (%)

Cation Exchange
Capacity (cmol/kg)

Coarse
Fragment (%)

Electrical Conductivity
(mmho/cm)

4339

1 0.2 1.35 0.17 27 36 6.36 24.16 28.4 4 0
2 0.4 1.34 0.16 29 33 6.61 13.97 24.5 6 0.33
3 0.6 1.38 0.17 29 33 6.73 7.06 23.8 9 0.41
4 0.8 1.38 0.19 31 32 6.95 4.95 21.94 10 0.51
5 1 1.39 0.19 34 31 7.13 3.98 19.97 9 0.38

4329

1 0.2 1.24 0.21 37 34 6.02 13.12 16.09 8 0
2 0.4 1.37 0.16 36 31 6.15 5.71 15.14 11 0
3 0.6 1.4 0.15 36 30 6.28 4.01 14.47 14 0
4 0.8 1.43 0.15 37 29 6.38 3.02 14.56 16 0
5 1 1.46 0.16 36 29 6.48 2.79 15.18 18 0

4326

1 0.2 1.24 0.21 37 34 6.02 13.12 16.09 8 0
2 0.4 1.37 0.16 36 31 6.15 5.71 15.14 11 0
3 0.6 1.4 0.15 36 30 6.28 4.01 14.47 14 0
4 0.8 1.43 0.15 37 29 6.38 3.02 14.56 16 0
5 1 1.46 0.16 36 29 6.48 2.79 15.18 18 0

4319

1 0.2 1.27 0.19 35 27 7.29 9.23 21.11 7 1.07
2 0.4 1.55 0.16 33 29 7.66 4.97 16.72 9 1.84
3 0.6 1.57 0.16 39 26 8.01 3.16 14.58 10 1.7
4 0.8 1.61 0.16 38 25 8.06 2.16 15.75 12 2.8
5 1 1.43 0.16 41 24 8.31 1.91 13.51 13 2.73

3085 1 0.1 1.34 0.12 47 30 7.01 20.88 16.28 24 1.74
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2.4. Methodology

2.4.1. APEX Water Erosion and Localization Parameters

The APEX model can be subdivided into nine separate components defined as weather, hydrology,
soil erosion, nutrients, soil temperature, plant growth, tillage, plant environment control and
economics [32,51]. The APEX component for water-induced erosion simulates erosion caused by
rainfall and runoff and by irrigation (sprinkler and furrow). To simulate rainfall/runoff erosion, APEX
contains seven equations: the USLE [52], the Onstad–Foster modification of the USLE [53], RUSLE [54],
the MUSLE [32], two recently-developed variations of MUSLE and an MUSLE structure that accepts
input coefficients. The USLE depends strictly on rainfall as an indicator of erosive energy. However, it
provides only annual estimates. The MUSLE and its variations use only runoff variables to simulate
erosion and sediment yield. Runoff variables increase the prediction accuracy, and the MUSLE is
calculated by (1) and (2).

Y “ X ˆ EK ˆ CVF ˆ PE ˆ SL ˆ ROKF (1)

X “ 1.586 ˆ pQ ˆ qpq
0.56

ˆ WSA0.12 (2)

where Y is the sediment yield in t¨ha´1, EK is the soil erodibility factor, CVF is the crop management
factor, PE is the erosion control practice factor, SL is the slope length and steepness factor, ROKF is the
coarse fragment factor, Q is the runoff volume in mm, qp is the peak runoff rate in mm¨h´1 and WSA
is the watershed area in ha.

The parameters and sensitivity parameters were used for the study area. The parameters and
the value of water erosion are the curve number for moisture Condition 2 (CN2), which is 65, the
curve number index coefficient (CNIC), which is 1.5, conservation practice factor (PEC), which is 0.72,
and the peak runoff rate rainfall energy adjustment factor (APM), which is 0.1 [30].

2.4.2. Soil and Water Conservation Measure Scenarios

We used an erosion control variable method to study the relationship between long-term erosion
and productivity loss. Only the erosion was changed, and the remaining factors (such as weather, field
management practices, fertilizer) were controlled and unchanged. The conservation measure factor
was a number between 0 and 1. We set 12 conservation measures factors (0.01, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9 and 1) as soil and water conservation measure scenarios to represent different soil
and water conservation measures. The best soil and water conservation measure scenario represents
the minimum soil erosion where the soil and water conservation measures factor is 0.01; the worst
conditions and water conservation measures represent the maximum amount of potential soil erosion,
where the soil and water conservation measures factor is 1.

2.4.3. Soil Erosion and Loss of Productivity

Based on the soil and water conservation scenarios, we used cumulative years, erosion intensity
and loss of productivity to construct the surfaces.

‚ Productivity simulated by the APEX model:

A single model is used in APEX for simulating all of the crops considered (about 100). Each crop
has unique values for the model parameters. APEX is capable of simulating growth for both annual
and perennial crops. Annual crops grow from planting date to harvest date or until the accumulated
heat units equal the potential heat units for the crop [55].

Soil erosion has affected the soil supply of nitrogen (N), phosphorus (P), potassium (K) and the
depth of the soil layer [34,55,56]. Crop yield may be reduced through nutrient stress and temperature
stress because of soil erosion [57,58].
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‚ Loss of yield index calculation:

The yield loss index is defined here as the percentage of yield loss compared to the yield under
the best conservation measure scenarios, and it is calculated using Equation (3).

Lri “
pmaxpyq ´ yiq

maxpyq
(3)

where Lri is the yield loss index for crops due to soil loss under i conservation measure scenario, yi is
the yield under the i conservation measure scenario and maxpyq is the yield under the best conservation
measure scenario.

‚ Water erosion intensity calculation:

Water erosion is the cumulative soil erosion over cultivation years, and the water erosion intensity
is the proportion of water erosion under the worst soil conservation measure scenario. It was calculated
using Equation (4).

WEi “

n
ř

j “ 1
Sei

n
ř

j “ 1
Semax

(4)

where Sei is water erosion under i conservation measure scenario,
n
ř

j “ 1
Sei is the water erosion after

cumulative j year,
n
ř

j “ 1
Semax is the water erosion under the worst conservation measure scenario and

WEi is the water erosion intensity under the i conservation measure scenario.

‚ Cumulative loss 3D surface fitting:

From the basic idea section, we know that the 3D surface with the logistic model is better than
the 2D logistic curve [28]. This paper established a cumulative loss 3D surface model by adding the
cumulative years as the time dimension variable, calculated using Equation (5).

LR “
pa{ p1` bˆ exp pcˆWEiqq ´ a{ p1` bqq
pa{ p1` bˆ exp pcqq ´ a{ p1` bqq

ˆ pdˆ pi´ eq2 ` f q (5)

where a, b, c, d, e, f are the parameters of the surface model and LR is the loss yield index of crop due
to soil loss under all kinds of conservation measures. i is the simulation of the cultivation i year, and
WEi is the accumulated soil loss after cultivation i year. As can be seen, in any year, the cultivation
relationship is in the logistic curve shape.

2.4.4. Statistical Analysis

To confirm the significance of the results obtained by the cumulative loss 3D surface and the loss
curve, we performed a paired t-test for all small watershed units [59–62]. The test statistic for the
paired samples t-test, denoted t, follows the same formula as the one-sample t-test, calculated using
Equations (6) and (7).

t “
xdi f f ´ 0

sx
(6)

where:
sx “

sdi f f
?

n
(7)

where xdi f f is the sample mean of the differences; n is the sample size (i.e., the number of all small
watershed units); sdi f f is the sample standard deviation of the differences; sx is the estimated standard
error of the mean (s/sqrt(n)).
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The calculated t-value is then compared to the critical t value with df = n´ 1 from the t distribution
table for a chosen confidence level. If the calculated t value is greater than the critical t value, then we
conclude that the means are significantly different [62].

3. Results

3.1. Productivity Simulation and Verification

Summer maize was selected to evaluate its productivity in different water erosion scenarios and
to provide information on the status of regional productivity. The simulated summer maize yield of
Watershed 434298 (Lushan) and the observed yield of the Huaihe River Agricultural Meteorological
Station were compared to calibrate the simulated yield as in Figure 3.
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Figure 3. Simulated and observed yields in Huaihe River Watershed 434298 (Lushan).

Figure 3 shows the region’s productivity. In this region, the measured and simulated average
yields were 6.58 t/ha and 6.87 t/ha, respectively, in 2007–2012. In 2007–2012 and 2008–2012, the RMSE
was 1.53 and 0.78, respectively. Because the IPCCAR5 meteorological data had observed values for
1971–2004 and simulated values for 2005–2099, the simulated results contain an error, but the results
still reflect the productivity level in the region.

3.2. Comparison of Cumulative Loss 3D Surfaces and 2D Curves

The key to comparing the 2D curve with the cumulative loss 3D surface is whether yield loss is
affected by the cultivation year during long-term water erosion. For all watersheds, paired t-tests were
used for testing the R-square of the 3D surface and 2D curve (Tables 4 and 5).

Table 4. Paired samples statistics of the surface and curve.

Mean N Standard Deviation Standard Error Mean

R-square of 3D Surfaces 0.772 21 0.078 0.017
R-square of 2D Curves 0.284 21 0.145 0.032

Table 5. Paired samples Student test.

Paired Differences

t df Significance
(2-Tailed)Mean Std.

Deviation
Std. Error

Mean

95% Confidence
Interval of the

Difference

Lower Upper

R-square of Surface and
R-square of Curve 0.488 0.162 0.035 0.414 0.562 13.813 20 0.000
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From Tables 4 and 5, the mean R-square of the curve method is significantly lower than that of
the surface method (paired samples t-test, t = 13.813, df = 20, 2-tail Significance (p) < 0.05) (Table 5).
Thus, the mean R-square of the curve method and that of the surface method are significant. Therefore,
fitting by the surface has a much higher R-square than fitting by the curve for all watersheds. The loss
curve is fragmented, and the loss surface is continuous. The loss curve can be understood as a certain
point in time on the surface. The loss surface has a more accurate meaning and expression. The surface
fitting can thus more accurately reflect the impact of long-term water erosion on productivity.

3.3. Cumulative Loss 3D Surface from Long-Term Accumulated Water Erosion

We used the accumulated loss data of all of the hydrological response units in the Huaihe River
watershed to construct a representation of the cumulative loss surface. Figure 4a shows a long-term
loss rate of less than 100%, and Figure 4b shows a long-term loss rate of up to 100%.
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The 3D surfaces “water erosion intensity-cumulative years-loss rate” fit well. The R-square is 0.54
in Figure 4a and 0.78 in Figure 4b, both of which reflect a strong relationship between accumulated
water and soil loss, tillage years and crop yield loss. Figure 4a shows that the maximum potential loss
rate for one year is 9%. The maximum potential loss rate for 100 years is 35%. Figure 4b shows that the
maximum potential loss rate for one year is 40%, and the maximum potential loss rate for 100 years
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is 100%. Both figures indicate that long-term water and soil loss have an accumulated effect on crop
yield loss. Losses in crop yield increase with increasing tillage years, and the loss is irreversible.

The minimum loss for one year is almost zero, and the minimum accumulated productivity
loss is 0.2%, indicating that farmland productivity can be significantly maintained with soil and
water conservation measures. Inappropriate tillage practices may make the region’s productivity loss
rise to 100% in the future 100 years. However, the loss can be reduced with proper soil and water
conservation measures, making the case for the importance of soil and water conservation practices on
agricultural productivity.

3.4. Spatial Differences in Long-Term Water Erosion Impacts on Productivity

In order to understand the spatial differences in long-term loss, the 3D surfaces “water erosion
intensity-cumulative years-loss rate” were obtained for all of the watersheds in the study area.
The basins located in the study area are as shown in Figure 5.
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Figure 5 shows a pattern difference in potential productivity losses for all basins located in the
study area. The southern portion of the study area exhibits higher loss, especially Basins 434284 and
434282, where the largest potential productivity loss rate can reach 100%. The northern portion of the
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study area, which is relatively more suitable for crops, exhibits less loss. This indicates that long-term
water and soil loss have a significant impact on productivity loss, particularly in the southern region
of the study area. The cumulative loss 3D surface can in this way reflect the differences in potential
productivity loss.

4. Discussion

4.1. Significance of Cumulative Loss 3D Surface

Long-term water erosion has resulted in reduced farmland productivity and the reduction or even
disappearance of fertile land, affecting the sustainable development of agriculture. The relationship
between long-term water erosion and productivity under different soil conservation measure scenarios
can more explicitly guide farming at a macroscopic scale, increasing the importance of soil and water
conservation measures.

Using the accumulated loss 3D surface, we can assess the potential loss of productivity under
long-term water erosion, the maximum loss of productivity and the time when the maximum loss
happens. For a watershed that would reach a 100% loss rate within 100 years, planning structures
should be converted to grass or forest. The earlier the 100% loss occurs, the more vulnerable the
watershed productivity becomes due to soil erosion and the more urgent are reforestation measures.
For a watershed that would not reach 100% loss within 100 years, the lower the loss proportion is,
the more suitable the watershed becomes for planting. Higher loss proportions mean that greater
investment in soil and water conservation measures is needed to improve soil and water conservation
capacity. Using the accumulated loss 3D surface can effectively predict the future productivity due to
long-term water erosion, quantitatively assess regional vulnerability and guide regional investment in
conservation projects.

Inappropriate conservation measures have the potential of resulting in 100% productivity losses
in the mountainous areas of the southern study area over the next 100 years, and this will eventually
lead to desertification. This is consistent with the studies of areas in the Mediterranean at the same
latitude [63]. de la Rosa et al. [63] used an ImpelERO model to study soil vulnerability caused by
soil erosion in Western Europe. They found that, the maximum impact according to the long-term
productivity reduction (97%) was shown for the Odiaxere-Albufeira site in the Mediterranean region
and for the 2100 time horizon [63]. According to the EEA [64], the EU Mediterranean countries have
severe soil erosion problems, which can reach the highest levels and lead to desertification. However,
this loss can be reduced by soil and water conservation measures.

4.2. The Validation and Uncertainty of the Cumulative Loss 3D Surface

In order to verify the cumulative loss, we used long-term field experiment data from the published
literature. However, some studies did not report on cumulative loss. Zhou et al. [65] conducted a field
experiment in 2005–2013 in Heilongjiang. Comparing erosion conditions at an erosion of 20 cm with 30
cm, the yield loss at 30 cm of soil erosion was for the most part greater than what it was at 20 cm of soil
erosion. This suggests that the more the erosion, the greater the yield loss. Reductions in maize yield
in the first five study years were significant. However, after the first five years, reductions became
less consistent; and in this case, no cumulative erosion was found, and yield losses did not increase.
Gao et al. [23] studied the relationship between soil erosion and time in black soil and found that with
the accumulation of time, erosion continues to accumulate. The experiments of Zhou et al. [65] did not
set the cumulative erosion scenarios and resulted in loss without accumulation. For promotion, this
study considered the erosion in the second year based on the first year’s erosion, which conformed to
the real situation better.

Some research has suggested that soil management contributes to reducing the soil losses and
maintaining productivity, such as reduced tillage, mulching, appropriate cover crops or organic
amendments [66–71]. Some research [22,23] has suggested that with a lengthened cultivation period,
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productivity would be reduced and erosion would increase, meaning that there is a cumulative effect
on productivity. In a study of Cambisol soil, Tenberg et al. [22] found a relationship between yield
and the long-term erosion, as shown in Figure 6a. In this study, we compared our results by using the
lowest level soil and water conservation measure scenarios to assess the relationship between time
and yield, as shown in Figure 6b.Sustainability 2016, 8, x 14 of 17 
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Figure 6. Yield-time relationships for (a) the Cambisol of Itapiranga [22] (—bare soil; ——18% Sombrite;
¨ ¨ ¨ ¨ ¨ ¨ 30% Sombrite; ´¨ ¨ ´ fallow). Percentage of Sombrite refers to the rating of greenhouse shade
netting; 18% gives approximate effective cover of 30%; 30% a cover of >90%; (b) the Cambisol at the
434298 watershed (—— worst soil and water conservation measure scenarios).

For the same soil, different water conservation measure scenarios lead to different levels of soil
erosion intensity. The worst soil and water conservation measure scenario is similar to 18% Sombrite,
which means an effective vegetable coverage of 30%. The loss of yield in the Cambisol at Itapiranga [22]
is found to be similar to that in Watershed 434298 in the study area, both experiencing a significant loss
in productivity due to long-term water erosion. Meanwhile, the similar soil and water conservation
measures would result in similar losses of productivity.

5. Conclusions

Long-term water erosion results in reduced farmland productivity and the reduction or even
disappearance of fertile land, affecting the sustainable development of agriculture. The relationship
between the soil erosion and productivity under different soil conservation measure scenarios
can be made more explicit to guide farming on a macroscopic scale. This paper used an erosion
variable-controlled method to obtain soil and water conservation measure scenarios to study the
relationship between soil erosion, loss of productivity and cumulative years. It was concluded that
fitting by the 3D surface can significantly and more accurately reflect the impact on productivity due
to long-term water erosion than fitting by a curve. What is more, the accumulative loss 3D surface can
reflect regional differences in potential productivity loss. The research can help with understanding
the effects of long-term erosion on productivity.

This article seeks to add to the current body of knowledge on the impact of long-term soil
erosion on productivity through a vulnerability assessment. The methodology is limited by the local
parameter for the APEX model on large scales, so further research can focus on parameter adjustment.
Additional research could focus on the maximum productivity loss caused by water erosion for
different conservation measure projects. Research could also focus on the point when the maximum
loss would occur under a current soil and water conservation measure scenario.
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