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Abstract: China’s heating industry is a coal-fired industry with serious environmental issues. CO2

emissions from the heating industry accounted for an average 6.1% of China’s carbon emissions
during 1985–2010. The potential for reducing emissions in China’s heating industry is evaluated
by co-integration analysis and scenario analysis. The results demonstrate that there is a long-run
equilibrium relationship among CO2 emissions and the influencing factors, including energy intensity,
industrial scale, labor productivity, and energy productivity. Monte Carlo technique is adopted for
risk analysis. It is found that the CO2 emissions reduction potential of the heating industry will
be 26.7 million tons of coal equivalent (Mtce) in 2020 and 64.8 Mtce in 2025 under the moderate
scenario, compared with 50.6 Mtce in 2020 and 122.1 Mtce in 2025 under the advanced scenario.
Policy suggestions are provided accordingly.

Keywords: CO2 emissions; China’s heating industry; co-integration; scenario analysis; Monte
Carlo Simulation

1. Introduction

The vigorous growth of the Chinese economy has increasingly connected China to the global
economy. Meanwhile, China’s energy consumption has grown rapidly, making her the world’s leading
emitter of greenhouse gases. The Chinese government has faced unprecedented pressure to reduce
greenhouse gas emissions such as CO2 emissions. China’s CO2 emissions per capita exceed the world’s
average. China’s CO2 emissions per capita stands at seven tons of CO2 equivalent, compared with the
global average of 6.4 tons [1]. Therefore, the Chinese government is prioritizing the development of
sustainable green economy and energy conservation and ecological industry development.

Why is China’s heating industry the focus of this research? Firstly, China’s heating industry
has been preferentially developed by the government as a part of infrastructure construction. As
a necessity for the promotion of life quality during winter, more residents of south China demand
central heating. Secondly, we estimated that energy consumption of coal-related energy sources, on
average, accounted for 89.4% of the total energy consumption in China’s heating industry during
1985–2010. In fact, the coal consumption of the heating industry kept an average annual growth rate of
8.86% over 1985–2010. In 1985, coal consumption in China’s heating industry amounted to 87.44 Mtce,
and reached 411.72 Mtce in 2010. In addition, CO2 emissions of China’s heating industry grew at an
average annual rate of 6.39% over 1985–2010. In 1985, CO2 emissions of the heating industry accounted
for 4.64% of China’s CO2 emissions, while China’s CO2 emissions accounted for 9.29% of global CO2
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emissions. In 2010, CO2 emissions in the heating industry accounted for 5.01% of China’s total CO2

emissions, while CO2 emissions in China was responsible for 24.85% of global CO2 emissions.
Figure 1 shows that CO2 emissions in China’s heating industry grew rapidly, but its share in

China’s CO2 emissions fluctuated between 5% to 8.5% during 1985–2010.
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Figure 1. China’s heating industry’s CO2 emissions and its share in China’s CO2 emissions (1985–2010).

Investigating the potential of CO2 emissions reduction in China’s heating industry is necessary.
For the purpose of prediction, we select CO2 emissions (CE) of the heating industry as the major
objective of this research, and then select four main influencing factors: energy intensity (EI), industrial
scale (IS), labor productivity (LP), energy productivity (P). We specify four measurement indexes,
corresponding to the four factors as independent variables. The co-integration analysis approach is
utilized to ascertain the long equilibrium relationship among CO2 emissions and the four independent
variables. For the purpose of evaluating carbon emissions and future CO2 emissions reduction
potential, we design differentiated conditions in three scenarios. To certify the results of the prediction
are reliable, we apply the Monte Carlo simulation to carry out risk analysis.

The remainder of this paper is structured as follows. A brief literature review on CO2 emissions
mitigation is provided in Section 2. Section 3 presents the research methodology applied in this paper.
In Section 4, we describe the independent variables and the relevant data. The results are discussed in
Section 5. Section 6 provides policy suggestions and the conclusion of the paper.

2. Literature Review

From the literature review, we find that there have been many studies on CO2 emissions reduction,
whereas there are few studies on the potential of CO2 emissions mitigation in China’s heating industry.
Chen et al. [2] analyzed energy conservation and CO2 emissions reduction potential of different
models for urban heating in China. Niu et al. [3] analyzed energy consumption of rural household
heating under comfortable temperature in the Loess Plateau of Gansu Province in China. Their
results proposed improvement of rural household’s thermal comfort. Johannes et al. [4] assessed
and compared environmental impacts of existing new technologies for space heating in Germany.
Mehdi et al. [5] analyzed the socio-eco-environmental impact on simple and combined heat and power
generation. Chang et al. [6] found that building-integrated solar thermal systems is the dominant
factor for disseminating solar water heating system in metropolitan areas. The study also find that
fiscal policies are necessary to incent industrial heating saving energy. Ioan et al. [7] estimated energy
conservation potential of heating stations and provided a set of reasonable suggestions to minimize
the environmental impact of heating stations. Barkenbus [8] compared different income groups in
America and found that the lower-income group set the thermostat higher in heating season than other
income groups. It concluded that it is difficult to make Americans set their indoor temperature lower
to realize energy conservation, so the use of programmable thermostats is not of much use for energy
conservation. It is suggested that a social marketing strategy should be adopted to realize energy
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conservation. Graham [9] examined the relationship between energy efficiency of space heating and
greenhouse mitigation and peak demand. It was found that in the long term, energy savings from
efficient measures will be contracted with the efficiency rebound.

Wang et al. [10] decomposed CO2 emissions of the residential and industrial energy consumption
of China over 1996–2012. The results showed that the determinants influencing the CO2 emissions
is economic activity; and in order to reduce CO2 emissions, energy intensity should be reduced, and
the energy mix and industrial structure should be adjusted. Xue et al. [11] employed the Granger
causality test to explore the relationship among CO2 emissions, energy consumption, and economic
development in nine European countries over 1970–2008. Risk analysis was applied to evaluate
the impacts of CO2 emission reduction on local economic development. Nan et al. [12] studied the
feasibility of adjusting both energy mix and industrial structure to realize the CO2 emissions reduction
targets. Through comprehensive simulation, feasible measurements for better sustainable development
by 2020 were proposed. Lin et al. [13] estimated CO2 emissions mitigation in China’s textile industry
by evaluating the CO2 intensity under different designed scenarios. Lin et al. [14] assessed the potential
of emissions reduction in construction industry through empirical study on the determinant factors
influencing carbon emissions in buildings.

Scenario analysis was employed to investigate the influences of information communications
technology on CO2 emissions at the macroeconomic level [15]. Victor [16] discussed the impacts of
scale and intensity on greenhouse gas emissions under several designed macroeconomic scenarios in
Canada using low growth simulation model. Greiner et al. [17] conducted simulations using scenarios
representing combinations of climatic, market, institutional and technological assumptions to assist
with industry planning across the whole of Northern Australia pastoral industry. Hao et al. [18]
adopted scenario analysis to analyze energy consumption and carbon emissions from passenger
transport vehicles in China. Samuel et al. [19] studied the uncertainty analysis of CO2 storage capacity
for different methods under three storage scenarios in China. Ajay et al. [20] assessed the development
of China’s future energy system by scenario analysis for China’s CO2 emissions in 2050.

3. Methodology

3.1. Co-Integration

The co-integration method is a very important econometric research method, which is usually
applied to probe into the long equilibrium relation among variables. Engle and Granger [21] showed
that if independent variable series which are integrated of the same order d, denoted as I (d), in
addition, their residuals of the linear regression are integrated of the order d-b, denoted as I (d-b), in
that way, these independent variable series can be considered to be co-integrated of the order d, b,
denoted as CI (d, b). This method enhances the forecasting stability of the model. When using time
series to find long-term co-integrated relationships, there is no need to transform the series.

Before co-integration analysis, it is required to test time series stationarity. The linear combination
with the variables could be stationary, which means that the long equilibrium relation between variables
exists. It is essential to ensure that the series are stationary before conducting the co-integration analysis.
Therefore, the unit root test is required.

Unit-root test methods are commonly applied to conduct stationary test, including the ADF test
(Said, 1984) [22] or the PP test (Phillips et al., 1988) [23].

The OLS regression method is the basis of the ADF test:

∆zt “ β0 ` α0t` α1zt´1 `
ÿm

i“1
βi∆zt´i ` εt (1)

where zt is the variable in the sample period t; ∆zt´1 is zt´1 ´ zt´2; εt denotes the independent and
identically distributed disturbance term with mean 0 and variance 1; t is the linear time trend; and m is
the optimal bandwidth.
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The null hypothesis that the unit root in the test of zt (i.e., zt~I (1)) equals the null hypothesis that
α1 > 0 in Equation (1). If α1 < 0 is significant, then the rejection of the null hypothesis of the unit root
could be accepted.

The PP test model and the ADF test model are similar, but PP test model is less sensitive to the
autocorrelation and heteroscedasticity of residuals.

Thus, both ADF test and PP test are adopted for unit root tests.
If each series is integrated of the same order, then it is suitable to investigate the long equilibrium

relationship among variables. Engle-Granger two-step approach [21], Johansen-Juselius approach [24]
and Johansen approach [25] are the most frequently adopted approaches. Generally, the Johansen
maximum likelihood test of co-integration is applied to where there is possibility of more than two
co-integrating vectors. Hence, the Johansen-Juselius method is adopted.

3.2. Risk Analysis

In this paper, future values of the variables are estimated according to the historical values of
the variables in the co-integration model; therefore, there is only one static prediction. Monte Carlo
simulation can avoid the shortcomings of the static prediction process. Thus, we adopt the Monte
Carlo simulation to conduct the risk analysis over the probabilities of prediction results.

Monte Carlo simulation was first developed by Metropolis and Ulam [26], and numerical results
were obtained by random sampling. The risk analysis addressed by Monte Carlo simulation includes
two parts: the possible values of the annual growth rates of the variables in the prediction period and
their corresponding probability.

Four specific steps are carried out in the Monte Carlo simulation:

(i) Ascertain the probability distribution of independent variables’ annual growth rates according to
available data series.

(ii) Substitute the annual growth rates of independent variables with a set of random values.
(iii) Calculate independent variables’ possible values and their corresponding probability distribution

in the prediction period.
(iv) Acquire independent variables’ probability distribution, then, describe their probability

distribution histograms and cumulative probability curve.

In other words, to ensure the forecast is reliable, risk analysis via Monte Carlo simulation is
adopted to testify the co-integration model and depict future variation trends in the annual growth
rates of the independent variables from a probability theory perspective.

This paper uses MATLAB to carry out the Monte Carlo simulation and repeats the simulation
process 100 thousand times.

4. Data

To carry out the research objective, we select CO2 emissions (CE), energy intensity (EI), industrial
scale (IS), labor productivity (LP), and energy productivity (P) as the basic research variables. Since
not all variables can be directly obtained, some of them need to be derived by calculation of relative
variables. We apply time series of each variable during the period of 1985–2010 for the empirical
analysis. Nominal data, such as GDP, are all converted to constant price (1985 = 100).

4.1. CO2 Emissions (CE)

Statistical data of CO2 emissions in China’s heating industry are not directly available, so
we estimated CO2 emissions through multiplying energy consumption by emissions coefficients.
Emissions coefficients of the CO2 emissions of the varied types of energy sources are estimated
according to the IPCC [1] coefficients. There are a lot of factors that can influence the CO2 emissions in
China’s heating industry. We emphatically analyze energy intensity, industrial scale, labor productivity,
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and energy productivity. The four factors considered in this paper are labeled as EI, IS, LP, and P,
respectively, for brevity.

4.2. Energy Intensity (EI)

Energy intensity (energy consumption/economic output) is one of the most important factor
influencing CO2 emissions. Lian [27] found that the increase in energy intensity can increase carbon
intensity. We suppose that energy intensity is positive to the CO2 emissions of China’s heating
industry. We use energy consumption per unit of industrial value added to represent EI. The data
of industrial value added in China’s heating industry come from CEIC China Database. The data of
energy consumption of China’s heating industry (unit: Mtce) come from the China Energy Statistical
Yearbook [28].

4.3. Industrial Scale (IS)

Industrial scale can directly influence carbon emissions in China. Dong et al. [29] concluded that
the growth of energy-related consumption caused by industrial value added is the major reason for
the rapid growth of greenhouse gas emissions, and the effect has offset the carbon emission reduction
from change in energy structure. With decreasing primary energy demand for industrial sectors, the
demand for secondary energy sources such as heat will increase. It is particularly critical to emphasize
the importance of energy saving and CO2 emissions mitigation in the heating industry.

Industrial scale is the direct cause of obvious increment in China’s carbon emissions. China’s
heating industry has developed rapidly as a key part of China’s infrastructure construction. With
its rapid development, the industry’s energy demand has increased. Increase in energy demand
and economic activity can result in increase in carbon dioxide emissions. Industrial expansion could
increase CO2 emissions, and industrial scale is expected to influence CO2 emissions positively. In
this paper, the share of industrial value added of China’s heating industry to China’s GDP is selected
to represent the variable industrial scale IS. The data come from CEIC Database and China Statistical
Yearbook [30].

4.4. Labor Productivity (LP)

Labor productivity can reflect the level of mechanization which can influence CO2 emissions.
According to ONS [31], decline in labor productivity accompanied by a reduction in unemployment
from over 8% to 5.6% led to decline in greenhouse gas emissions by almost 12% in Britain during
2008–2013. According to USIEA [32] and Trading Economics [33], there is also a simultaneous slowing
of labor productivity and a reduction in unemployment and carbon emissions in the United States and
Germany. Mazzanti et al. [34] used CO2 per unit of industrial value added to represent environmental
efficiency. It was found that labor productivity and environmental efficiency were positive to most
air emissions. Studying the Australian baking industry, Ferguson [35] illustrated that productivity
growth was not good for sustainability, and low labor productivity was good for employment and the
environment. In summary, labor productivity improvement can result in unemployment and increase
in carbon emissions to a certain extent. During the process of mechanization, labor productivity
improvement could replace workers with machines. In other words, improvement in labor productivity
can bring further mechanization, which will lead to higher energy consumption. Therefore, we suppose
that labor productivity is positive to the CO2 emissions of China’s heating industry. The industrial
value added per capita is selected to represent LP. Considering that heating power supply serves as a
necessity in people’s life, we choose population size within the heating supply areas as the index of
labor input. Similarly, the data come from CEIC China Database [36], and China Statistical Yearbook [30].

4.5. Energy Prodctivity (P)

Energy productivity is an important factor influencing energy efficiency which is directly related
to CO2 emissions. Patterson [37] found that energy productivity can be considered as a useful
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indicator for the energy efficiency of an industry. John [38] explored the relationship between energy
productivity improvement and energy consumption rebound effect, and found that the energy caused
by the rebound effects might not counteract all the realized energy conservation progresses in carbon
emissions in a short time, whereas, over a long time, increasing energy demand might offset completely
realized energy saved in carbon emissions. Wang et al. [39] found that technology had more stronger
influence on energy productivity growth than energy efficiency in China. Fan et al. [40] proved
that the impact of technological advance in reducing energy intensity is limited due to the rebound
effect. Zha et al. [41] found that with energy efficiency improvement, energy efficiency rebound
effect may occur. That means the expected benefits of energy conservation from energy efficiency
improvement may partially be offset by the new increase in energy demand. Zha et al. [42] found
that the improvement of energy efficiency in electricity can achieve better carbon emissions reduction.
However, because of the rebound effect, the reduction of carbon emissions from energy efficiency
improvement could be partly offset. The carbon emissions would not decrease proportionally.

Increase in energy productivity improves energy efficiency. Energy productivity improvement
will encourage industrial production. If energy price remains the same and energy demand increases,
even though energy efficiency improves, energy consumption will still increase. The extra energy
consumption promoted by economic activity will offset or even exceed the energy saved from the
improvement of energy efficiency; that is, energy consumption will rebound. According to the above
analysis, we assume that as the energy productivity of China’s heating industry improve, the carbon
dioxide emissions would increase. Because the relevant data are unavailable in China, we have to
select an index for energy productivity of China’s heating industry. Since central heating supply is the
main heating supply method in China, energy efficiency of central heating supply could be chosen as
index for energy productivity. Considering service properties of the central heating supply, we choose
per capita area of central heating supply as the index. That is, we divide the area of central heating
supply by the population density of the area of central heating supply. In other words, we choose per
capita area of central heating supply as index for energy productivity of China’s heating industry. The
data are obtained from China Statistical Yearbook [30].

4.6. Other Factors

In addition, other factors such as energy price may also have an impact on the carbon emissions.
Nevertheless, energy price is highly regulated and kept relatively low by the government in China.
In this case, consumers are not sensitive to the price, so we do not take per capita income into
consideration. We therefore ignored these two factors in our paper.

Energy substitution is another important factor influencing CO2 emission. However, historical
data on clean energy consumption of the heating industry are currently unavailable. Therefore, we are
unable to take this factor into consideration in this paper.

5. Results and Discussion

5.1. Results of Co-Integration Analysis

5.1.1. Results of the Unit-Root Tests

Both the ADF and the PP test are adopted to examine the stationary of all the variables. The tests
show that the test for the five variables are in levels and first differences (in Table 1).
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Table 1. Unit Root Test.

SERIES
ADF PP

NO TREND WITH TREND NO TREND WITH TREND

LNCE ´1.3319 ´3.4903 ** ´2.6160 ´3.2462 *
LNEI 1.8044 ´0.9492 1.2075 ´1.8736
LNIS ´0.2268 ´6.5477 *** ´0.7484 ´6.5478 ***
LNLP 2.9474 ´0.3332 ´0.5974 ´2.7223
LNP ´0.8136 ´3.2064 ´0.8996 3.2976
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To proceed with the co-integration analysis, the vector auto regression model (VAR) consisting 
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As shown in Table 1, both the ADF test and the PP test verify that the five variables are
first-difference stationary. As a result, we further test whether the long equilibrium relationship exists.

First, the Johansen co-integration rank test is carried out, which indicates the number of the
linearly independent co-integration vectors. The consequence of rank test is listed in Table 2.

Table 2. Unrestricted co-integration rank test of trace.

Hypothesized No. of CE(s) Eigenvalue Trace Statistic 0.05 Critical Value p-Value

None * 0.9344 146.0862 60.0614 0.0000
At most 1 * 0.7337 67.0751 40.1749 0.0000
At most 2 * 0.4133 28.7066 24.2760 0.0129
At most 3 * 0.3553 13.2444 12.3209 0.0349
At most 4 0.0176 0.5156 4.1299 0.5355

Note: Trace test indicates four co-integrating equation(s) at the 0.05 level. * denotes rejection of the hypothesis
at the 0.05 level.

5.1.2. Johansen–Juselius Co-Integration Rank Test

In Table 2, trace tests verify that four linearly independent co-integration vectors exist at the 5%
level. In Table 3, maximum eigenvalue tests suggest that three linearly independent co-integration
vectors exist at the 5% level.

Table 3. Unrestricted co-integration rank test of maximum eigenvalue.

Hypothesized No. of CE(s) Eigenvalue Max-Eigen Statistic 0.05 Critical Value p-Value

None * 0.9344 79.0112 30.4396 0.0000
At most 1 * 0.7337 38.3684 24.1592 0.0003
At most 2 0.4133 15.4622 17.7973 0.1085

At most 3 * 0.3553 12.7288 11.2248 0.0270
At most 4 0.0176 0.5156 4.1299 0.5355

Note: Max-eigenvalue test indicates three co-integrating equation(s) at the 0.05 level. * denotes rejection of the
hypothesis at the 0.05 level.

5.1.3. Selection of Lag Intervals for VAR Model

To proceed with the co-integration analysis, the vector auto regression model (VAR) consisting of
LnCE, LnEI, LnIS, LnLP and LnP is built. After that, it is required to determine lag intervals of the
VAR model. According to the Sequential modified LR test statistic (LR), Final prediction error criteria
(FPE), Akaike information criterion (AIC), Schwarz information criterion (SC), and Hannan–Quinn
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information criterion (HQ), the optimal lag order is chosen. The results indicate that a lag of 1 should
be selected (in Table 4).

Table 4. Selection order criteria.

Lag LogL LR FPE AIC SC HQ

0 26.9572 NA 1.10 ˆ 10´7 ´1.8298 ´1.5843 ´1.7647
1 135.7087 163.1272 * 1.08 ˆ 10´10 * ´8.8091 * ´7.3365 * ´8.4184 *
2 153.8009 19.5999 2.64 ˆ 10´10 ´8.2334 ´5.5337 ´7.5172

Note: Endogenous variables: LnCE, LnEI, LnIS, LnLP and LnP; exogenous variables: C; sample: 1985–2010.
* indicates lag order selected by the criterion.

Based on the analysis above, the co-integration equation can be obtained. In order to better explain
CE, we select and normalized the co-integrating vector, which is consistent with our expectations and
meets the economic reality. The normalized co-integration equation is obtained as follows:

LnCE “ 0.169710LnEI ` 0.273970LnIS` 0.447645LnLP` 0.628290LnP` 2.888034

p0.0500q p0.0786q p0.0148q p0.0000q p0.0505q
(2)

The standard errors are listed in parentheses.
From the standardized Equation (2), several conclusions can be obtained as below:
Firstly, a long equilibrium relationship exists among CO2 emissions and the influencing factors,

which include energy intensity, industrial scale, labor productivity, and energy productivity during
the period of 1985–2010.

Secondly, the positive coefficients of the variables demonstrate that an increase in energy
intensity, industrial scale, labor productivity, and energy productivity increase the CO2 emissions
in the long term, which is consistent with our expectation and the social economic reality in China.
Furthermore, the elasticity coefficients indicate that a 1% rise in energy intensity, industrial scale, labor
productivity, and energy productivity can result in a 0.170%, 0.274%, 0.448%, and 0.628% increase in
CO2 emissions, respectively.

Thirdly, both energy productivity and labor productivity improvements have the strongest
impact on CO2 emissions. Industrial scale is closely associated with CO2 emissions. The elasticity
coefficient of energy intensity is lower than the elasticity coefficient of the other three variables. In
China, rapid economic development facilitates urbanization and industrialization. With GDP growth,
industrial scale expands. Rapid development of industrialization results in energy consumption
expansion. Mechanization is the inevitable result of rapid industrialization. Mechanization can result
in more machines and less labor input, and can improve labor productivity. Improvement in labor
productivity could lead to machines taking the place of workers. While energy productivity improves
and energy price remains the same, more energy can be consumed than before. Improvements in
energy productivity and labor productivity accelerate mechanization and industrialization, leading to
more energy consumption. Meanwhile, energy price has been relatively low in China as it is regulated
by the government. As a result, the underestimated energy price is unable to contribute to energy
conservation. Heating fees is also controlled to low levels by the government, which limits the impact
of heat price on carbon dioxide emission reduction.

In summary, we regard this model as reasonable, because it is consistent with our expectations
and it adequately explains China’s current economic reality. Subsequently, we conduct the stability
test for the co-integration model.

5.2. Stability Test

The results of the stability test presented (in Table 5) show that all the eigenvalues of adjoined
matrix lying inside the unit circle. Thus, the VAR model is stable and reliable.
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Table 5. Stability Condition.

Root Modulus

0.9725 ´ 0.0161i 0.9727
0.9725 + 0.0162i 0.9727
0.0880 ´ 0.7883i 0.7932
0.0880 + 0.7883i 0.7932

´0.7046 0.7046
0.5600 ´ 0.2145i 0.5996
0.5600 + 0.2145i 0.5996

0.01081 ´ 0.3412i 0.3414
0.01081 + 0.3412i 0.3414

´0.2361 0.2361

5.3. Model Fitting Accuracy

We firstly verify the accuracy of the co-integration equation. As Figure 2 displays, the estimated
values of the model equation fit the actual values well. Next, we conduct verification on the forecast
function of the model.
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Figure 2. Actual, fitted and residual for the co-integration equation.

To ensure the forecast is reliable, energy intensity, industrial scale, labor productivity and energy
productivity data during the period 1985–2010 are substituted into Equation (2) and the estimates of
CO2 emissions of the heating industry during the past 26 years are obtained (Figure 3). It is found that
the curve of the fitted values fits the curve of actual values. Hence, we can proceed to forecast CO2

emissions in China’s heating industry.
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Figure 3. Actual and fitted values of CO2 emissions of China’s heating industry (Unit: Mtce).

Future CO2 emissions in China’s heating industry are able to be predicted by the co-integration
equation. Before prediction, we have to confirm the tendency of independent variables.

Figure 4 shows the changing trends of carbon dioxide emissions (CE) and energy intensity (EI),
industrial scale (IS), labor productivity (LP) and energy productivity (P). Based on the trend, we
suppose the average annual growth rates of these variables during 1985–2010 as the baseline scenario
(hereinafter referred to as BAU). Specifically, under the BAU condition, all the variables are assumed to
maintain their historical average growth rate. This makes it possible to predict the future CO2 emission
in China’s heating industry. That is, under the BAU condition, average annual growth rates of EI, IS,
LP and P are ´8.51%, 4.3%, ´18.3% and 26.5%, respectively.
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Figure 4. Tendency charts of independent variables (1985–2010).

Our forecast period is from 2011 to 2025 (12th Five-Year Plan, 13thFive-Year Plan, and 14th
Five-Year Plan), because this period is critical for China’s transition to sustainable development, and
the prediction of CO2 emissions during this period can provide references for policies on reducing
energy consumption and carbon emissions in China’s heating industry.

Upon the historical growth rates of all the independent variables mentioned above and the
co-integration equation (Equation (2)), the CO2 emissions in China’s heating industry in 2020 and 2025
are predicted as 786.85 Mtce and 1028.98 Mtce, respectively (in Figure 5).
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5.4. Mitigation Potential of CO2 Emissions in Different Scenarios

5.4.1. Scenario Design

In addition to BAU, we set two more carbon dioxide emissions reduction scenarios: the moderate
scenario and the advanced scenario. The three scenarios are set as follows: (i) The BAU scenario is
set on the basis of the historical growth rates of the variables during 1985–2010. The BAU scenario
reflects a possible trend of the growth of carbon dioxide emission if the industry develops in its
current way. The BAU scenario is the base for setting the other two scenarios. (ii) The moderate
scenario is an intermediate situation that the government implement a set of mild policies to guide
the industry to reduce CO2 emissions, and it is between the BAU and the advanced scenario. (iii) The
advanced scenario is a strict circumstance, in which the government implements a set of strict policies
to force the industry to reduce the largest amount of CO2 emissions within the economic reality. As
previously mentioned, the other two scenarios are based on the BAU scenario. Considering that a set
of carbon emission reduction policies may lower the development of the industry, we set the growth
rates of the variables a bit lower than the historical growth rate. According to the 13th Five-Year
Plan, GDP growth is expected to be 6.5%–7%, which floats within the range of 0.5%. Considering
the heating industry is closely related to people’s daily life, it is necessary to maintain a smooth and
stable development of the industry. Therefore, we set the change of the growth rates of the variables
within 0.5% under the designed scenarios. The advantage of the scenario analysis is that we can
have a relatively comprehensive analysis on the possible results of CO2 emissions, so that different
policies on energy utilization and carbon dioxide emissions can be compared. The purpose of setting
these three scenarios are not to provide precise estimates of the specific economic conditions but to
make references for the major factors that contribute to the future CO2 emissions reduction. All of the
hypothetical variables are shown in Table 6.

Table 6. Hypothetical variables under different scenarios.

Variables BAU Moderate Scenario Advanced Scenario

EI ´8.51% ´9% ´9.5%
IS 4.3% 3.8% 3.3%
LP ´18.3% ´18.5% ´19%
P 26.5% 26% 25.5%
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5.4.2. Risk Analysis

The above estimation is made on the historical trends of all the independent variables during the
sample period. However, the average annual growth rates of independent variables in the future is
not yet known. Reasonable predictions should consider multiple probabilities and their corresponding
consequences. Therefore, we adopt risk analysis, and focus on the most possible carbon dioxide
emissions of the heating industry and its corresponding probability in 2025.

We use the Monte Carlo simulation to generate random numbers in accordance with the
distributions of the annual growth rates of independent variables. The estimates of the dependent
variable (CO2 emissions of China’s heating industry) in 2025 can be generated upon these random
numbers. Conducting the simulations 100 thousand times, 100 thousand groups of random numbers
are generated, and accordingly 100 thousand possible values of carbon dioxide emissions in 2025 and
their corresponding probability distributions are calculated. From the Monte Carlo simulated analysis,
the distribution histogram and cumulative probability curves of CO2 emissions of China’s heating
industry in 2025 are presented in Figure 6.
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Figure 6. Distribution histogram and Cumulative probability curves of CO2 emissions in China’s
heating industry in 2025.

Figure 6 shows that under the BAU scenario, [155, 1120] Mtce is the probability distributions for
carbon emissions in 2025 with the significance level of 5%, and the probability of carbon emissions
in 2025 reaching 1120 Mtce is approximately 100%. Under the moderate scenario, [141, 1025] Mtce
is the probability distributions for carbon emissions in 2025 with the significance level of 5%, and
the probability of carbon emissions in 2025 reaching 1025 Mtce is approximately 100%. Under the
advanced scenario, [122, 919] Mtce is the probability distributions for carbon emissions in 2025 with
the significance level of 5%, and the probability of carbon emissions in 2025 reaching 919 Mtce is
approximately 100%. The predicted values of the carbon emissions are 1028.98 Mtce, 978.354 Mtce and
906.881 Mtce in 2025 under the BAU scenario, moderate scenario and advanced scenario, respectively.
Compared with the probability distributions, we find that the predicted values of carbon emissions in
2025 under the three scenarios lie in the maximum probability distribution.
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The Monte Carlo simulated analysis results satisfy our initial prediction.

5.4.3. Reduction Potential of CO2 Emissions

Using the co-integration equation (Equation (2)), the growth trends of the independent variables
under the differentiated scenarios mentioned above can be obtained, and we can thus predict future
values of CO2 emissions in China’s heating industry under the differentiated scenarios. Figure 7 and
Table 7 present the prediction results.
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Figure 7. Prediction on CO2 emissions of China’s heating industry under three differentiated scenarios
(Unit: Mtce).

Table 7. Forecast on carbon dioxide emissions of China’s heating industry in 2020 and 2025 (Unit: Mtce).

Scenario 2020 2025

BAU Scenario 786.849 1028.980
Moderate Scenario 760.155 978.354
Advanced Scenario 722.037 906.881

Table 7 shows the prediction results. CO2 emissions in China’s heating industry in 2020 will be
760.155 Mtce under the moderate scenario, and 722.037 Mtce under the advanced scenario, decreasing
by 3.39% and 8.24%, respectively, compared with the BAU scenario. CO2 emissions in China’s heating
industry in 2025 will reach 978.354 Mtce under the moderate scenario and 906.881 Mtce under the
advanced scenario, decreasing by 4.92% and 11.87%, respectively, compared with the BAU scenario.

After the estimates of potential of CO2 emissions reduction in China’s heating industry, estimating
the amount of CO2 emissions reduction and its impact on China’s CO2 emissions is possible. In the
moderate emission scenario, CO2 emissions in China’s heating industry transit from the BAU to the
moderate situation. In the same way, in the advanced emissions reduction scenario, CO2 emissions in
China’s heating industry transits from the BAU to the advanced stage.

Based on the estimates of CO2 emissions in China’s heating industry under the designed scenarios
listed in Table 7, the amount of CO2 emissions reduction and its impact on China’s CO2 emissions
under different scenarios are obtained (presented in Table 8).

From Table 8, we can see that there is considerable potential of CO2 emissions reduction in
China’s heating industry in 2020 and 2025. From the BAU to the moderate situation, 26.694 Mtce CO2

emissions can be reduced in 2020, accounting for 0.181% of China’s carbon dioxide emissions and
3.392% of the industry’s carbon dioxide emissions. In addition, 64.812 Mtce CO2 emissions can be
reduced in 2025, accounting for 0.327% of China’s total CO2 emissions and 8.237% of the industry’s
CO2 emissions. From the BAU to the advanced scenario, 50.626 Mtce CO2 emissions can be reduced in
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2020, accounting for 0.342% of China’s CO2 emissions and 4.920% of the industry’s carbon dioxide
emissions. In addition, 122.099 Mtce CO2 emissions can be reduced in 2025, accounting for 0.615%
of China’s CO2 emissions and 11.866% of the industry’s CO2 emissions. The results indicate that
there is a considerable CO2 emissions mitigation potential in China’s heating industry. Therefore, the
realization of CO2 reduction in China’s heating industry is achievable, which contributes to China’s
carbon dioxide emissions reduction strategy.

Table 8. CO2 emissions reduction in China’s heating industry and its impact on China’s CO2 emissions
under different carbon emission reduction scenarios.

Year

Moderate Scenario Advanced Scenario

CO2
Emissions
Reduction

(Mtce)

Impact on CO2
Emissions in
the Heating

Industry

Impact on
China’s CO2

Emissions

CO2
Emissions
Reduction

(Mtce)

Impact on CO2
Emissions in
the Heating

Industry

Impact on
China’s CO2

Emissions

2020 26.694 3.392% 0.181% 50.626 4.920% 0.342%
2025 64.812 8.237% 0.327% 122.099 11.866% 0.615%

6. Conclusions

This paper focuses on the estimation of potential of carbon emissions reduction in China’s heating
industry. We adopt the co-integration method to investigate the relationship between CO2 emissions
and factors including energy intensity, industrial scale, labor productivity and energy productivity. The
results indicate that a 1% growth in energy intensity, industrial scale, labor productivity, and energy
productivity lead to a 0.170%, 0.274%, 0.448%, and 0.628% increase in the industry’s CO2 emissions,
respectively. China’s heating industry has great potential for carbon emission reduction.

Policy implications of this paper can be provided for China’s heating industry as follows.
Firstly, there is need to lower the energy intensity of China’s heating industry. Efforts should be

made to enhance technical transformation and eliminate obsolete equipment with serious pollution and
intensive energy consumption to achieve improvement of energy efficiency in the heating industry. The
low-carbon concept should also be promoted in the heating industry. Meanwhile, energy conservation
and carbon dioxide emissions reduction policies should be promoted.

Secondly, as an energy intensive consumption industry, China should not irrationally expand its
heating industry but should ensure appropriate development by optimizing the resource allocation,
upgrading the industry and developing heat recovery technologies. Highly-efficient heating systems
and a variety of clean energy-source heating systems such as absorption heat pumps, geothermal
heat pump systems, air source heat pump systems, and drain-water heat pump systems should
be encouraged.

Thirdly, there is need to adjust the energy mix of China’s heating industry and change the situation
of heavy reliance on a single source of energy. China’s heating industry should make carbon dioxide
emissions reduction practically feasible and gradually reduce the consumption of coal-related energy
sources by substituting coal with other low pollution energy resources or clean energy, such as natural
gas, solar power, biomass energy, ground-source, water-source, air-source and nuclear power.

Fourthly, the improvement of labor productivity in China’s heating industry mainly comes from
the rapid development of industrialization and mechanization. It is necessary to put great efforts into
technology innovation. This should include the importation of advanced technologies, development of
new products, and enhancement of technical skills, especially the training of skilled high-tech labors.

Fifthly, in order to mitigate energy consumption rebound, it is required to realize energy
conservation while improving energy efficiency of China’s heating industry. The government should
implement a set of policies combing tax preference with pricing mechanism to guide the heating
industry to switch to less carbon-intensive energy, such as natural gas or coal bed gas.
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Lastly, although energy price is controlled to low levels by the government, its impact on CO2

emissions cannot be ignored. In the future, market-oriented energy pricing reform is necessary.
Consequently, considerable reductions in CO2 emissions in China’s heating industry could be realized,
which would significantly contribute to China’s carbon dioxide emissions reduction.
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