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Abstract: With the increasing focus on low energy buildings and the need to develop sustainable
built environments, Building Energy Performance Simulation (BEPS) tools have been widely used.
However, many issues remain when applying BEPS tools to existing buildings. This paper presents
the issues that need to be solved for the application of BEPS tools to an existing office building.
The selected building is an office building with 33 stories above ground, six underground levels,
and a total floor area of 91,898 m2. The issues to be discussed in this paper are as follows: (1) grey
data not ready for simulation; (2) subjective assumptions and judgments on energy modeling;
(3) stochastic characteristics of building performance and occupants behavior; (4) verification of
model fidelity-comparison of aggregated energy; (5) verification of model fidelity-calibration by trial
and error; and (6) use of simulation model for real-time energy management. This study investigates
the aforementioned issues and explains the factors that should be considered to address these issues
when developing a dynamic simulation model for existing buildings.
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1. Introduction

Over the last few decades, a number of energy simulation tools have been developed, such as
DOE-2, EnergyPlus, eQuest, ESP-r, IES-VE, TRNSYS, etc. These tools have been validated by exact
analytical solution, inter-program comparison, and a series of experiments with dedicated small test
cells [1–9]. However, in these studies, exact analytical solution and inter-program comparison were
based on idealized assumptions and approximations of buildings, which are in reality very complex,
and thus do not guarantee that the tools are fully capable of simulating the complex reality of buildings
(e.g., stochastic characteristics of occupant behavior). In addition, empirical validation studies have
only been conducted for simple situations under well-controlled and monitored environments. Such
experimental conditions differ considerably from the reality, in which buildings are used by stochastic
occupants under time-varying uncertain factors (e.g., internal heat gain, infiltration, outdoor intake,
weather, etc.).

Many attempts have been made to use whole building simulation tools for the energy-efficient
operation and management of existing buildings [10,11]. However, when these tools are applied
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to existing buildings, the mismatch between the predicted energy use and actual measured energy
use [12], typically termed the performance gap, is an increasing concern [13–16]. The magnitude of
this performance gap is non-negligible and the measured energy use can be as much as 2.5 times the
predicted energy use [16]. This gap is thus too significant to be overlooked.

Consequently, rather than reporting on a case study in which existing buildings are successfully
simulated, this paper discusses several crucial and unresolved issues that contribute to the
aforementioned performance gap. The aim of this study is therefore to investigate the issues that need
to be solved for energy simulation of an existing building. The issues reported in this paper are derived
from an experimental study on an actual office building. The issues to be discussed in this paper are as
follows: (1) grey data not ready for simulation; (2) subjective assumptions and judgments on energy
modeling; (3) stochastic characteristics of building performance and occupants behavior; (4) verification
of model fidelity-comparison of aggregated energy; (5) verification of model fidelity-calibration by
trial and error; and (6) use of simulation model for real-time energy management. In addition, this
study explains the factors that need to be considered in the process of energy simulation for an actual
case study.

2. Target Building

The target building (Figure 1) is located in Seoul, Korea. The building, constructed in December
2004, is 33 stories above ground and has six underground levels with a total floor area of 91,898 m2.
The primary use of the building is office space, but the lower floors of the building (from the 4th
floor underground to the 4th floor above ground) offer several restaurants, multipurpose halls, an
auditorium, sports facilities, and conference rooms. The façade of the building is a glass curtain wall
system, which has a window-wall ratio of approximately 70%. The glazing is low-e double pane.
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Figure 1. Target building [17].

The heating, ventilation, and air conditioning (HVAC) system of the building includes the
following: Constant Air Volume (CAV) for the lobby, Variable Air Volume (VAV) for offices, Fan
Power Unit (FPU) and Fan Coil Unit (FCU) for extreme control spaces requiring constant temperature
and humidity, three steam boilers, two absorption chillers and one centrifugal chiller for cooling, two
centrifugal chillers for ice storage, and seven heat exchangers. In total, the HVAC plant includes the
following: 47 Air Handling Units (AHU), 122 FCU, four packaged air conditioners, five chillers, one
ice storage system, five cooling towers, and three boilers.

EnergyPlus was selected as the Building Energy Performance Simulation (BEPS) tool. EnergyPlus
is based on the popular features and capabilities of BLAST and DOE-2, including variable time-steps,
integrated heat-and-mass balance-based zone simulations, input and output data structures tailored to
facilitate a third party module, and numerous HVAC-related functions [18].
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However, the EnergyPlus reference manual [19] states that EnergyPlus is not intended as a
completely flexible tool for direct modeling of the full complexity and exact layout of an actual system.
When using EnergyPlus, the simulationist needs to simplify the reality to respond to the capabilities
of EnergyPlus. For example, two interconnected hot and chilled water loops that operate at different
temperatures and serve different types of equipment cannot be modeled because EnergyPlus does not
have a corresponding object to represent [20]. In another example, EnergyPlus is not able to model
multiple HVAC components that serve a single zone since in EnergyPlus, a zone can only be served by
one HVAC component [20].

Maile et al. [20] reported on the critical approximations, assumptions, and simplifications of
simulation inputs (such as those for infiltration, internal heat gain from people, lights and equipment,
wind direction and speed, and data of HVAC components) as well as the shortcomings of BEPS tools.
Kim and Park [21] reported the limitations and issues of EnergyPlus for simulation of the dynamic
behavior of a double skin façade. Their study shows significant simulation errors in the prediction of
inner/outer glazing temperatures and cavity air temperature caused by the lack of data on convective
heat transfer coefficients and wind pressure coefficient [21].

The following sections describe the issues that need to be solved for a simulation model of
the case study office building (Figure 1). The following sections describe the development process
of the simulation model in terms of modeling, calibration, and the use of the simulation model in
energy management.

3. Issues in Modeling Process (Issues #1–3)

3.1. Grey Data Not Ready for Simulation (Issue #1)

It was difficult to gather accurate information on simulation inputs of the existing building.
Although EnergyPlus provides a default value and several options for uncertain inputs, in-depth
knowledge and engineering judgment is still required. Some of the inputs cannot be determined as
single deterministic values but should be treated as stochastic values. In such a case, the simulationist
should make an aleatory decision. For example, it is difficult to make a robust decision on the
determination of respective values for “fraction radiant/convective” with regard to heat gain from
people, lights, and equipment.

Similarly, information on architectural/mechanical/electrical systems is insufficient. A simulationist
might request relevant information from the engineers and/or designers of each domain. However,
the information received is unlikely to be well-structured. When such information is not available, the
simulationist should rely on his or her own assumptions.

In the target building, the facility manager was confident about the development of the simulation
model, but he was not fully aware of the types of Information and Data (IAD) required and how
the IAD were to be used in energy simulation. Thus, the IAD provided by the manager were not
well-documented and were not up-to-date. During site visits, it was observed that the use and
configuration of several rooms and floors had been changed and several FCUs had been added
after construction. Such changes were not recorded, and the authors therefore needed to rely on the
manager’s oral description. This issue demonstrates that in most cases, significant effort and time
should be spent on acquiring the maintenance history of existing buildings.

In the target building, the IAD for the fan airflow did not coincide with the IAD for the fan energy
use. A Building Energy Management System (BEMS) had been installed and 1692 measurement points
were continuously monitored at a sampling time of 15 min. Figure 2 shows the measured airflow and
fan electricity use for the supply fan from January 1 to January 5. Figure 2a,b is contradictory since
the fan airflow rate in Figure 2a does not match the fan electricity use in Figure 2b. Thus, we made
an assumption that the fan flow was correct based on the building’s usage schedule and the facility
manager’s opinion.
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Figure 2. Mismatching data between supply fan airflow rate and fan electricity use: (a) Fan airflow
rate; (b) fan electricity use.

3.2. Subjective Assumptions and Judgement on Energy Modeling (Issue #2)

It is usually assumed that the depth of a perimeter zone ranges from 3.5 m to 5.0 m [19]. Figure 3
shows the geometry model of the building and the thermal zones of the 7th floor. A typical floor, 7F,
has 14 zones including one interior (zone 7), two perimeters (zones 5, 8), two toilets (zones 1, 4), one
AHU room (zone 3), four elevator shafts (zones 6, 10, 11, 13), and four corridors (zones 2, 9, 12, 14)
(Figure 3c). Due to the lack of available data, subjective assumptions and judgment are necessary for
determining the depth of the perimeter zone (Figure 3).
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EnergyPlus provides information on a number of HVAC systems and controls. Since the
Input Output Reference of EnergyPlus is over 2000 pages [19], it is difficult to acquire an in-depth
understanding of all objects and controls. Therefore, a simulationist usually repeatedly uses his or her
frequent-use objects.

In addition, due to the topology rules, it is not easy to develop a simulation model that is identical
to the real building. For example, the target building uses heat exchangers for delivering steam
boiler heat to the heating coil (Figure 4a). Because EnergyPlus does not provide a library for heat
exchangers [19], the heat exchanger was modeled as shown in Figure 4b. The steam boilers were
modeled as hot water boilers, the efficiency of which is the same as that of the steam boilers.

Three plant loops in the building distribute cold water: for floors 6F–34F, for floors B6F–5F, and
for special IT rooms. The three loops are connected to the ice storage system for which the three chillers
provide cold water. Such interconnection between the three loops, the ice storage system, and the three
chillers cannot be modeled due to the topology rules. Hence, each loop was modeled as a stand-alone
case. In other words, in the model, each chiller is connected to the ice storage and then to each plant
loop (Figure 4c).

3.3. Stochastic Characteristics of Building Performance and Occupant Behavior (Issue #3)

A detailed energy audit and survey is important to reduce the uncertainty in building energy
simulation. However, there are inherent uncertainties due to the stochastic nature of inputs. Internal
loads (people, lights, and equipment), indoor set-point temperatures, the operation schedule of plants,
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and outdoor airflow intake are stochastic inputs and are not easily quantifiable. After several interviews
with the manager, the authors realized that, even though advanced automatic controls (e.g., enthalpy
control, night-purge control) had been installed, the building was discretionally operated by the facility
management team. For example, the outdoor intake rate was frequently changed when occupants
complained about stuffy or pungent air. Such irregular operation history has not been documented.Sustainability 2016, 8, 345  6 of 12 
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Since an actual building is influenced by stochastic environmental conditions and occupants’
behavior is also stochastic, a deterministic approach is not desirable. As an alternative, uncertainty
analysis has previously been introduced [22–24].
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The deterministic approach, taken by most engineers, is that each input is given as a single value,
and a definitive result is derived, whereas the probabilistic approach presents stochastic results based
on the stochastic range of inputs. This stochastic approach is considered more objective, rational, and
reliable than the deterministic approach since it is based on the stochastic nature of a building and its
occupants’ behavior. However, for conducting stochastic simulation, detailed information is needed on
inputs (mean, maximum, and minimum values of each input), which include aleatory and epistemic
uncertainty. It is worth noting here that epistemic uncertainty literally means a lack of knowledge and
information. In other words, it is not easy to take epistemic uncertainty into account.

In addition, the computation time required for uncertainty analysis hinders its application to
existing buildings. Table 1 shows the computation time required for monthly simulation. Since
uncertainty, as well as sensitivity analyses, demand at least hundreds of simulation runs, it was not
appropriate to investigate the stochastic characteristics of the building.

Table 1. Computation time for monthly simulation.

Month Computation Time

January 5 h 48 min
February 5 h 14 min

March 4 h 56 min
April 2 h 58 min
May 1 h 28 min
June 36 min
July 40 min

August 40 min
September 30 min

October 1 h 43 min
November 3 h 25 min
December 4 h 52 min

4. Issues in Calibration Process (Issues #4–5)

4.1. Verification of Model Fidelity-Comparison of Aggregated Energy (Issue #4)

Before attempting to calibrate the model, a comparison was made between the measured monthly
energy use and the simulation results (Table 2, Figure 5). The simulated electricity consumption
(Figure 5a) has a similar pattern to the actual measured data, and the Mean Bias Error (MBE) and
Coefficient of Variation of the Root Mean Squared Error (CVRMSE) are 4.0% and 7.6%, respectively.
In contrast to the simulated electricity consumption, the MBE and CVRMSE of gas consumption
(Figure 5b) are ´38.4% and 46.5%, respectively, indicating a significant difference between simulated
and measured data.

Even though there is good agreement between simulated and measured electricity consumption,
this does not guarantee the accuracy of the simulation model with regard to electricity use. Because
there was no sub-metered electricity data for fans, chillers, pumps, lights, equipment, etc., the
simulated electricity consumption was compared to the aggregated measured electricity data. For better
verification of the model fidelity, the simulation prediction must be compared with the sub-metered
data (hourly, daily, weekly, etc.). However, in most buildings, sub-metered data is not collected.

4.2. Verification of Model Fidelity-Calibration by Trial and Error (Issue #5)

In general, calibration can be performed in three ways: (1) trial and error; (2) gradient-based
optimization to find a set of unknown inputs that minimize the difference between the measurement
and prediction; and (3) Bayesian calibration which accounts for the stochastic nature of uncertain
inputs. The trial and error method was used in this study due to the relatively low computation time,
as mentioned in Section 3.3.
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Table 2. Comparison between measured energy use and simulation prediction.

Electricity Gas

Simulated 10,831,690 kWh 265,056 Nm3

Measured 10,257,547 kWh 426,132 Nm3

MBE 4.0% ´38.4%
CVRMSE 7.6% 46.5%

Sustainability 2016, 8, 345  8 of 12 

Table 2. Comparison between measured energy use and simulation prediction. 

  Electricity Gas

Simulated  10,831,690 kWh  265,056 Nm3 

Measured  10,257,547 kWh  426,132 Nm3 

MBE  4.0%  −38.4% 

CVRMSE  7.6%  46.5% 

 
(a) 

 

(b) 

Figure  5.  Comparison  between  measured  energy  use  and  simulation  prediction:  (a)  Electricity 

consumption; (b) gas consumption. 

4.2. Verification of Model Fidelity‐Calibration by Trial and Error (Issue #5) 

In general, calibration can be performed  in  three ways:  (1)  trial and error;  (2) gradient‐based 

optimization to find a set of unknown inputs that minimize the difference between the measurement 

and prediction; and  (3) Bayesian calibration which accounts  for  the stochastic nature of uncertain 

inputs. The trial and error method was used in this study due to the relatively low computation time, 

as mentioned in Section 3.3. 

In  order  to  reduce  the  previously mentioned  performance  gap  in  gas  prediction  (Table  2,  

Figure 5), the BEMS data was checked to estimate the outdoor air  intake and the  indoor set‐point 

Figure 5. Comparison between measured energy use and simulation prediction: (a) Electricity
consumption; (b) gas consumption.

In order to reduce the previously mentioned performance gap in gas prediction (Table 2, Figure 5),
the BEMS data was checked to estimate the outdoor air intake and the indoor set-point temperature
for January (Table 3). It was found that the initial values for these two inputs differed from the reality.
Initially, the boiler efficiency was assumed to be 0.8 due to lack of information. Therefore, in the revised
energy model, a boiler efficiency curve from the EnergyPlus data set was applied [19].
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Table 3. Corrected values.

Input Initial Value Corrected Value

Indoor set-point temperature 20 ˝C 22 ˝C
Minimum outdoor air flow 0.0094 m3/s¨ person 0.0150 m3/s¨ person

Boiler efficiency Fixed value (0.8) Efficiency curve

Table 4 and Figure 6 show a comparison between the measured and calibrated gas consumption.
It shows an MBE of 1.5% and a CVRMSE of 14.0% for monthly measurement, which are in good
agreement with ASHRAE [25].

Table 4. Comparison of gas consumption.

Measured Uncalibrated Model Calibrated Model

Gas 426,132 Nm3 262,383 Nm3 432,663 Nm3

MBE - ´38.4% 1.5%
CVRMSE - 46.5% 14.0%
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Figure 6. Comparison between measured gas consumption and calibrated simulation prediction.

In the “trial and error” calibration approach, only a small set of inputs were tested. Thus,
this approach is dependent on subjective intuition and assumptions by engineers. Even though
more rigorous calibration methods are available (e.g., optimization function, Bayesian calibration),
they were not adopted in this case since they require a considerably greater number of simulation
inputs and involve an extensive computation time. In this study, the following simulation inputs
remained unidentified:

‚ The chiller’s performance curve: deteriorated thermal characteristics of building envelope
(U-values, Solar Heat Gain Coefficient (SHGC)).

‚ Stochastic inputs: HVAC operation, heat and schedule of lighting, schedule of people
and equipment.

5. Use of Simulation Model for Real-Time Energy Management (Issue #6)

Most building energy simulation models that are developed in the design stage for the purpose of
energy and sustainability ratings are not utilized for the energy management and operation of existing
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buildings. If the energy simulation model is used for real-time energy management, it can facilitate
more rational decision-making by the facility manager. In many building control applications, the
simulation model is only used to respond to “what-if” scenarios. A simulation model can be ideally
used as part of optimal control which numerically finds the optimal control variables that minimize a
given objective function [26].

In addition, the simulation model should be continuously modified and calibrated during the
entire building life cycle. Up-to-date building information (system, internal heat gains, operation
schedule, controls, etc.) should be systematically stored and managed in BEMS and should be readily
available when required.

6. Conclusions

The purpose of this study was to investigate the issues involved in the energy simulation
of an existing building. The authors addressed the following issues: (1) grey data not ready for
simulation; (2) subjective assumptions and judgment on energy modeling; (3) stochastic characteristics
of building and occupants; (4) stochastic characteristics of building performance and occupants
behavior; (4) verification of model fidelity-comparison of aggregated energy; (5) verification of model
fidelity-calibration by trial and error; and (6) use of simulation model for real-time energy management.
Even though this study was conducted on the single target building, the issues addressed in the paper
are scalable to the application of whole building simulation tools to existing buildings.

The selected building is an office building of 33 stories above ground and has 6 underground
levels. When developing the simulation model of the building, it was difficult to obtain the relevant
data required. The building design and operation data (e.g., drawings, specifications, BEMS data, and
operation records) were neither well maintained nor up-to-date (Issue #1). In addition, subjective
assumptions and simplifications of the reality had been applied in an ad-hoc fashion (Issue #2). In
particular, several cases could not be modeled by the simulation tool due to topology rules. In
addition, the stochastic characteristics of building performance and occupants’ behavior (e.g., internal
heat generation, occupant behavior, HVAC operation) had been treated in a deterministic manner
(Issue #3). After completing the initial simulation model of the building, the simulation results were
compared to the energy data. The comparison had been made with the aggregated data rather than
the sub-metered data (Issue #4). Although the simulation prediction of electricity use was accurate
(MBE of 4.0% and CVRMSE of 7.6%), this does not guarantee “model fidelity”, since the comparison
was made between the aggregated measurement and the aggregated prediction (Issue #4). Due to the
extensive computation time required for uncertainty analysis, rigorous stochastic parameter estimation
(e.g., Bayesian calibration), and optimal control studies for real-time energy management could not be
attempted (Issues #3, 5, 6).

For better use of the simulation model for existing buildings, the aforementioned issues need to
be solved in the near future. A self-organizing machine learning model could be a candidate for the
EnergyPlus model with regard to Issues #1–3. With regard to the reduction of computation time for
stochastic performance prediction and real-time optimal control studies (Issues #3, 5, 6), a meta-model
could be an alternative (e.g., Support Vector Machine, Gaussian Process model). In addition, IEA
Annex 66 has been actively working to solve Issue #4.
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Abbreviations

The following abbreviations are used in this manuscript:

BEPS Building Energy Performance Simulation
MBE Mean Bias Error
CVRMSE Coefficient of Variation of the Root Mean Squared Error
CAV Constant Air Volume
VAV Variable Air Volume
FPU Fan Power Unit
FCU Fan Coil Unit
AHU Air Handling Units
IAD Information and Data
BEMS Building Energy Management Systems
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