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Abstract: This paper proposes an extended Stochastic Impacts by Regression on Population,
Affluence, and Technology (STIRPAT) model to investigate the factors driving industrial carbon
emissions in China. In the first stage, a spatial Durbin model is applied to investigate the determinants
of regional industrial carbon emissions. In the second stage, a geographically and temporally
weighted regression is applied to investigate temporal and spatial variations in the impacts of these
driving factors on the scale and intensity of regional industrial carbon emissions. The empirical
results suggest that the provinces with low carbon emissions act as exemplars for those with high
carbon emissions and that driving factors impact carbon emission both directly and indirectly. All
of the factors were investigated, except energy intensity, energy price, and openness, significantly
impact carbon emissions. Overall, the results suggest that spatial correlation, heterogeneity, and
spillover effects should be taken into account when formulating policies aiming at reducing industrial
carbon emissions. The paper concludes with relevant policy recommendations taking full account of
the regional industrial carbon emissions, heterogeneity and spillover.

Keywords: industrial carbon emissions; spatial Durbin panel data model; spatial spillover effects;
geographically and temporally weighted regression

1. Introduction

For the past two decades, China has been one of the world’s fastest growing economies, with an
average annual Gross Domestic Product (GDP) growth rate of 10.4% between 1990 and 2010. This,
combined with the fact that China is the world’s most populous country, has led to unprecedented
growth in energy demand, especially that for fossil fuels. The 2013 World Energy Outlook reports that
China and India accounted for about 10% of total world energy consumption in 1990 but around 24% in
2010. China’s economy rapidly developed between 1990 and 2010, and the country’s carbon dioxide
emissions more than tripled during this period. By 2010, China’s carbon emissions constituted 24% of
global emissions. After gains in energy efficiency coupled with deployment of cleaner energy, enabled
by economic development, China’s carbon intensity (measured in CO2 emitted per unit of GDP),
declined by 15% between 2005 and 2011. Projections indicate that China and India will continue to
lead not only future global economic growth but also future growth in energy demand, making up
34% of total world energy consumption in 2040.
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Electricity demand is the main driver of China’s emissions growth: coal-powered electricity
generation was responsible for almost all emissions growth between 1990 and 2010, despite notable
improvements in the emissions performance of coal-fired power generating processes. In addition,
the demand for large-scale infrastructure investments and Chinese products has grown in tandem
with the economy. This has motivated increased energy consumption—mainly of fossil fuels—by the
industrial sector, which accounts for around 70% of China’s total carbon emissions. The government
has recognized the need to prioritize reducing industrial-sector carbon emissions. This is reflected,
for example, in the country’s 12th Five-Year Plan, which aims to lower CO2 emissions per unit GDP
by 17% between 2010 and 2015. Provincial and local governments are central to implementing this
plan, which requires a systematic understanding of China’s industrial energy use and CO2 emissions
at sub-national levels. In particular, a spatial understanding—at the provincial and, where possible,
local government levels—would help policymakers identify the areas of the greatest energy-saving
and emissions-reduction potential.

Most past studies have investigated this issue at the national or aggregate level. The development
of spatial econometrics, however, has presented researchers with an opportunity to incorporate
spatial dynamics into their analyses of the trends and drivers of China’s carbon emissions. Most
of these studies empirically test the environmental Kuznets curve (EKC) hypothesis at the regional
or industry level. The EKC argument hypothesizes that there is a relationship between various
indicators of environmental degradation and economic development measured in terms of income
per capita. It argues that initially, environmental degradation rises as a country industrializes; as the
country develops economically and is able to invest in combating environmental degradation and the
economy shifts from industry to services, however, environmental outcomes improve. Prior work
using spatial panel data models has shown that China’s regional economic development is spatially
correlated with environmental quality [1–7]. By estimating a spatial panel data model with fixed
effects, Zhu et al. [8] (pp. 65–74) empirically investigated the EKC of China’s regional emissions of
industrial pollutants. They found that regions’ industrial pollutant emissions are strongly correlated
and that the spatial panel data model is more robust than the traditional panel model. Wang et al. [9]
(pp. 818–825) also applied a dynamic spatial panel data model to examine the relationship between
China’s environmental pollution and its economic growth. The results revealed that environmental
pollution is spatially correlated, supporting the hypothesis that the EKC does exist. Yao and Ni [10]
(pp. 1432–1438) and Xu and Deng [4] (pp. 30–43) applied spatial panel data models to analyze the
relationship between China’s carbon intensity and foreign direct investment (FDI). The results showed
that FDI decreases China’s regional carbon intensity due to FDI’s technology spillover effect, which
reduces CO2 emissions and associated carbon intensity. Yu [11] (pp. 93–101) also applied a spatial panel
data model to investigate the causes of low energy efficiency. That study found that both increases in
total factor productivity (TFP) and changes in industrial structure increased China’s energy efficiency,
with the former playing a more important role than the latter. Wei et al. [12] (pp. 478–488) conducted a
comparative study on China’s energy efficiency among countries and confirmed China’s low energy
efficiency. Wei et al. [13] (pp. 552–565), Choi et al. [14] (pp. 198–208) and Wang et al. [7] (pp. 2584–2600)
investigated the regional carbon emission efficiency for Chinese Provinces. However, previous studies
did not consider the spatial patterns and drivers of carbon emissions for China.

This paper seeks to contribute to the spatial understanding of patterns and drivers of industrial
carbon emissions in China. Such analysis is important due to the substantial nature of the cross-regional
variation in industrial carbon emissions. As such, for policies aimed at reducing carbon emissions to be
effective in China, they must be anchored in a comprehensive understanding of spatial dynamics and
reflect the variations in emissions reduction potential across regions. To provide such insights in the
form of more effective estimates, this paper applies a spatial econometric model, incorporating both
temporal and spatial effects, to investigate the factors influencing regional industrial carbon emissions.
Based on the estimations, the paper provides practical and effective policy recommendations for
reducing industrial carbon emissions in China.
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2. Materials and Methods

2.1. The Extended STIRPAT Model

Ehrlish et al. [15] (pp. 1212–1217) were among the pioneers proposing the IPAT (Impact,
Population, Affluence, Technology) accounting identity for the impact of human activities on
the environment. The IPAT equation, born out of a need to identify sources of human-induced
environmental change, posits that interactions between population size, affluence or economic growth,
and technological change impact the environment as follows:

I “ PAT (1)

where I represents environmental impact, P is population size, A is affluence or wealth per capita, and
T is the technology level. Though simple, the IPAT model emphasizes that environmental degradation
(or improvements) result from multiple factors acting together to have a compound effect on the
environment. The Intergovernmental Panel on Climate Change (IPCC) has used the IPAT model
to assess the contributions of population size, affluence, and technology on greenhouse gas (GHG)
emissions. Over time, empirical estimation of the equation has been strengthened by adding additional
socio-political and technical factors, thereby improving the equation’s predictive power. Some of
studies that have used the IPAT equation include Harrison [16], Raskin [17] (pp. 225–233), York [18]
(pp. 18–34), Shi [1] (pp. 29–42), Cole [19] (pp. 5–21), and Rosa [20] (pp. 509–512).

The major limitation of the IPAT equation is that, as an accounting identity, it does not allow
hypothesis testing because it assumes a proportional functional relationship between the IPAT factors.
Based on this limitation, numerous researchers have proposed alternative versions of the equation.
Notably, Dietz and Rosa [21] (pp. 277–300) present the IPAT equation in a stochastic manner and
propose a Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT)
model. In this approach, carbon emissions are modeled stochastically by regressing them on population,
wealth, and technology. The STIRPAT model is expressed as follows:

I “ aPb AcTde (2)

where a represents the model coefficient; b, c, and d are the coefficients on population, wealth, and
technology, respectively; and e is the error term. Environmental pressure is represented by I, population
size by P, wealth by A, and technology by T. Taking the natural logarithm of both sides leads to
Equation (3).

lnI “ lna` b plnPq ` c plnAq ` d plnTq ` lne (3)

The elasticity between the independent variables and the dependent variable is reflected in the
coefficients, which express the percentage change in the dependent variable arising from a 1% change
in the dependent variable, all else held constant. The STIRPAT model builds on the IPAT equation by
making it possible to test hypotheses, allowing estimation of the coefficients and decomposition of the
influencing factors, and allowing for the inclusion of other factors. Studies based on the model and its
adjustment include Dietz and Rosa [21] (pp. 277–300) and York et al. [22] (pp. 351–365).

This paper extends the STIRPAT model to investigate the various impacts of the factors driving
regional industrial carbon emissions in China. At the regional industrial level, the level or scale of
investment is considered a more important determinant of carbon emissions than is population size. As
a result, we place population size with the scale of investment in our model. Additional variables, such
as energy consumption structure, energy price, and openness (Openness: measured by the percentage
of FDI in total investment by industrial enterprises, unit: %.), are also included. The resulting extended
STIRPAT model is expressed as in Equations (4) and (5).

lnCS “ lna` β1 plnSIq ` β2 plnIEq ` β3 plnEIq ` β4 plnECSq ` β5 plnEPq ` β6 plnOPENq ` lne
“ α` β1 plnSIq ` β2 plnIEq ` β3 plnEIq ` β4 plnECSq ` β5 plnEPq ` β6 plnOPENq ` ε

(4)
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lnCI “ lna` β1 plnSIq ` β2 plnIEq ` β3 plnEIq ` β4 plnECSq ` β5 plnEPq ` β6 plnOPENq ` lne
“ α` β1 plnSIq ` β2 plnIEq ` β3 plnEIq ` β4 plnECSq ` β5 plnEPq ` β6 plnOPENq ` ε

(5)

where CS denotes the level or scale of carbon emissions (measured in 10,000 tons of industrial carbon
emitted), CI is carbon intensity (CO2 emissions per unit of industrial value-added, measured in
tons/10,000 Yuan), SI represents the scale of investment (measured by total assets of industrial
enterprises above a designated size, in 100 million Yuan), IE denotes industrial economic intensity
(measured by industrial added-value per employee), EI is energy intensity (measured by energy
consumption per unit of industrial added-value, in tons of standard coal per 10,000 Yuan), ECS is energy
consumption structure (measured by the percentage of total energy consumption that is industrial coal
consumption), EP is energy price (measured by producer price index for manufactured products), and
OPEN is openness (measured by the percentage of FDI in total investment by industrial enterprises).

2.2. Spatial Econometric Model with Carbon Emissions

Starting from the improved STIRPAT, we build a spatial econometric model by taking into account
the fact that carbon emissions are heterogeneous and spatially correlated among regions and industries.
As highlighted in Equations (4) and (5), the two dependent variables used in the analysis are industrial:
the level of carbon emissions and carbon intensity. The spatial panel data econometric model, which
integrates spatial econometrics (spatial effects) and panel data (time effects), this paper utilizes a space
and time fixed-effects in a spatial econometric framework. This makes spatial econometric analysis
more efficient. The spatial panel data econometric model includes three basic models: the spatial lag
panel data model, the spatial error panel data model, and the spatial Durbin panel data model. These
models are discussed in detail below.

2.2.1. Spatial Lag Panel Data Model (SLPDM)

The spatial lag panel data model (SLPDM) used in the paper is represented as follows:

lnCSit “ δ
N
ř

j“1
wijlnCSit ` lna` β1 plnSIitq ` β2 plnIEitq ` β3 plnEIitq ` β4 plnECSitq ` β5 plnEPitq

`β6 plnOPENitq ` µi ` λt ` lneit

“ δ
N
ř

j“1
wijlnCSit `α` β1 plnSIitq ` β2 plnIEitq ` β3 plnEIitq ` β4 plnECSitq ` β5 plnEPitq

`β6 plnOPENitq ` µi ` λt ` εit

(6)

lnCIit “ δ
N
ř

j“1
wijlnCIit ` lna` β1 plnSIitq ` β2 plnIEitq ` β3 plnEIitq ` β4 plnECSitq ` β5 plnEPitq

`β6 plnOPENitq ` µi ` λt ` lneit

“ δ
N
ř

j“1
wijlnCIit `α` β1 plnSIitq ` β2 plnIEitq ` β3 plnEIitq ` β4 plnECSitq ` β5 plnEPitq

`β6 plnOPENitq ` µi ` λt ` εit

(7)

where CSit and CIit denote industrial carbon emissions scale and intensity of the region i at time t,
respectively.

ř

wijlnCSit and
ř

wijlnCIit represent the spatial correlation between lnCSit and lnCIit
of region i and that of its adjacent regions. lnSIit, lnIEit, lnEIit, lnECSit, lnEPit, and lnOPENit are
independent variables corresponding to region I at time t.δ is the spatial auto-correlation index, wij is
an element of the spatial weight matrix representing the spatial relations between regions i and j, α is
the constant term, the βs are coefficients to be estimated, µi is the individual (region) fixed effect and
λt is the time fixed effect.

2.2.2. Spatial Error Panel Data Model (SEPDM)

The spatial error panel data model (SEPDM) is specified as follows:
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lnCSit “ lna` β1 plnSIitq ` β2 plnIEitq ` β3 plnEIitq ` β4 plnECSitq ` β5 plnEPitq ` β6 plnOPENitq

`µi ` λt ` lneit
“ α` β1 plnSIitq ` β2 plnIEitq ` β3 plnEIitq ` β4 plnECSitq ` β5 plnEPitq ` β6 plnOPENitq

`µi ` λt `∅it

∅it “ ρ
N
ř

j“1
wij∅it ` εit

(8)

lnCIIt “ lna` β1 plnSIitq ` β2 plnIEitq ` β3 plnEIitq ` β4 plnECSitq ` β5 plnEPitq ` β6 plnOPENitq

`µi ` λt ` lneit
“ α` β1 plnSIitq ` β2 plnIEitq ` β3 plnEIitq ` β4 plnECSitq ` β5 plnEPitq ` β6 plnOPENitq

`µi ` λt `∅it

∅it “ ρ
N
ř

j“1
wij∅it ` εit

(9)

where lnCSit, lnCIit, α, β, µi, λt, εit, lnSIit, lnIEit, lnEIit, lnECSit, lnEPit, and lnOPENit are
defined as in Equations (6) and (7). ϕit denotes spatial error auto-correlation, and ρ is the spatial
auto-correlation index.

2.2.3. Spatial Durbin Panel Date Model (SDPDM)

The spatial Durbin panel data model (SDPDM) is specified as follows:

lnCSit “ δ
N
ř

j“1
wijlnCSit ` lna` β1 plnSIitq ` β2 plnIEitq ` β3 plnEIitq ` β4 plnECSitq ` β5 plnEPitq

`β6 plnOPENitq ` θ1
N
ř

j“1
wijlnSIi Jt ` θ2

N
ř

j“1
wijlnIEi Jt ` θ3

N
ř

j“1
wijlnEIi Jt

`θ4
N
ř

j“1
wijlnECSi Jt ` θ5

N
ř

j“1
wijlnEPijt ` θ6

N
ř

j“1
wijlnOPENijt ` µi ` λt ` lneit

“ δ
N
ř

j“1
wijlnCSit ` lna` β1 plnSIitq ` β2 plnIEitq ` β3 plnEIitq ` β4 plnECSitq ` β5 plnEPitq

`β6 plnOPENitq ` θ1
N
ř

j“1
wijlnSIi Jt ` θ2

N
ř

j“1
wijlnIEi Jt ` θ3

N
ř

j“1
wijlnEIi Jt

`θ4
N
ř

j“1
wijlnECSi Jt ` θ5

N
ř

j“1
wijlnEPijt ` θ6

N
ř

j“1
wijlnOPENijt ` µi ` λt ` εit

(10)

lnCIit “ δ
N
ř

j“1
wijlnCSit ` lna` β1 plnSIitq ` β2 plnIEitq ` β3 plnEIitq ` β4 plnECSitq

`β5 plnEPitq ` β6 plnOPENitq ` θ1
N
ř

j“1
wijlnSIi Jt ` θ2

N
ř

j“1
wijlnIEi Jt

`θ3
N
ř

j“1
wijlnEIi Jt ` θ4

N
ř

j“1
wijlnECSi Jt ` θ5

N
ř

j“1
wijlnEPijt

`θ6
N
ř

j“1
wijlnOPENijt ` µi ` λt ` lneit

“ δ
N
ř

j“1
wijlnCSit ` lna` β1 plnSIitq ` β2 plnIEitq

`β3 plnEIitq ` β4 plnECSitq ` β5 plnEPitq ` β6 plnOPENitq

`θ1
N
ř

j“1
wijlnSIi Jt ` θ2

N
ř

j“1
wijlnIEi Jt ` θ3

N
ř

j“1
wijlnEIi Jt

`θ4
N
ř

j“1
wijlnECSi Jt ` θ5

N
ř

j“1
wijlnEPijt ` θ6

N
ř

j“1
wijlnOPENijt ` µi

`λt ` εit

(11)
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where lnSIit, lnIEit, lnEIit, lnECSit, lnEPit, lnOPENit, α, µi, λt are defined as in Equations (6) and (7). θ

is a vector of coefficients to be estimated. We test the joint hypotheses H0: θ = 0 and H0: θ + δβ = 0;
rejection of the hypotheses indicates that the SDPDM fits the data optimally.

Our extension of the STIRPAT model not only allows examination of the impacts of the
above-mentioned independent variables on the scale and intensity of a region’s industrial carbon
emissions but also makes it possible to examine the impacts of the adjacent regions’ independent
variables on a given region’s industrial carbon emissions scale and intensity. It also allows measurement
of the impact of the adjacent region’s carbon emissions scale and intensity on a given region’s industrial
carbon emissions scale and intensity.

2.2.4. Spatial Weight Matrix

A spatial weight matrix must be constructed to reflect the spatial correlation among regions, and
an appropriate spatial weight matrix is essential for obtaining a sound spatial econometric result. We
opt for both geographic and economic spatial weight matrixes. The former is constructed via the
inverse distance method.

WGS
ij “

$

&

%

1
dij

α i ‰ j

0 i “ j
(12)

where dij is the distance between regions i and j, which is calculated using their longitudes
and latitudes.

The economic spatial weight matrix W* is a product of W and the economic weight matrix, E.

Eij “

$

&

%

1
ˇ

ˇGi ´ Gi
ˇ

ˇ

α
`m

i ‰ j

0 i “ j

Gi “
1
5

2010
ř

t“2006
Git

(13)

where Git denotes per capita industrial value-added, representing the actual industrial output per
capita of region i at time t (Deflated by the price index in 2006). Thus, W* incorporates economic
development into the weight matrix.

Regional industrial carbon emissions are obtained from energy types via the stable carbon
emissions factors for electricity and thermo, such as raw coal, washed coal, other washed coal,
briquette, coke, coke oven gas, other gases, other coking products, crude oil, gasoline, kerosene, diesel
oil, fuel oil, liquefied petroleum gas, refinery gas, other petroleum products, and natural gas. The data
is from China Energy Statistical Yearbook 2007–2011 [23].

3. Empirical Investigation

3.1. Model Specification

Two Lagrange Multiplier tests (LM-Lag and LM-Error tests) are applied to choose which model
of those described in Sections 3.1–3 best fits the data. In classical panel data models, there are four
options for fixed effects, namely individual fixed effects, time fixed effects, individual and time fixed
effects, and no fixed effects. We test these four options via the LM test. Tables 1 and 2 show the LM test
statistics for Models 1 and 2, with dependent variables Log (CS) and Log (CI), respectively.

Table 1 shows that in Model 1 the LM statistic for the spatial error model with time fixed effects
is significant at the 5% level. The LM statistics for the spatial lag model under no spatial effects
and time fixed effects are significant (Table 2). Thus, the hypothesis that spatial correlation does not
exist is rejected. In addition, the likelihood ratio (LR) tests reject the hypotheses that individual fixed
effects and time fixed effects do not exist, indicating that the individual and time fixed effect model
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outperforms its alternatives. We further determine which model (SLPDM, SEPDM, or SDPDM) best
fits the data using Wald and LR tests.

Table 1. LM test for Model 1 (dependent variable: Log (CS)).

Variable Pooled OLS Individual Fixed
Effects Time Fixed Effect Individual and Time

Fixed Effect

Constant ´5.6650 *** (´5.2619) ´ ´ ´

Log(SI) 1.1638 *** (28.2449) 0.8632 *** (30.1539) 1.1750 *** (29.4582) 1.0276 *** (9.4509)
Log(IE) 0.4286 *** (4.1127) 0.0181 (0.3679) 0.5213 *** (4.9142) 0.0247 (0.4977)
Log(EI) 1.1953 *** (13.7546) 0.8343 *** (22.9815) 1.1824 *** (14.1376) 0.8428 *** (23.1001)

Log(ECS) 0.5700 *** (6.2444) 0.0313 (1.1421) 0.6205 *** (6.9625) 0.0639 ** (2.3508)
Log(EP) 0.8240 ** (2.1345) 0.1033 ** (2.4452) 2.1933 *** (2.9781) ´0.0040 (´0.0492)

Log(OPEN) 0.0857 ** (1.9728) ´0.0176 (´1.1628) 0.1130 *** (2.6721) ´0.0157 (´1.0903)

σ2 0.0163 0.0002 0.0148 0.0001
R2 0.8821 0.9201 0.8914 0.8447

Adjusted R2 0.8771 0.9173 0.8877 0.8393
Durbin-Watson 2.1067 1.8217 2.2265 2.0198
Log-likelihood 99.3054 438.8255 106.1706 450.8258

LM spatial Lag 0.0480 (0.827) 0.1109 (0.739) 0.0084 (0.927) 0.3449 (0.557)
Robust LM
spatial Lag 0.4311 (0.511) 0.0212 (0.884) 1.4950 (0.221) 2.2990 (0.129)

LM spatial error 2.9681 (0.085) 0.8291 (0.363) 5.1309 (0.024) 1.3763 (0.241)
Robust LM
spatial error 3.3513 (0.067) 0.7394 (0.390) 6.6176 (0.010) 3.3304 (0.068)

Joint test of
significance LR

Fixed-effects Statistics df P-value

Individual-fixed
effects 689.3104 30 0.0000

Time-fixed effects 24.0007 5 0.0002

Note: t or z-values are in the parentheses. P-values in the parentheses under the coefficients of the LM tests. *
represents significance at 10%, ** 5%, and *** 1% respectively.

Table 2. LM test for Model 2 (dependent variable: Log (CI)).

Variable Pooled OLS Individual Fixed
Effects Time Fixed Effect Individual and Time

Fixed Effects

Constant ´1.5254 *** (´2.8568) ´ ´ ´

Log(SI) 0.0705 *** (3.4491) ´0.1369 *** (´4.7811) 0.0771 *** (3.7957) 0.0277 (0.2544)
Log(IE) 0.1595 ***(3.0865) 0.0182 (0.3685) 0.1973 *** (3.6527) 0.0247 (0.4986)
Log(EI) 1.1555 ***(26.8095) 0.8343 *** (22.9802) 1.1596 ***(27.2301) 0.8428 ***(23.0986)

Log(ECS) 0.1957 ***(4.3232) 0.0314 (1.1439) 0.2158 *** (4.7543) 0.0640 ** (2.3528)
Log(EP) 0.2765(1.4439) 0.1033 ** (2.4443) 0.2896 (0.7723) ´0.0041 (´0.0498)

Log(OPEN) 0.0063 (0.2940) ´0.0175 (´1.1607) 0.0103 (0.4765) ´0.0157 (´1.0880)

σ2 0.0040 0.0002 0.0038 0.0001
R2 0.9411 0.9309 0.9418 0.8007

Adjusted R2 0.9386 0.9285 0.9398 0.7937
Durbin-Watson 2.0015 1.8220 2.0977 2.0200
Log-likelihood 204.4955 438.8169 207.4130 450.8174

LM spatial Lag 7.9070 (0.005) 2.6476 (0.104) 9.1879 (0.002) 1.3206 (0.250)
Robust LM
spatial Lag 9.3611 (0.002) 1.8238 (0.177) 9.6301 (0.002) 5.3170 (0.021)

LM spatial error 0.0046 (0.946) 0.8303 (0.362) 0.1920 (0.661) 1.3742 (0.241)
Robust LM
spatial error 1.4587 (0.227) 0.0065 (0.936) 0.6342 (0.426) 5.3706 (0.020)

Joint test of
significance (LR)

Fixed-effects Statistics df P-value

Individual fixed
effects 486.8087 30 0.0000

Time fixed effects 24.0011 5 0.0002

Note: t or z-values are in the parentheses. P-values in the parentheses under the coefficients of the LM tests. *
represents significance at 10%, ** 5%, and *** 1% respectively.
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3.2. Industrial Carbon Emissions SDPDM

Three Durbin models are considered: (1) individual and time fixed effects (Model 3); (2) both time
and individual effects, with bias correction borrowed from (Model 4) [23]; and (3) individual random
effect and time fixed effect (Model 5). The estimation results using Log (CS) and Log (CI) as dependent
variables are reported in Tables 3 and 4 respectively. In Model3 and Model 4, the coefficients of SI, IE,
EI, ECS, EP, OPEN, and σ2 changed slightly after bias correction, and the coefficients of the spatially
lagged dependent and independent variables are also sensitive to bias correction. Thus, bias correction
is necessary for the spatial Durbin model with both individual and time fixed effects. The SDPDM has
two hypotheses: H0: θ = 0 and H0: θ + δβ = 0; rejection of both indicates that the SDPDM fits the data
best. Both Wald and LR tests reject the two hypotheses, suggesting that neither the SLPDM nor the
SEPDM is appropriate. We thus opt for the SDPDM. Meanwhile, the Hausman test lends support to
Model 4, the coefficients in Model 4 align with our expectations, and its goodness of fit is greater than
those of the alternatives.

Table 3. Spatial Durbin model with both individual and time fixed effect (dependent variable:
Log (CS)).

Variables Individual and Time Fixed
Effect

Individual and Time Fixed
Effect (Bias Corrected)

Individual Random Effect
and Time Fixed Effect

W*Log(CS) ´0.0930 (´0.9547) ´0.0484 (´0.4917) ´0.0810 (´0.8257)
Log(SI) 1.1804 *** (11.0696) 1.1860 *** (9.7884) 1.1141 *** (17.0034)
Log(IE) 0.0679 (1.4516) 0.0695 (1.3071) 0.0612 (1.1652)
Log(EI) 0.7823 *** (21.5919) 0.7809 *** (18.9591) 0.8461 *** (22.5372)

Log(ECS) 0.0557 ** (2.1734) 0.0561 * (1.9237) 0.0530 * (1.8354)
Log(EP) ´0.0100 (´0.1353) ´0.0078 (´0.0931) ´0.0133 (´0.1565)

Log(OPEN) ´0.0062 (´0.4694) ´0.0061 (´0.4066) ´0.0127 (´0.8649)
W*Log(SI) ´0.6954 ** (´2.5700) ´0.7466 ** (´2.4707) 0.0194 (0.1272)
W*Log(IE) ´0.2031 ** (´2.3151) ´0.2069 ** (´2.0754) ´0.1202 (´1.2563)

W*Log(EI) 0.1863 * (1.8330) 0.1502 (1.3894) 0.1395 (1.2992)
W*Log(ECS) ´0.1110 ** (´1.9561) ´0.1142 * (´1.7711) ´0.1014 (´1.5774)
W*Log(EP) ´0.1751 (´1.2580) ´0.1734 (´1.0952) ´0.2302 (´1.4528)

W*Log(OPEN) 0.0088 (0.5443) 0.0094 (0.5144) 0.0088 (0.4831)
teta ´ ´ 0.0369 *** (5.4795)

σ2 0.0001 0.0002 0.0002
R2 0.9991 0.9991 0.9988

Square correlation
coefficient 0.8713 0.8714 0.8237

Log likelihood 465.4752 465.4752 345.2436

Wald test spatial Lag 31.9461 (0.000) 24.0161 (0.000) 14.8409 (0.0215)
LR test spatial Lag 28.9664 (0.000) 28.9664 (0.000) NA

Wald test spatial error 30.7361 (0.000) 24.1035 (0.000) 14.7719 (0.0221)
LR test spatial error 27.7109 (0.000) 27.7109 (0.000) NA

Hausman test
Statistics df P-value

23.7970 13 0.0330

Note: t or z-values are in the parentheses. P-values in the parentheses under the coefficients of the LM and Wald
tests. * represents significance at 10%, ** 5%, and *** 1% respectively.
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Table 4. Spatial Durbin model with both individual and time fixed effect (dependent variable: Log (CI)).

Variables Individual and Time Fixed
Effect

Individual and Time Fixed
Effect (Bias Corrected)

Individual Random Effect
and Time Fixed Effect

W*Log(CI) ´0.0920 (´0.9407) ´0.0470 (´0.4761) ´0.0520 (´0.5448)
Log(SI) 0.1805 * (1.6928) 0.1861 (1.5360) ´0.0061 (´0.1588)
Log(IE) 0.0680 (1.4530) 0.0696 (1.3086) 0.0457 (0.8805)
Log(EI) 0.7823 *** (21.5900) 0.7809 *** (18.9574) 0.8992 *** (25.4063)

Log(ECS) 0.0558 ** (2.1757) 0.0562 * (1.9259) 0.0559 * (1.9479)
Log(EP) ´0.0099 (´0.1343) ´0.0077 (´0.0920) ´0.0068 (´0.0778)

Log(OPEN) ´0.0061 (´0.4668) ´0.0060 (´0.4043) ´0.0236 (´1.6327)
W*Log(SI) ´0.7884 *** (´3.1937) ´0.7950 *** (´2.8319) 0.0076 (0.1216)
W*Log(IE) ´0.2033 ** (´2.3175) ´0.2072 ** (´2.0778) ´0.0896 (´0.9588)
W*Log(EI) 0.1854 * (1.8193) 0.1489 (1.3753) 0.1037 (0.9703)

W*Log(ECS) ´0.1113 ** (´1.9599) ´0.1145 * (´1.7750) ´0.1056 * (´1.6609)
W*Log(EP) ´0.1750 (´1.2573) ´0.1733 (´1.0945) ´0.2225 (´1.3693)

W*Log(OPEN) 0.0088 (0.5440) 0.0094 (0.5144) 0.0018 (0.0974)
teta ´ ´ 0.0778 *** (5.4872)

σ2 0.0001 0.0002 0.0002
R2 0.9982 0.9982 0.9974

Square correlation
coefficient 0.8348 0.8350 0.9270

Log likelihood 465.4691 465.4691 363.4027

Wald test spatial Lag 30.3274 (0.000) 22.6643 (0.000) 10.4796 (0.1059)
LR test spatial Lag 28.0752 (0.000) 28.0752 (0.000) NA

Wald test spatial error 30.7411 (0.000) 24.1089 (0.000) 11.0656 (0.0864)
LR test spatial error 27.7196 (0.000) 27.7196 (0.000) NA

Hausman test
Statistics df. P-value

27.5757 13 0.0104

Note: t or z-values are in the parentheses. P-values in the parentheses under the coefficients of the LM and Wald
tests. * represents significance at 10%, ** 5%, and *** 1% respectively.

3.2.1. Discussion

Since Model 4 fits the data best, we discuss only the results of Model 4, as shown in the third
columns of Tables 3 and 4 respectively, for the two dependent variables. The coefficients on most
of the independent variables are significant and have the expected signs. The coefficients for the
spatially lagged dependent variables are negative and insignificant in both models (line 2, column 3 in
Tables 3 and 4), indicating that carbon emissions are correlated among regions. A region’s industrial
carbon emissions are estimated to decrease by 0.05% if its neighboring regions’ scale and intensity
of industrial carbon emissions increase by 1%. This indicates that under the Chinese government’s
11th Five-Year Plan, the provinces managed to optimize industrial structures, innovate in industrial
technology, and encourage energy savings and reduced emissions in industrial enterprises. Since the
successful provinces ‘exemplary achievements play an important role in adjusting economic structures
nationwide, strategic planning of regional industrial carbon emissions is necessary to further optimize
the industrial structure and reduce industrial carbon emissions. Below we discuss the impacts of the
independent variables on regional industrial carbon emissions.

3.2.2. Scale of Investment

The significant and positive coefficients on SI (line 3, Table 3) suggest that industrial investment
contributes considerably to China’s carbon emissions. The reason is that the dramatically increased
energy consumption of the fast-expanding industrial sector has led to rapid growth in carbon
emissions. Table 4 shows that SI positively impacts carbon intensity, but the relationship is statistically
insignificant, suggesting that an increase in SI does not boost China’s industrial carbon emissions
intensity. Given the emissions reduction target of the industrial sector, it should take full responsibility
for saving energy and reducing emissions, as it consumes the most energy and resources while emitting
the most pollutants. The provinces have set targets for energy consumption per unit of industrial
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value-added, which is intended to lead to reduced industrial carbon emissions intensity. The coefficient
on the spatially lagged variable W*Log (SI) significantly and positively impacts both the level and
intensity of carbon emissions, suggesting that there are carbon emissions spillover effects from the
level of investment. As provinces prioritize industrial carbon emissions reductions, investments flow
to low-carbon industrial enterprises.

3.2.3. Industrial Economy

China is in an era of rapid industrialization, causing swift growth of both its industrial economy
and its CO2 emissions. The positive but insignificant impacts of industrial value-added per unit of
labor (IE) on the level and intensity of carbon emissions, as found in this estimation, suggest that
China’s growth in industrial production is not the main driver of carbon emissions growth. Although
industrial energy consumption and industrial carbon emissions are increasing, industrial carbon
emissions intensity is decreasing. Thus, carbon emissions reductions are unlikely to be achieved
by controlling industrial development but rather by adjusting the structure of industrial energy
consumption, optimizing industrial structure, and following a low-carbon development path. The
negative and significant coefficient on the spatially lagged variable W*Log (IE) shows that the industrial
economy in one region can affect carbon emissions of other regions through spillover effects. This is
explained by the fact that the adjacent provinces compete to develop low-carbon industries. These
resource-saving and environmentally friendly industries are aimed at creating a sustainable and
low-carbon economy.

3.2.4. Energy Intensity

Decreased industrial energy intensity arises mainly from technological innovation, which affects
both the scale and intensity of industrial carbon emissions. We found a significant and positive
impact of energy intensity (EI) on carbon emissions levels and intensity, indicating that the industrial
low-carbon technologies are advancing and energy consumption per unit of industrial value-added is
decreasing. This is beneficial for lowering carbon emissions and aligns with expectations. Recently,
with the progress of industrial technologies, optimization of industrial structures, and efforts at energy
savings and emissions reductions, China’s industrial sector energy intensity is decreasing. This
lowering of energy intensity is an important strategy for reducing China’s industrial carbon emissions.
No spatial spillover effects of energy intensity on carbon emissions are found: the coefficient on
W*Log (EI) is positive but insignificant. This is because carbon emissions technology is hard to imitate
across regions. The development of carbon emissions-reduction technologies is largely influenced by
economic development and innovation capability of a given region. The large differences in research
capabilities across regions block diffusion of these technologies.

3.2.5. Energy Consumption Structure

The rapid development of China’s industrial economy has created need to optimize its industry
consumption structure to slow long-term growth in carbon emissions. However, given resource
constraints, a coal-intensive energy consumption structure is likely to remain in place for a long time.
In this model estimation, energy consumption structure has a positive and significant effect on both
the scale and intensity of carbon emissions, indicating that an increase in the coal intensity of total
energy consumption has a negative effect on industrial carbon emissions reductions. Thus, increasing
the ratio of non-fossil energies, such as wind, nuclear, and solar, to total energy consumption will
support a reduction in the scale and intensity of carbon emissions. Furthermore, energy consumption
structure has a spillover effect: the coefficient on W*Log (ECS) has a negative and significant impact on
the intensity of carbon emissions. This spillover is due to competition among adjacent regions to save
energy and reduce emissions. All provinces are trying to optimize their industrial energy consumption
structures and develop green technologies, such as non-fossil energies, so measures should be taken to
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let the availability of new and renewable energy types play an important role in adjusting the structure
of industrial energy consumption.

3.2.6. Energy Price

In this paper, the energy price refers to the producer price index for manufactured products. In
theory, factor prices are negatively correlated with factor demands. The energy price has a negative but
insignificant effect on carbon emissions levels and intensity, indicating that the role of energy prices
in shaping China’s industrial carbon emissions is statistically insignificant. To meet the increasing
industrial demand for energy (and accompanying growth in carbon emissions), China needs to scale
upmarket supervision and inspection and enforce a price-forming mechanism for important energy
types, such as electricity and gas. Under such a mechanism, energy prices can act as signals of energy
demand and supply. When energy price in one region increases, producers in that region would
be expected to purchase energy from adjacent regions, causing increases in total carbon emissions.
However, we find no evidence that spillover effects exist for energy prices, probably because the release
of regional energy price information is inefficient. When energy prices rise in the region, especially
regions that rely on industrial development, it will purchase energy from the neighboring regions,
resulting a slightly increase of industrial carbon emissions. Therefore, China should improve and
perfect the price information release system and stabilize social expectations.

3.2.7. Openness

Accelerating urbanization has pushed up energy consumption and CO2 emissions. In recent
years, the need for a low-carbon economy has necessitated importing advanced technologies from
abroad, and these foreign imports are also expected to be environmentally sustainable. Thus, openness
should decrease carbon emissions. However, this hypothesis is rejected in the estimation results: the
coefficient on OPEN is negative but insignificant, as is that on W*Log (OPEN), suggesting that OPEN
does not have spillover effects. It shows that the changes of opening level in China has a limited
negative effect on China’s industrial carbon emissions, but the rise in opening level can still help to
reduce carbon emissions which make it of great significance. China buy low carbon technology and
clean energy from abroad, and attract low carbon foreign investment. FDI technology spillover effect
can reduce China’s carbon emissions scale and intensity. These methods both play a positive role in
reduce China’s carbon emissions scale and intensity. In the Durbin Model which use natural logarithm
Log (CS) (CS: carbon emission scale) and Log (CI) (CI: carbon emission intensity) as the explanatory
variable, the opening level spatial lag estimated coefficient is negative, but it is not significant. This
indicating that there is a limited spatial spillover effect of opening level. The reason is mainly reflected
in the spillover effect of competition between neighboring regions, while they open the gate to the
world. Regions have accelerated the pace of industrial opening, this laid a solid foundation for China
to stick to the low-carbon economic development.

3.3. Spillover Effect of Regional Industrial Carbon Emissions

It is common to use point estimates from one or more spatial regressions to test the existence
of spillover effects. Lesage and Pace [2] (pp. 19–44), however, argue that using point estimates from
multiple spatial regressions will bias prediction of spillover effects. They further decompose spillover
effects into direct and indirect effects.

The SDPDM model Equation (13) can be rearranged as Equations (14) and (15).

Yit “ δ
N
ř

j“1
Yit `α`

m
ř

i“1
βiXit `

N
ř

J“1
wijXijtθ ` µi ` λt ` εit

Yit “ δWYit ` Xitβ`WXitθ ``µi ` λt ` εit

(14)
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Yit “ pI ´ δWq´1
pXitβ`WXitθq ` pI ´ δWq´1 µi

`pI ´ δWq´1 λt ` pI ´ δWq´1 εit
(15)

where Yit is the dependent variable for region i at time t, Xit is a vector of independent variables of
region i at time t, α is the constant term, θ is similar to β, which is a K ˆ 1 vector of coefficients, µi is an
individual-fixed effect, and λt is a time-fixed effect. Taking partial derivatives of the kth independent
variable X on both sides, we obtain:

„

BY
Bχik

BY
BχNk



“

»

—

–

By1

Bχik

By1

Bχik
ByN
Bχik

ByN
Bχik

fi

ffi

fl

“ pI ´ δWq´1

»

—

–

βk w12θk w1Nθk
w21θk βk w2Nθk
wNθk wN2θk βk

fi

ffi

fl

(16)

where Wij is the (i, j) element of the matrix W. The direct effect is defined as the sum of the diagonal
elements in the right matrix while the indirect effect is defined as the average of all the non-diagonal
elements (Lesage and Pace, 2009). Identifying the direct and indirect effects via this method has
drawbacks in that calculating (I ´ δW)´1 is time-consuming. To solve this, Lesage and Pace [2] (pp.
19–44) propose another method, specified in Equation (17).

pI ´ δWq´1
“ I ` δW ` δ2W2 ` δ3W3 (17)

The models estimating the direct and indirect effects in Equation (16) are denoted as Method 1
and Method 2 using Equation (17). Table 5 displays the direct and indirect effects estimated through
Method 1, for Model 4 with Log (CS) as the dependent variable. The results differ slightly between
Method 1 and Method 2, but all variables have direct and indirect effects. SI, EI, and ECS positively
and significantly impact the scale of carbon emissions, while IE, EP, and OPEN insignificantly impact
it, although their signs are as expected.

Table 6 displays the direct and indirect effect estimates for Model 4 with Log (CI) as the dependent
variable. The results do not differ from the Model 1 results. All variables have direct and indirect
effects, direct effects of EI and ECS on intensity of industrial carbon emissions are positive, and the
direct effects of SI, IE, EP, and OPEN are all insignificant, although the signs are as expected. On
the other hand, SI, IE, and ECS have significant indirect effects. We can thus argue that spillover
effects do exist. Spillover effects imply that the independent variables affect the dependent variable
via the spatially lagged variables. The differences indirect and indirect effects are substantial for all
the control variables, indicating that failing to explicitly model the spatial correlation would lead to
estimation bias.

Table 5. Direct, indirect and total effects of Spatial Durbin model (Method1, dependent variable:
Log (CS)).

Variable Direct Effect Indirect Effect Total Effect

Log(SI) 1.2012 *** (9.8339) ´0.7645 *** (´2.6558) 0.4367 (1.3678)
Log(IE) 0.0700 (1.3308) ´0.2086 ** (´2.1793) ´0.1386 (´1.4935)
Log(EI) 0.7803 *** (18.5641) 0.1058 (1.4353) 0.8861 *** (11.4843)

Log(ECS) 0.0576 ** (1.9643) ´0.1193 ** (´1.8808) ´0.0616 (´0.9326)
Log(EP) ´0.0106 (´0.1193) ´0.1709 (´1.1175) ´0.1815 (´1.0960)

Log(OPEN) ´0.0057 (´0.3914) 0.0094 (0.5229) 0.0037 (0.1572)

Note: * represents significance at 10%, ** 5%, and *** 1% respectively.
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Table 6. Direct, indirect and total effects of Spatial Durbin model (Method1, dependent variable:
Log (CI)).

Variable Direct Effect Indirect Effect Total Effect

Log(SI) 0.1975 (1.6262) ´0.7795 *** (´2.9212) ´0.5820 ** (´1.9978)
Log(IE) 0.0717 (1.3607) ´0.2048 ** (´2.0105) ´0.1331 (´1.3790)
Log(EI) 0.7790 *** (18.7878) 0.1094 (1.4981) 0.8884 *** (11.7796)

Log(ECS) 0.0576 ** (1.9648) ´0.1138 * (´1.7426) ´0.0562 (´0.8170)
Log(EP) ´0.0033 (´0.0382) ´0.1658 (´1.0350) ´0.1692 (´1.0068)

Log(OPEN) ´0.0061 (´0.4183) 0.0098 (0.5407) 0.0037 (0.1646)

Note: * represents significance at 10%, ** 5%, and *** 1% respectively.

4. Conclusions

In this paper, an expanded Stochastic Impacts by Regression on Population, Affluence, and
Technology (STIRPAT) model was conceptualized to investigate the factors driving regional industrial
carbon emissions in China. Based on provincial panel data from 2006 to 2010, a spatial Durbin model
was applied to test the impacts of these contributing factors on the scale and intensity of industrial
carbon emissions, examine the spatial correlation of industrial carbon emissions among provinces, and
consider the determinants’ potential spillover effects. In addition, a geographically was applied to
investigate the regional heterogeneity in the impacts of the driving factors on the scale and intensity of
industrial carbon emissions. The main conclusions from these analyses are as follows.

First, most of the driving factors significantly impact the scale and intensity of carbon emissions,
and their signs align with expectations. The coefficients on the spatially lagged dependent variables
are estimated to be negative but insignificant, suggesting that industrial carbon emissions are highly
correlated among regions. As a result, the exemplar role of the low-carbon-emissions provinces is of
great importance in fostering nationwide low-carbon economy.

Second, the driving factors impact carbon emission both directly and indirectly. Considering
the indirect effects, all of the variables except for energy intensity, energy price, and openness have
significant indirect effects. We can thus argue that spillover effects do exist: the independent variables
affect the dependent variable via the spatially lagged variables. Using the transitional panel data
model, which assumes the indirect effect to be zero, will bias the estimation. The differences in the
direct and indirect effects of the control variables are substantial, indicating that ignoring spatial
correlation would lead to estimation bias.

Third, the impacts of the influencing factors and their spillover effects vary across provinces. The
results show substantial variation in the coefficients on the spatially lagged dependent variables of the
control variables. The driving factors’ influences on industrial carbon emissions and their spillover
effects suggest that regional industrial spatial correlation, heterogeneity, and externalities must be
taken into account during policy formulation. Considering the fact that industrial carbon emissions
differ across regions, we propose the following strategies to reduce industrial carbon emissions: (1) a
moderate increase in investment in low-carbon industries; (2) optimization of the structure of industrial
energy consumption; (3) optimization of industrial structures; (4) innovation in industrial technology;
and (5) effective coordination of planning related to regional industrial carbon emissions.
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