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Abstract: Forest biomass is a significant indicator for substance accumulation and forest succession,
and a spatiotemporal biomass map would provide valuable information for forest management
and scientific planning. In this study, Landsat imagery and field data cooperated with a random
forest regression approach were used to estimate spatiotemporal Above Ground Biomass (AGB) in
Fuyang County, Zhejiang Province of East China. As a result, the AGB retrieval showed an increasing
trend for the past decade, from 74.24 ton/ha in 2004 to 99.63 ton/ha in 2013. Topography and forest
management were investigated to find their relationships with the spatial distribution change of
biomass. In general, the simulated AGB increases with higher elevation, especially in the range of
80–200 m, wherein AGB acquires the highest increase rate. Moreover, the forest policy of ecological
forest has a positive effect on the AGB increase, particularly within the national level ecological
forest. The result in this study demonstrates that human activities have a great impact on biomass
distribution and change tendency. Furthermore, Landsat image-based biomass estimates would
provide illuminating information for forest policy-making and sustainable development.

Keywords: Landsat imagery; Above Ground Biomass; Fuyang County; topography; ecological forest;
human activities

1. Introduction

Being the largest terrestrial ecosystem, the forest ecosystem provides a fundamental wood supply
and greatly influences global carbon stocks and carbon exchange with the atmosphere, which is relevant
to the greenhouse effect [1]. Moreover, the quality of forests significantly influence human beings’
daily lives [2]. Recognizing the importance of forest ecosystems, series international activities, such as
reducing carbon Emissions associated with Deforestation and forest Degradation (REDD) and REDD+,
have been proposed to protect global forest ecosystems and promote sustainable forest management [3].
Researchers have explored increasing numbers of studies on forest biophysical parameters, including
aboveground biomass (AGB), leaf area index (LAI), and stock volume, to gain a better understanding
of forest quality and productivity in recent years [4,5]. As it is an essential biophysical parameter of
forest ecosystems, biomass is closely related to timber productivity and carbon cycle, and explicit
spatial-temporal information on biomass could provide significant information in the understanding
of the process of human–forest interactions [6].

Over the past few decades, compared to the traditional time- and labor-consuming field
measurements, remote sensing provides a cost-effective and appealing way to obtain spatial and
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temporal forest environmental information with multiple sensors from Moderate Resolution Imaging
Spectroradiometer (MODIS), Landsat, hyperspectral, Laser intensity Direction and Ranging (LiDAR)
and Radio Direction and Ranging (RaDAR) springing up to promote forest research with refined
spectral signals and expanding dimensions, introducing more macroscopic and valuable information
for forest monitoring [7,8]. With regard to the advantages and limitations of different remote sensing
images, the Landsat program is still the most prominent resource, as it possesses abundant historic
spatial-temporal archives and rich spectral information for more than 30 years, since 1972, and it
possesses a relatively suitable spatial resolution for forest biophysical investigation; additionally, it is a
free download data, which can be obtained by the public and has an attractive large-scale availability,
especially for developing countries where there is limited accessibility for high resolution images, all of
the above make the data incomparable [9]. Landsat series provide an abundant data source for valuable
feature extractions, from original multispectral bands to transformed spectral information, including
vegetation indices that were created to improve prediction accuracy, and texture information reflecting
spatial variability [10]. The newly launched Landsat 8 was further tested as the continued Landsat data
record of ETM+ imagery to investigate the productivity and effectiveness of biomass estimations [11].
Furthermore, multi-temporal images and ever-increasing yearly trajectories were introduced to take
advantage of phonological information, as well as disturbance and recovery variables, to improve
simulation performance [12,13].

A great deal of research has been developed for remote sensing-based biomass estimation,
as increasing interdependencies between remote sensing data and biomass have been increasingly
discovered for empirical methods when compared to more complicated approaches based on physical
mechanism models [14]. Since forests are complex ecosystems, and there are always nonlinear or
more complicated relationships between their components, to overcome the weakness of traditional
empirical statistic methods, which are based on the linear relation hypothesis for input variables,
alternative methods in the machine learning have been introduced to establish the relationship between
above ground biomass and remote sensing derived features [15,16]. Non-parametric approaches that
make no assumptions about the statistical distributions of original data and relations between predictor
and response variables, including K-Nearest Neighbors, Neural Networks, Support Vector Machines
and Random Forest, are proliferated to probe the inconclusive relationship between remote sensing
derivatives and AGB to yield more accurate predictions [12,15].

Natural environments and human activity have great influence on the biomass distributions [17].
It has been found that forest management patterns are directly instructed by forest policy [18], and
biomass heterogeneity is always closely related to local topographic characteristics [19]. The main
objective of this study is to (1) combine the remote sensing imagery Landsat with detailed forest
inventory data to investigate the AGB estimation in Fuyang County, East China, In the past decade;
and (2) analyze the AGB spatiotemporal variability across the study area corresponding to hierarchical
topography and man-power management activities.

2. Materials and Methods

2.1. Study Area

The study area, Fuyang County, is located between Latitude 29˝44’45”–30˝11’58.5”N and
Longitude 119˝25’00”–120˝19’30”E in Northwest Zhejiang Province, China, with about 71% of the
land covered by forest, and is approximately 38 kilometers away from the capital city, Hangzhou.
The prevailing waters include the Fuchun River, with several tributaries running across the region, and
the Yanshi Ridge reservoir situated in the west (Figure 1). The area is characterized as a subtropical
monsoon climate with an annual average precipitation of 1441.9 mm and a mean temperature of
16.1˝C. The altitude varies from 1.6 m to 1063.4 m, and the land is predominantly covered with red
soil and paddy soil. Coniferous forest (Pinus massoniana and Cunninghamia lanceolata), broadleaf forest
(Lauraceae), mixed forest, bamboo (Phyllostachys pubescens), and shrub are the dominant forest species,
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as the primeval forests have almost been exhausted as historic consumption yielded to economical
development; most of current forests are secondary vegetation [20].Sustainability 2016, 8, 159  3 of 13 
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Figure 1. The location of study area with Landsat image in 2013 (RGB: 543).

2.2. Field Measurement

Field work is the foundation for remote sensing technology to extend limited stand information
to large scale predictions. The two datasets used in this study are part of the field investigation data
for Zhejiang Province, through a stratified random sampling approach using the same strategy in 2008
and 2013 administered by Zhejiang Forestry Academy. The allocation of hierarchical sample plots is
based on a comprehensive consideration of geographical conditions and forest properties, including
climate zone, tree species, age composition, and site characteristics. The theory of errors is employed
to assure the quantity of typical samples, both in training and validation. The size of each inventory
plot is 20 m ˆ 20 m for trees, with three 2 m ˆ 2 m subplots set in the diagonal line of each plot for
shrubs and grasslands. Fundamental measurements are comprised of diameter at breast height (DBH),
height and species recorded with Global Positioning System (GPS). The total Above Ground Biomass
is the sum of tree, shrub, and herbaceous in each plot regarded and is as the final AGB with a unified
unit of ton/ha. In general, six groups, including broadleaved forest, coniferous and broadleaved
mixed forest, Shrub, Bamboo forest, Pine forest and Chinese fir forest, were calculated using specific
allometric equations as a function of tree height and DBH, described in [21]. Main specific species
included pine forest, Chinese fir, hardwood (I and II), Phyllostachys heterocycla cv. Pubescens, and so
on. As the formulations developed by Yuan et al. have been successfully utilized to several provincial
applications [22–24], we adopted those calculations for establishing aboveground biomass of sample
plots. There are 87 and 80 sample plots for 2008 and 2013, respectively (Table 1).

Table 1. Statistics of field-based aboveground biomass.

Years # Plots Min AGB
(ton/ha)

Max AGB
(ton/ha)

Mean AGB
(ton/ha)

Std.Dev.AGB
(ton/ha)

2008 87 8.05291 193.2647 86.1533 40.76886446
2013 80 14.70901 219.692 98.7338 47.8469626
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2.3. Remote Sensing Data Pre-Processing

As mentioned above, Landsat imagery was chosen as the main remote sensing data source for its
convenient procurability and suitable spectral information. To overcome the limited availability of
cloud-free images, two Landsat Thematic Mapper (TM) 5 images and one Landsat Operational Land
Imager (OLI) image (path/row: 119/39), with the least clouds, were selected as the data sources from
the United States Geological Survey (USGS) website [25]. The standard level-one terrain-corrected
L1T images geometrically calibrated and orthorectified to WGS-84 datum were acquired on different
dates: 26 July 2004, 5 July 2008 and 19 July 2013. The images were obtained within the same month
to minimize phonological influence. Visible bands and shortwave infrared bands were used as the
spectral variables (except for the first blue band in 2013), and the thermal infrared channels were
abandoned because of their coarser spatial resolution, both for TM and OLI. Radiometric calibration
converting DN values to the top of the atmosphere radiance was conducted via the gain and offset
information within the attached metadata files. Afterwards, atmospheric correction was completed
by “Fast Line of sight Atmospheric Analysis of Spectral Hypercubes” (FLAASH) in ENVI software
for the base image in 2008 [26], input parameters, including sensor type, flight time, atmospheric
model, aerosol mode, and other parameters, were determined. Pseudo-Invariant Features (PIFs) were
selected as the relative radiometric calibration method to make the 2004 and 2013 images consistent
with the reference image from 2008 [27]; dark pixels located in water area and light pixels lay in
roads, buildings were visually inspected and selected as invariant target pixels by referring to high
resolution images and local knowledge to formulate the relationships between reference image and
images to be corrected. SCS+C correction was executed to reduce topographical effect with the same
resolution Digital elevation model (DEM) data [28], which would alleviate the overcorrection problem
in sun-canopy-sensor (SCS) model by introducing adjustment coefficient analogous to C-correction.
Here is the formulation:

ρn “ ρˆ
cosαˆ cosθ`C

cosi`C
(1)

where ρn is the objective reflectance, ρ is the uncorrected reflectance, α is the terrain slope, θ is the
solar zenith angle, i is the incidence angle, while cosi and c are defined as follows:

cosi “ cosαˆ cosβ` sinαˆ sinθˆ cos pϕ´βq (2)

where β is the terrain aspect and ϕ is the solar azimuth angle. Besides, C is calculated as the ratio of a
to b, where a means the regression slope and b refers to the intercept.

ρ “ a` bˆ cosi (3)

2.4. Variables Derivation

One key procedure to build and apply the relationship between remote sensing data and forest
biophysical property for biomass estimation is to extract valuable candidate Landsat derivations.
By referring to previous studies, apart from the original multi-spectral bands, other potentially helpful
variables from the processed Landsat image were calculated. Vegetation indices were proposed
as preferably important measures for forest biophysical researches. Among the vegetation indices,
Normalized Difference Vegetation Index (NDVI) is the most widely used index, however, in the present
study, we adopted the improved index named NDVIc as we found that it had a stronger relationship
with AGB because it combined the information of shortwave infrared band, which provides valuable
information to biomass retrieval [29].

The NDVIc is defined as follows:

NDVIC “
NIR´RED
NIR`RED

ˆ

„

1´
pMIR´MIRminq

pMIRmax ´MIRminq



(4)
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where NIR is the near-infrared band RED is the red band, MIR is the shortwave infrared band, MIRmax

and MIRmin are values in the shortwave infrared band from closed canopies and open canopies.
In this study, the last two values were extracted from the shortwave infrared band within the forest
area for the highest value and the lowest value.

Tasseled Cap (TC) transformation was executed to reduce the primary multi-spectral information
into reduced compendious features sensitive to vegetation characteristics, viz. brightness, greenness,
and wetness [30]. Texture information was derived from the most practical method Gray Level
Co-occurrence Matrix (GLCM), eight measurements including mean, variance, homogeneity, contrast,
dissimilarity, entropy, second moment and correlation that were calculated from four bands (band2,
band3, band4 and band5) with a window size of 3ˆ 3 pixels [31]. Moreover, DEM was used to generate
topographical variables including slope, aspect and elevation.

In addition, the contemporaneous local Land Use and Cover maps were used as the reference to
mask the non-forest area for three years to ensure that the modeling process was restricted to the forest
area. Considering the positional uncertainties in GPS recordings, 3 ˆ 3 pixels windows were used to
calculate the mean values of remote sensing variables in the corresponding images.

2.5. Modeling Methods and Precision Assessment

To inspect the relationship between biomass and remote sensing variables, the field-measured
AGB was considered as a dependent variable and imagery generated variables were treated as
independent variables. Random forest algorithm was employed for regression as it showed
significantly commendable performance than other regression techniques by previous studies and
has been widely applied to environmental monitoring [32,33]. In this algorithm, numbers of decision
trees are generated to the maximum extent without pruning by randomly selected two thirds of the
data as training samples with bootstrapping, strengthening the flexibility by aggregating multiple
classification and regression trees, and the remaining one third of data, also called out-of-bag (OOB),
is used as validation samples to estimate the modeling errors. Furthermore, at each node of the decision
tree, the selection of features for modeling is also stochastic, which makes the approach immune to the
problem of over-fitting [34]. Therefore, there are two important parameters, respectively named mtry,
denoted as the number of features used to split the nodes, and ntree, which means the number of trees
to be adjusted to achieve a desirable prediction. Another advantage of the random forest algorithm is
that it accomplishes excellent feature selection by automatically ranking the relative importance of
variables. There are two mechanics in this algorithm to evaluate the importance of input variables, i.e.,
mean decrease in accuracy that assesses the effect of a variable, whether it makes the mean decrease
in accuracy and mean decrease in Gini Index that infer the impurity of a variable. Taking this into
account, all the remote sensing generated variables were used for AGB estimation, and the mean
decrease in accuracy measure was used for noting the variables’ importance. The regression process
was completed in the open access R statistical software [35] using the “randomForest” package [36].
The parameters mtry was set to the default value, one third of the total variables, and ntree was tested
in the range of (100, 500, 800, 1000, 1500).

On account of the limited sample plots, 10-fold cross validation was employed to assess the
estimated AGB performance during the modeling process. In addition, validation measures, including
coefficient of determination (R2), Root Mean Squared Error (RMSE) between simulated AGB, and field
measured biomass, were calculated to assess the estimation performance.

3. Results

3.1. Variable Importance for Modeling

The features adopted in the random forest regression for two years are shown in Figure 2.
Non-parametric analysis Spearman’s rank correlation was also performed to assess the correlations
between field-based measured AGB and remote sensing variables. As a result, multi-spectral bands,
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including band4, band5, band7, and texture measurements, including b5_mean, b4_mean, as well as
TC components wetness and brightness, were selected as the top 10 important features, both in 2008
and 2013 random forest retrievals, which was in accordance with the Spearman’s rank correlation
result (Table 2). Furthermore, the short wave infrared bands had a higher correlation coefficient in
all strategies, which was consistent with previous studies [37]. In addition, the variable wetness
presenting the moisture content was in high correlation with AGB, which may be owing to the primary
water conservation forest occupying the majority in the Fuchun River watershed. However, there was
some difference between the important variable selection results of random forest and Spearman’s
rank correlation. Although some fluctuations may appear in the RF algorithm, it should be pointed
out that some variables, not selected by the Spearman analysis, still played important roles in the
estimation process.
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Figure 2. The top 10 variables selected in random forest in 2008 and 2013.

Table 2. Variable selection result of Spearman’s rank correlation.

CorrelativeVariables in 2008 CorrelativeVariables in 2013

band7 ´0.514 ** band7 ´0.566 **
b5_mean ´0.499 ** b5_mean ´0.539 **
wetness 0.483 ** b4_mean ´0.539 **
band5 ´0.480 ** wetness 0.509 **

brightness ´0.460 ** band5 ´0.493 **
b4_mean ´0.439 ** band2 ´0.386 **

band4 ´0.413 ** brightness ´0.376 **
ndvic 0.397 ** b2_mean ´0.369 **

greenness ´0.396 ** band3 ´0.363 **
band2 ´0.372 ** band4 ´0.262 *

b4_contrast ´0.285 ** band1 ´0.240 *
band3 ´0.284 ** b2_second moment 0.235 *

b2_mean ´0.278 ** b2_entropy ´0.228 *
b4_dissimilarity ´0.248 *

b3_mean ´0.232 *

Note: * Significant at a 0.05 level; ** Significant at a 0.01 level.

3.2. Accuracy Assessment

In the light of inevitable fluctuations in the random forest algorithm as the initial samples are
randomly selected, the model processes in both years were repeated 20 times to acquire the mean
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values in the R statistical package, where the imputations were stabilized with the ntree value of 1000.
Figure 3 shows the linear relationships between the estimated AGB and the field-based measured AGB,
with a value of R2 0.93 and RMSE 11.16 ton/ha in 2008, and R2 0.90 and RMSE 16.9 ton/ha in 2013
(p value < 0.01). The results indicated that random forest, in two years, had an acceptable performance
for AGB estimates. This may due to some of the following reasons: the number of plot samples
used in the present study is limited with a selection of keeping homogeneous plots, while discarding
the outliers using the 3 σ (standard deviation) measurement in both years; stochastic decisions in
bootstrap sampling through out-of-bag error estimation, random variable selection, and taking both
predictor and response variables into account, simultaneously, make the simulation effective; there are
no assumptions about the population of sample plots and the relationships between Landsat image
derivations and AGB for random forest regression, which is adaptive to complex forest characteristics.
Nevertheless, it should be pointed out that the phenomena that the values of highest biomass were
underestimated and the values of lowest biomass were overestimated still exists, as the result in
random forest for regression adopts the mean values of predictions.
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In addition, as it is usually difficult to investigate historical biomass information in practice,
previous researches recommended that the same model could be applied to time series images which
lack synchronous field data but corrected using relative corrections [38], therefore the identical random
forest regression model adopted in the 2008 image was employed to the relatively corrected image in
2004 to generate an estimated AGB map. In addition, the AGB map in 2013 was generated separately,
based on a random forest simulation using the simultaneous field-based data.

3.3. Aboveground Biomass Estimates

3.3.1. AGB Distribution Characteristic

The estimated AGB maps of three years in Fuyang County are shown in Figure 4. The mean
values of AGB were 74.24 ton/ha, 76.33 ton/ha, and 99.63 ton/ha in 2004, 2008, and 2013, respectively,
showing a significant rising trend in the past decades, owning to the measures that the government
has taken in order to improve forest quality, such as young forest management and forest cultivation.
Similar AGB distribution patterns were observed over the three periods, from the map that high-value
biomass locations were lying close to the Fuchun River, where cultivated with broadleaf and coniferous
forest. While relatively lower biomass positions were primarily distributed in the northwest, which
was mostly planted with shrubs and some plantations for timber production. The primary forest
around the Yanshi Ridge reservoir was highwood, according to the local Land Use and Land Cover
map. Furthermore, in the southeast of the study area, as the majority of natural secondary forests were
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planted with phyllostachys pubescens, when compared to broadleaf and coniferous forest, the bamboo
forest had a relatively lower biomass value. The discrepancies of AGB estimation distribution were
similar to the distinct arrangement characteristic of different forest species, reflecting that the local
tripartite programming had a great influence on forest allocation and development.
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Figure 4. Estimated aboveground biomass in Fuyang County over three periods.

3.3.2. AGB Changes with Terrain

As the main soil type in the study area was red soil that mainly distributed across an elevation of
200–500 m, the terrain was divided into four stratifications (Figure 5a) to investigate the mean value
of AGB change among different elevation gradients. Because temperature, precipitation and other
environmental factors vary with elevation, the estimated biomass exhibits non-stationary biomass
variations in terms of altitude. With the increase of elevation, the mean value of biomass was gradually
increased in the three years, except in 2008, which may have been greatly influenced by the freezing
rain and snow disaster at the beginning of that year, the biomass even decreased with higher elevation.
Additionally, the greatest increase rate 36.46% took place in the 80–200 m gradation from 2004 to
2013, followed by the 30–80 m gradation (34.88%), when compared to the growth above 200-m
elevations (30.93%).
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3.3.3. AGB Change within Ecological Forest

The outcome in Figure 6 illustrates that the AGB spatial distribution exhibited different
characteristics within two level ecological forests. In general, the mean value of AGB within the
national ecological forest was higher than that located in the provincial ecological forest over all the
periods, which conforms to the original design that national ecological forest possesses the highest
susceptible location and occupied the most important geographic niches. Furthermore, AGB values in
these two ecological forests were higher than that of the contemporaneous entire forest, suggesting that
the established ecological forest delineation has a greater potential for local carbon sink and carbon
storage. Meanwhile, the increase rate values of AGB in national ecological forest, provincial ecological
forest and normal forest were 42.26%, 36.65%, and 32.19%, respectively, indicating that the policy of
establishing ecological forest showed an obvious positive effect on forest ecosystem protection.
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4. Discussion

4.1. Reasons for AGB Changes

The reason to explain the overall increase biomass with regard to the terrain over the past
decade may be due to the measurements taken by the local government. For example, in recent
years, forest ecosystems along the Fuchun River banks and tributaries about 9600 hectare at low
altitude were preserved with an emphasis on rebuilding zonal ecological protection forests to improve
environment quality. Moreover, afforestation in the flat-land areas was promoted by changing part
of cultivated land to forest along with implementing plantations to be tree-lined [20]. For mountain
areas, more forest parks and nature reserves were established through enclosing the hills for natural
reforestation. Figure 5b indicates the powerful restorative capability recovered from natural disasters
with distinct biomass augments. Nevertheless, when the practicality is taken into consideration,
geographic limitations, such as transportation convenience and water availability, areas located in
higher elevations were less affected by human activities than the lower mountain areas, which may
explain the phenomenon that regions located in heights below 200 m displayed larger AGB increases.
However, it should be noted that effective measurements, planned to improve the forest quality, are
supposed to balance natural conditions and socioeconomic development.

On the other hand, the implementation of ecological forest suggested significantly positive
effects on biomass distribution and improvement. Since 2001, the government in Zhejiang Province
had delimited about 197.1 ˆ 104 hm2 of forest (accounting for 29.43% of the forest region) as
ecological forests, also named public welfare forests, which are mainly distributed in river headwaters,
river banks, large reservoirs, natural reserves and famous scenery, where presents high ecological
significance and low ecological vulnerability, in order to separate them from the commercial forests
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through different operation and management patterns. As to the implementation in Fuyang County,
423.73 km2 area of forests were delimited as key ecological forests, of which national-level ecological
forest occupied 104.27 km2 and provincial-level took up 319.46 km2, in total accounting for 37.83% of
the entire forest. They are mainly distributed along the Fuchun River basin and national highways,
reservoir, as well as scenic spots and forest parks. According to the official gazette on Fuyang key
ecological forest, published in 2014, analogous to the research on riparian forests mentioned by [39],
the maximal ecological benefit is for water conservation, which was evaluated to count for 56.09 billion
Yuan when referring to the local Environmental Bulletin. To attract more attention of the public and to
improve the awareness of ecological forest protection, the compensation funds have been gradually
increased from the original 8 Yuan/mu to 30 Yuan/mu. All these measurements have promoted local
forest conservation, which is reflected by the biomass increase.

4.2. Uncertainty Analysis

The reason that subspecies were not distinguished in this study, except for the limited number of
sample plots, was that we wanted to accomplish recapitulative biomass estimation at the regional scale.
The mean AGB for the ecological forest is 106.61 ton/ha and 99.63 ton/ha for the entire forest, compared
to previous research utilizing field inventory data in Zhejiang Province. Qian et al. [40] predicted the
mean biomass of ecological forests in the whole province would increase to 99.30 t¨hm´2 in 2011,
and Zhang et al. [22] mentioned that the mean biomass forest in Xianju County was 94.51 t¨hm´2 in
2008. Other than the study conducted by Chen [41], obtaining a result of 113.33 t¨hm´2 for the Liandu
District ecological forest in 2008, which exhibited a higher value than our result, the others showed
comparable estimates with this study.

A great deal of uncertainty still exists when estimating forest biomass [42]. Strictly speaking,
complete biomass is comprised of above-ground and under-ground components, while we only
focused on the above-ground biomass as the main objective. Optical imagery has obvious limitations
for AGB estimates, for instance, the backgrounds, including understory vegetation and soil, can greatly
influence the relationship between AGB and derived spectral bands. The spectral information is
representative of tree canopy, but defective for the three-dimensional properties of the forest [43].
All this suggests that there exist gaps, but potential improvement for accuracy biomass retrieval.
Since remote sensing has the advantage of macroscopic and dynamic monitoring, it provides
powerful specific spectral change information and linked relationships to forest biophysical properties
to investigate the interactions between environmental variables and human activities. Biomass
distribution and change were simulated in the present study to quantify human activities’ effects
on forest ecosystems, revealing corresponding intensive biomass reactions to human interventions.
Consequently, multi-source images containing more tree parameter information, associated with
systematic forest administration, will be considered for further research in order to achieve more
precise observations.

5. Conclusions

Remote sensing provides nondestructive and continues detection information on biomass of
forest ecosystem. With the open access of Landsat imagery and rapid development of computer
science, especially machine learning approaches, time-series remote sensing records could be applied
to an AGB investigation, not only expanding the traditional, limited plot scale to regional or larger
spatial scales, but also increasing temporal acquisitions of biomass dynamics with lower cost and
higher efficiency. The economic, modern techniques, cooperating with field-based survey, helps
to gain a better understanding of the interactions between human activities and forest properties
in a spatially macroscopical perspective, which would present vegetation evolution processes and
illuminate subsequent policy decisions.

In this study, Landsat image and field data were integrated to estimate the three period forest
aboveground biomass in Fuyang County, Zhejiang Province, China, using the random forest regression
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with a reliable R2 above 0.9, and RMSE below 12 ton/ha. The results showed that the estimated AGB
increased distinctly from the mean value of 74.24 ton/ha in 2004 to 99.63 ton/ha in 2013, and the spatial
pattern of the predicted AGB, primarily dominated by plantations, presented a close relationship
with geomorphology and human behavior, dominated by local forest management. In summary,
anthropological activities, including afforestation and other forest protection projects, particularly
available below 200-m elevation, in conjunction with ecological forest delimitation, especially within
the national level ecological forest, greatly influenced the distribution and change of forest AGB, which
indicates that Landsat imagery-based AGB estimates would provide valuable information to better
understand the forest ecosystem and promote sustainable development.
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