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Abstract: Understanding the relationship between short-term subway ridership and its influential
factors is crucial to improving the accuracy of short-term subway ridership prediction. Although
there has been a growing body of studies on short-term ridership prediction approaches, limited
effort is made to investigate the short-term subway ridership prediction considering bus transfer
activities and temporal features. To fill this gap, a relatively recent data mining approach called
gradient boosting decision trees (GBDT) is applied to short-term subway ridership prediction and
used to capture the associations with the independent variables. Taking three subway stations in
Beijing as the cases, the short-term subway ridership and alighting passengers from its adjacent
bus stops are obtained based on transit smart card data. To optimize the model performance with
different combinations of regularization parameters, a series of GBDT models are built with various
learning rates and tree complexities by fitting a maximum of trees. The optimal model performance
confirms that the gradient boosting approach can incorporate different types of predictors, fit complex
nonlinear relationships, and automatically handle the multicollinearity effect with high accuracy.
In contrast to other machine learning methods—or “black-box” procedures—the GBDT model can
identify and rank the relative influences of bus transfer activities and temporal features on short-term
subway ridership. These findings suggest that the GBDT model has considerable advantages in
improving short-term subway ridership prediction in a multimodal public transportation system.

Keywords: short-term subway ridership prediction; gradient boosting decision tree; bus transfer
activities; multimodal public transportation; variable importance

1. Introduction

Reliable and accurate subway ridership forecasting is beneficial for passengers and transit
authorities. With the predicted passenger demand information, commuters can better arrange their
trips by adjusting departure times or changing travel modes to reduce delay caused by crowdedness;
subway operators can proactively optimize appropriate timetables, allocate necessary rolling stock and
disseminate early warning information to passengers for extreme event (e.g., stampede) prevention.
Existing studies mainly lie in long-term transit ridership prediction for public transport planning as the
part of traditional four-step travel demand forecasting [1]. The typical approach is to construct linear
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or nonlinear regression models between passenger demands and other contributing factors such as
demographics, economic features, transit attributes, and geographic information [2–8]. As indicated by
Dill et al. [9], most previous studies concentrate on route-level and segment-level ridership forecasting,
and neglect the nature of spatial heterogeneity for different stations along the same route [10,11].
Moreover, long-term ridership forecasting mainly focuses on transportation planning and policy
evaluation through analyzing the elasticity of passenger demand or identifying key influential factors
related to transit ridership, but has the inherent disadvantage of not being able to capture the subtle
and sudden changes caused by routine passenger flows and disruption in a much finer granularity.

To address the aforementioned issues, short-term ridership prediction approaches have emerged
in the recent years with only a scarcity of studies. Tsai et al. utilized multiple temporal units neural
network and parallel ensemble neural network to predict short-term railway passenger demands [12].
Zhao developed a wavelet neural network algorithm for transit passenger flows in Jilin, China [13]. Sun
proposed a wavelet-SVM hybrid model to predict passenger flows in the Beijing subway system [14].
Chen and Wei proposed to use the Hilbert-Huang transform to capture the time variants of passenger
flow from a Bus Rapid Transit (BRT) line in Taipei [15], and they further improved the short-term
metro passenger flow prediction accuracy based on empirical decomposing and neural networks [16].
Ma et al. proposed an Interactive Multiple Model-based Pattern Hybrid (IMMPH) approach to predict
passenger flows using smart card data in Jinan, China [17]. Later, Xue et al. extended the IMMPH
model by incorporating seasonal effects and volatility of time series data [18]. The majority of the
existing short-term ridership forecasting approaches adopted the Computational Intelligence (CI) based
algorithms (e.g., support vector machine and neural network) for prediction. These methods present
great capability of analyzing highly nonlinear and complex phenomena with less rigorous assumptions
and prerequisites than statistical models, and often yield more accurate prediction outcomes [19].
However, the explanatory power of CI-based approaches is criticized for weak interpretation and
inference capabilities [20,21].

In the context of subway ridership prediction, the passenger demand is influenced by a wide
range of attributes categorized as external and internal factors [2]. External factors mainly refer to those
contributing variables that are outside subway systems, such as employment, land use and population,
while the internal factors are determined by transit authorities, such as fares and transit service.
The vast majority of previous subway ridership prediction studies either established multivariate
regression models with a combination of external and internal factors (for long-term prediction) [2],
or resorted to historical passenger flows for short-term ridership prediction. Very rare literatures
take into account the interaction between internal factors and external factors for subway ridership
prediction and interpretation. As one of the most representative variables for this interaction,
intermodal transfer activities generate a positive impact on subway ridership [5,6]. Depending on the
various land uses, the increase of subway ridership may be largely attributed to surface public systems
since a large number of passengers have to walk access subway services after alighting from buses [22].
This is especially true in the metropolitan cities, where transfer activities play a significant role in
multimodal public transit systems [23]. How the transfer ridership from feeder buses contributes to
the evolution of subway passenger flows remains unclear, and is worth being investigated.

This study aims to bridge this gap by considering the access trips generated from adjacent
bus stops in short-term subway ridership forecasting. A Gradient Boosting Decision Trees (GBDT)
approach is proposed to capture the subtle and sudden changes of short-term subway ridership based
on a series of influential factors. Different from traditional CI-based algorithms and classic statistical
methods, GBDT can strategically combine several simple tree models to achieve optimized prediction
performance while interpreting model results by identifying the key explanatory variables [24].
In addition, GBDT poses few restrictions and hypotheses on input data and thus is very flexible to deal
with complex nonlinear relationship. These features enable GBDT to be a suitable countermeasure to
predict and explain the high variability and randomness of subway passenger flows. In this study,
a series of spatial and temporal factors, including historical passenger flows, time of day and transfer
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ridership generated by feeder buses, are incorporated into the GBDT model for short-time subway
ridership. Significant relevant variables and the degree of how these variables impact future subway
ridership can be identified and computed. To further demonstrate the transferability and accuracy
of the proposed prediction algorithms, three subway stations with different land uses are tested to
explain spatial heterogeneity. Such an approach contributes to the current literature on understanding
the interaction between transfer connectivity and subway ridership forecasting in a multimodal public
transit system.

The remainder of this paper is organized as follows: Section 2 describes the methodology of
GBDT and documents the context of using GBDT for short-term subway ridership prediction. Section 3
presents the background of Beijing subway system with a detailed explanation of potential influential
variables. Model analysis results and discussion are demonstrated in Section 4, and followed by
conclusion and future research directions at the end of this paper.

2. Methodology

2.1. Gradient Boosting Decision Trees Approach

In this study, a recently developed methodological approach called gradient boosting decision
trees (GBDT) was incorporated into station-level short-term subway ridership prediction. Assuming
that x is a set of predictor variables and f (x) is an approximation function of the response variable
y, using the training data {yi, xi}N

1 , the GBDT approach iteratively constructs M different individual
decisions trees h(x; a1), . . . ,h(x; aM), then f (x) could be expressed as an additive expansion of basis
function h(x; am) as follows:

f (x) =
M
∑

m=1
fm(x) =

M
∑

m=1
βmh(x; am)

h(x; am) =
J

∑
j=1

γjm I(x ∈ Rjm), where I = 1 i f x ∈ Rjm; I = 0, otherwise
(1)

where each tree partitions the input space into J disjoint regions R1m, . . . , Rjm and predicts a constant
value γjm for region Rjm. The parameters βm represent weights given to the nodes of each tree in the
collection and determine how predictions from the individual decision trees are combined [25,26].
The parameters am represents the mean values of split locations and the terminal node for each splitting
variables in the individual decision tree. The parameters βm and am are estimated by minimizing
a specified loss function L(y, f (x)) that indicates a measure of prediction performance [27].

Defining an additive function that is combined from the first decision tree to the (m− 1)th decision
tree as fm−1(x), the parameters βm and am should be determined as follows [28]:

(βm, am) = arg min
β,a

N
∑

i=1
L(yi, fm−1(xi) + βh(xi; a))

= arg min
β,a

N
∑

i=1
L(yi, fm−1(xi) + β

J
∑

j=1
γj I(xi ∈ Rj))

(2)

and

fm(x) = fm−1(x) + βmh(x; am) = fm−1(x) + βm

J

∑
j=1

γjm I(x ∈ Rjm) (3)

Generally, it is not straightforward to solve Equation (2) due to the poor performance of squared
error loss and exponential loss functions for non-robust data or censored data [29]. To overcome
this problem, Friedman devised the gradient boosting approach [30], which is an approximation
technique that applies the method of steepest descent to forward stagewise estimation. Gradient
boosting approximation can solve the above equation for arbitrary loss functions with a two-step
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procedure. First, the parameters am for the decision tree can be estimated by approximating a gradient
with respect to the current function fm−1(x) in the sense of least square error as follows:

am = arg min
a,β

N

∑
i=1

[ỹim − βh(xi; a)]2 = arg min
a,β

N

∑
i=1

[ỹim − β
J

∑
j=1

γj I(xi ∈ Rj)]

2

(4)

where ỹim is the gradient and is given by

ỹim = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f (x)= fm−1(x)

(5)

Then, the optimal value of the parameters βm can be determined given h(x, am):

βm = arg min
β

N
∑

i=1
L(yi, fm−1(xi) + βh(xi; am))

= arg min
β

N
∑

i=1
L(yi, fm−1(xi) + β

J
∑

j=1
γjm I(xi ∈ Rjm))

(6)

The gradient boosting approach replaces a potentially difficult function optimization problem in
Equation (2) with the least-squares function minimization as Equation (4), and then, the calculated
am can be introduced into Equation (6) for a single parameter optimization. Thus, for any h(x; a)
for which a feasible least-squares algorithm exists, optimal solutions can be computed by solving
Equations (4) and (6) via any differentiable loss function in conjunction with forward stagewise
additive modeling. Based on the above discussion, the algorithm for the gradient boosting decision
trees can be summarized as follows in Figure 1 [24,28,29]:
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Figure 1. Algorithm for the gradient boosting decision trees.

2.2. Regularization Parameters

The gradient boosting decision tree builds the model in a stagewise fashion and updates the
model by minimizing the expected value of certain loss function. However, fitting the training data
too closely can be counterproductive due to reducing the expected loss on the training data. When
such a reduction exceeds a certain point, the population-expected loss will stop decreasing and then
start increasing [28]. A regularization process can prevent such over-fitting and improve prediction
accuracy by optimizing three parameters: number of trees (M), learning rate (ξ), and tree complexity
(C). If the number of trees (i.e., iterations) is too small, the model cannot be fitted well. By increasing
the number of trees (i.e., iterations), the model becomes complex and fits the data well. However,
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if the number of trees is too large, this will cause the over-fitting problem [30,31]. Learning rate, also
called shrinkage, is used to scale the contribution of each base tree model by introducing a factor of ξ

(0 < ξ ≤ 1) as shown in Equation (7):

fm(x) = fm−1(x) + ξ × βmh(x; am) = fm−1(x) + ξ × βm
J

∑
j=1

γjm I(x ∈ Rjm), where 0 < ξ ≤ 1 (7)

where the smaller ξ is, the greater the shrinkage becomes. The over-fitting issue can be overcome by
reducing or shrinking the impact of each additional tree. Smaller shrinkage values can better minimize
the loss function. However, it requires a larger number of trees to be added into the model. Therefore,
there is a tradeoff between the number of trees and the learning rate. Depending on the value of the
learning rate and the dataset, the easiest way to find the optimal number of trees is to check how well
the model fits on a validation dataset [31].

The gradient boosting algorithm also requires the specification of tree complexity. Tree complexity
refers to the number of splits (or the number of nodes) that is used for fitting for each decision tree.
The number of nodes equals the number of splits plus one. It represents the depth of variable interaction
in a tree. Specifying one split corresponds to an additive model with only one main effect at each
tree. Specifying two splits correspond to a model with two-way interactions at each tree. Generally,
specifying C splits corresponds to a model with up to C-way interactions. To capture more complex
interactions among variables and fully utilize the strength of gradient boosting decision trees, it is
necessary to increase the tree complexity. Hastie et al. suggest that 2 ≤ C ≤ 5 generally works well [29].
Optimal performance of the model depends on selecting the combination of number of trees (M),
learning rate (ξ), and tree complexity (C).

2.3. Relative Importance of Influential Factors

Generally, the influences of predictor variables on response variables are distinct, and identifying
such differences is especially desirable. However, accuracy and interpretability, which are two
fundamental objectives of predictive learning, do not always coincide [32]. In contrast to the statistical
modeling approach and machine learning algorithms, such as autoregressive integrated moving
average (ARIMA) type model, support vector machines (SVM), and neural networks, the GBDT
model can identify and rank the influences of predictor variables on response predictions, while still
maintaining a relative high accuracy.

For a single decision tree T, Breiman et al. proposed the following measure as an approximation
of relative importance of the factor xκ in predicting the response [33]:

I2
κ (T) =

J−1

∑
t=1

τ̂2
t I(v(t) = κ) (8)

where the summation is over the non-terminal nodes t of J-terminal node tree T, xκ is the splitting
variable associated with node t, and τ̂2

t is the corresponding empirical improvement in squared error
as a result of using the splitting variable xκ as the non-terminal node t. For a collection of decision
trees {Tm}M

1 , obtained through the gradient boosting approach, Equation (8) can be generalized by its
average over all of the additive trees:

I2
κ =

1
M

M

∑
m=1

I2
κ (Tm) (9)

3. Data Sources and Preparation

The Beijing subway network has been expanding from 4 lines with 114 km in 2006 to 16 lines with
442 km in 2012, leading to a sudden increase of daily ridership from 1.93 million to 6.74 million [34].
Such a burst of ridership stimulates several critical issues such as crowdedness in trains and insufficient
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capacity of transferring channels between different lines. To balance the overwhelming passenger
demands and limited capacity of subway facilities, 51 subway stations began to restrict passengers’
access during certain time periods (e.g., morning and evening peak hours) in 2015. Among these
stations, Da-Wang-Lu (DWL) station, Fu-Xing-Men (FXM) station and Hui-Long-Guan (HLG) station
are the three most representative ones with high passenger demands in the Beijing subway system.
This is owing to the surrounding land use and built environment attracting a significantly large number
of passengers: The DWL station locates in the area of Central Business District (CBD) in Beijing with
a wealth of Fortune 500 enterprises and shopping malls, and it also serves as a multimodal transfer
hub that embraces multiple bus stops, which connects numerous commuters living in suburban to
work in other districts via subway systems. The FXM station sits along the Beijing Financial Street,
which is considered as one of the most significant streets in Beijing. A number of foreign and domestic
financial companies and government agencies are located around the FXM station. Due to the limited
parking space, the majority of commuters take the subway or bus for working in those institutions.
Different from the FXM and DWL stations, the HLG station is located in a suburban residential area,
where a myriad of residents live and commute to downtown on a daily basis. The layout of the
three stations is presented in Figure 2, where the red pentagram indicates the target subway stations
(DWL, FXM and HLG) and black dots represent the adjacent bus stops. In the field of transportation
and urban planning, the 500-m circle around the subway station is generally seen as the best transit
catchment [35,36]. This respectively yields 35, 26 and 15 transfer bus stops that are within passenger
walking distances for DWL, FXM and HLG stations.
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The acquisition of transit ridership relies on Automatic Fare Collection (AFC) techniques
(also known as Smart Card). Transit smart cards have been issued in Beijing bus and subway systems
since 2006 with 50% fare reduction for adults and 75% fare reduction for students. Such a substantial
fare promotion quickly stimulates the wide usage of smart cards, and more than 90% passengers are
smart card holders [37]. Transit fares on all routes (for bus and subway) have changed to distance-based
schedules since December 2014, where passengers have to swipe their cards twice, with both boarding
and alighting stops recorded. Prior to 2014, more than half of buses implemented the flat-fare strategy:
Passengers are only required to tap the cards on boarding, and thus leave no alighting information
for these buses. For other buses and subway systems, distance-based fare collection methods were
adopted. The dataset used in this study was collected from the DWL, FXM, HLG subway stations and
its adjacent bus stops between July 2012 and November 2012. The alighting stops for those flat-fare
based buses can be properly inferred by using the approach proposed by [23,24], and the number
of passengers transferring from buses to subway can then be estimated by counting the alighting
passengers. Similarly, the subway ridership can be calculated based on the smart card transactions
entering the station. Both bus ridership and subway ridership is aggregated to the interval of every
15 min. The setting of 15 min is attributed to the common practice of computing peak 15-min rate
of passenger flow [38]. Figure 3 demonstrates the weekly ridership changes at DWL, FXM and HLG
stations from 15 October 2012 to 21 October 2012. For each date, the service time of subway system
is from 5:00 a.m. to 11:55 p.m. The temporal distributions of subway ridership for different station
vary. For DWL station, ridership exhibits a dual-peak effect since most commuters need to transfer in
DWL station. For FXM station, most boarding activities occur during evening peak hours rather than
morning peak hours. This is because the FXM station is adjacent to a large business and financial center,
where people need to take the subway returning home in the evening. The temporal distribution
of ridership in HLG station presents a reverse pattern compared with that of FXM station. The
surrounding land type is residential, and thus commuters can walk to the subway station for work in
the morning. However, these trends become less obvious during weekends since few people need to
work on those days.
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Based on the aforementioned discussion, the multimodal transfer activities are found to be
strongly associated with subway ridership. Therefore, the numbers of alighting passengers at time
steps t, t − 1, t − 2, t − 3 from adjacent bus stops are respectively selected as the primary independent
variable with the underlying assumption of at most one-hour transfer time from buses to the subway
system. Additionally, the three most relevant subway passenger demands at time steps t − 1, t − 2,
t − 3 are used as inputs since the current subway ridership has strong correlations with the past
ridership within one hour. Temporal factors such as time of day, day, week and month are also
incorporated in the prediction model. Table 1 provides the overall description of candidate predictor
variables for short-term subway ridership in this study.

Table 1. Description of candidate predictor variables for short-term subway ridership.

Categories Variables Variable Description Value Set

Subway station
characteristics

METROt−1 Short-term subway ridership at time step t − 1 Continuous variable: R+
METROt−2 Short-term subway ridership at time step t − 2 Continuous variable: R+
METROt−3 Short-term subway ridership at time step t − 3 Continuous variable: R+

Bus transfer
activities

characteristics

BUSt Number of bus alighting passengers at time step t Continuous variable: R+
BUSt−1 Number of bus alighting passengers at time step t − 1 Continuous variable: R+
BUSt−2 Number of bus alighting passengers at time step t − 2 Continuous variable: R+
BUSt−3 Number of bus alighting passengers at time step t − 3 Continuous variable: R+

Temporal
characteristics

Time of day Every fifteen minute time step of given day indexed
from 1 to 96

Categorical variable:
{1, 2, 3, . . . , 96}

Date of month Serial date number of given month that represents
from 1 to 31

Categorical variable:
{1, 2, 3, . . . , 31}

Day of week Serial day number of given week that represents
from Monday to Sunday

Categorical variable:
{1, 2, 3, . . . , 7}

Note: Numbers 1, 2, 3, . . . , 7 indicate Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and
Sunday, respectively.

We also investigate the relationship between subway ridership and transfer passenger flows from
buses. Figure 4 demonstrates the weekly ridership changes of the transfer volumes from buses at
the three subway stations. The trends are consistent with Figure 3, indicating that the bus transfer
activities are highly coupled with the subway ridership. Table 2 computes the correlation coefficients
between two variables (subway ridership and transfer volumes from buses). The level of correlation
decreases as the time step increases.
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Table 2. Correlation coefficients between subway ridership and transfer volumes from buses.

Subway Ridership
(METROt)

Bus Transfer Volume
(BUSt−1)

Bus Transfer Volume
(BUSt−2)

Bus Transfer Volume
(BUSt−3)

Da-Wang-Lu (DWL) 0.243 ** 0.174 ** 0.044 *
Fu-Xing-Men (FXM) 0.371 ** 0.277 ** 0.201 **

Hui-Long-Guan (HLG) 0.311 ** 0.276 ** 0.226 **

Notes: ** indicates the significant correlation exists at the 0.01 level; * indicates the significant correlation exists
at the 0.05 level.

4. Model Results

4.1. Model Setup

In this study, bagging is the variation used on the boosting algorithm. For the gradient boosting
algorithm, only a random fraction of the residuals is selected to build the tree in each iteration.
Unselected residuals are not used in that iteration at all [31]. The randomization is considered to
reduce the variation of the final prediction without affecting bias. While not all observations are used
in each iteration, all observations are eventually used across all iterations. Bagging with 50% of the
data is generally recommended [29,30].

For the performance of short-term subway ridership modeling, the pseudo-R2 is used as the
measures in this study. Gradient boosting process determines the number of iterations that maximizes
the likelihood or, equivalently, the pseudo-R2. The pseudo-R2 is defined as R2 = 1 − L1/L0, where
L1 and L0 are the log likelihood of the full model and intercept-only model, respectively. In the case
of Gaussian (normal) regression, the pseudo-R2 turns into the familiar R2 that can be interpreted as
“fraction of variance explained by the model” [31]. For Gaussian regression, it is sometime convenient
to compute R2 as follows:

R2 =
Var(y)−MSE(y, ŷ)

Var(y)
= 1−

T
∑

i=1
( f (xi)− yi)

2

T
∑

i=1
(yi − y)2

(10)

where Var(y) and MSE(y, ŷ) refer to the variance and mean squared error, respectively. T is the
number of test samples, f (xi) is the model prediction, and y is the mean of the test samples. In this
study, the test R2 is calculated on the test data based on the training model.
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The data in this study is divided into three subsets: 50% of the total samples were used for
model training, 25% of the total samples were used as validation dataset for model selection, and the
remaining 25% were used as test dataset to assess the model performance.

4.2. Model Optimization

To validate the model performance of different combination of regularization parameters, a series
of GBDT models are built with various learning rate (ξ = 0.10–0.001), tree complexity (C = 1, 2, 3, 4, 5)
by fitting a maximum of M = 30,000 trees. In the gradient boosting process, the maximum number of
trees is specified in this study, and the optimal number of trees that maximizes the log likelihood on
a validation dataset is automatically found. Therefore, in this study the number of trees is not controlled,
since an optimal solution has been achieved. For the three subway stations, the performance of GBDT
models based on different combination of regularization parameters are described in the following
tables. Meanwhile, given the different combination of shrinkage and tree complexity, the optimal
number of trees for each model at which the minimum error is achieved is also found. In this case,
if the number of trees continues to increase, then the over-fitting issues will arise.

Using the validation dataset, the influence of the shrinkage parameter on model performance can
be seen in Tables 3–5. For a given tree complexity, increasing the value of the shrinkage parameter
will need fewer trees and less computational time to achieve its minimum error. This is due to the
fact that a higher value of shrinkage parameter can increase the contribution of each tree in the model
thereby needing fewer trees to be added. Depending on the tree complexity and number of trees,
the optimal shrinkage parameter varies. Generally, as shrinkage parameter decreases, the model will
obtain a better performance. However, when the value of shrinkage parameter reaches to a certain
level, the model performance begins to deteriorate. Taking DWL subway station as an example,
the model performance with C = 1 becomes better as the shrinkage parameter value decreases from
ξ = 0.10 to ξ = 0.01. However, decreasing the value of shrinkage parameter from ξ = 0.01 to ξ = 0.001
leads to a worse result. To gain a better model performance, a reasonable combination of shrinkage
parameter and number of trees is preferable. It should be noted that * indicates the optimal number of
trees is larger than the given maximum value, and R2 did not reach its best value in following tables.

The impact of tree complexity on model performance can also be quantified through Tables 3–5.
For a given shrinkage parameter, increasing the value of tree complexity will generally lead to
a more complex model, and thus requires fewer trees for a minimum error. Controlling the value of
shrinkage parameter and number of trees, the computational time will increase as the level of tree
complexity increases. Therefore, the final computational time depends on the tree complexity and
optimal number of trees. Generally, the model will obtain better performance as the tree complexity
increases. Taking DWL subway station as an example, the model performance becomes better with
ξ = 0.10 when the tree complexity increase from C = 2 to C = 5. This is due to the fact that a higher level of
tree complexity can capture more detailed information from the dataset. However, the improvement of
model performance is not sensitive after the value of tree complexity reaches a certain level. Therefore,
the model performance and computational time should be balanced.

Table 3. Performance of gradient boosting decision trees (GBDT) models for Da-Wang-Lu (DWL)
subway station.

Shrinkage

R-Squared and Optimal Number of Trees

Tree Complexity = 1 Tree Complexity = 2 Tree Complexity = 3 Tree Complexity = 4 Tree Complexity = 5

R2 Trees R2 Trees R2 Trees R2 Trees R2 Trees

0.10 0.9565 1571 0.9742 2400 0.9764 547 0.9753 675 0.9802 429
0.05 0.9577 5730 0.9733 3383 0.9770 2894 0.9792 1617 0.9806 604
0.01 0.9605 26,851 0.9771 18,709 0.9798 14,063 0.9796 10,257 0.9807 12,479

0.005 0.9595 29,772 0.9771 29,972 0.9802 27,468 0.9803 23,201 0.9811 19,177
0.001 0.9523 30,000 * 0.9724 29,999 * 0.9776 29,999 * 0.9796 29,999 * 0.9806 29,999 *
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Table 4. Performance of GBDT models for Fu-Xing-Men (FXM) subway station.

Shrinkage

R-Squared and Optimal Number of Trees

Tree Complexity = 1 Tree Complexity = 2 Tree Complexity = 3 Tree Complexity = 4 Tree Complexity = 5

R2 Trees R2 Trees R2 Trees R2 Trees R2 Trees

0.10 0.9738 10,527 0.9795 2202 0.9859 464 0.9863 602 0.9869 219
0.05 0.9759 25,516 0.9809 2107 0.9871 1570 0.9881 1013 0.9879 533
0.01 0.9756 29,997 0.9835 23,318 0.9876 10,289 0.9891 7209 0.9893 2912

0.005 0.9743 30,000 * 0.9836 29,817 0.9878 19,983 0.9890 11,473 0.9893 6743
0.001 0.9653 30,000 * 0.9819 30,000 * 0.9875 29,995 0.9888 29,982 0.9891 29,992

Table 5. Performance of GBDT models for Hui-Long-Guan (HLG) subway station.

Shrinkage

R-Squared and Optimal Number of Trees

Tree Complexity = 1 Tree Complexity = 2 Tree Complexity = 3 Tree Complexity = 4 Tree Complexity = 5

R2 Trees R2 Trees R2 Trees R2 Trees R2 Trees

0.10 0.9808 4236 0.9888 1072 0.9916 217 0.9916 457 0.9894 303
0.05 0.9827 5386 0.98884 1965 0.9905 1365 0.9905 1757 0.9910 1113
0.01 0.9835 28,242 0.9898 10,598 0.9916 7895 0.9914 5694 0.9915 5493

0.005 0.9831 29,978 0.9901 19,910 0.9915 17,596 0.9914 14,583 0.9916 8431
0.001 0.9786 30,000 * 0.9896 29984 0.9911 30,000 * 0.9915 29,927 0.9915 29,981

Tables 3–5 present the model performances for the DWL, FXM and HLG subway stations.
By comparing the model results and computational time, the best model performance for the three
subway stations can be acquired, which are in bold. For the DWL subway station, the best performance
is obtained at the shrinkage parameter of 0.05 and tree complexity of 5 with an optimal ensemble of
604 trees. Similar to the FXM subway station, the best model performance occurs at the shrinkage
parameter of 0.01 and tree complexity of 5 with an optimal ensemble of 2912 trees. With regards
to the HLG subway station, the model reached its best performance with the shrinkage parameter
of 0.10, tree complexity of 3, and optimal ensemble of 217 trees. The final R2 for the three optimal
models are 0.9806, 0.9893 and 0.9916, respectively. This indicates a good prediction accuracy since the
GBDT model is able to handle different types of predictor variables, capture interactions among the
predictor variables and fit complex nonlinear relationship [39]. Hence, in this study the GBDT model
can handle the nonlinear features of short-term subway ridership and leads to superior prediction
accuracy. Similar studies on gradient boosting trees in travel time prediction [24] and auto insurance
loss cost prediction can be also found [32].

4.3. Model Comparison

To examine the effectiveness of GBDT model used for station-level short-term subway ridership
prediction, a comparison was conducted with several conventional techniques including BP-neural
network, support vector machine (SVM) and random forest (RF). For BP-neural network, the learning
rate is set as 0.1, and the optimal number of hidden layer neurons is calculated as 3 by using the
empirical equation in [40]. For SVM, the Radial Basis Function (RBF) is selected as the kernel function.
Through the three-fold cross-validation, the gamma parameter of the RBF is computed as 0.125, 1,
and 0.5 for DWL, FXM and HLG stations, respectively, and the soft margin parameter C is calculated
as 1. For RF, the number of tress grown is 500, and the number of predictors sampled for splitting
at each node is determined as 2. Table 6 shows the comparison results for the DWL, FXM and HLG
subway stations, respectively. In this study, root mean squared error (RMSE) is used additionally with
R2 as the model performance indicators. Lower RMSE value or higher R2 value means higher accuracy.
The RMSE is defined as follows:

RMSE =

√√√√√ T
∑

i=1
(ŷi − yi)

2

N
(11)
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where N is the number of test samples, ŷi is the predicted values, and yi is the observed values.

Table 6. Comparison with different models for subway ridership prediction.

Subway
Station

Performance for Different Models (Measured by Root Mean Squared Error (RMSE) and R2)

NN SVM RF GBDT

RMSE R2 RMSE R2 RMSE R2 RMSE R2

DWL 134.2033 0.9599 171.4534 0.9346 107.6754 0.9742 65.9933 0.9806
FXM 60.9258 0.9825 88.1399 0.9633 68.2797 0.9780 37.4414 0.9893
HLG 99.4166 0.9837 149.4753 0.9631 125.6164 0.9739 64.0564 0.9916

Note: NN = BP-neural network, SVM = support vector machine, and RF = random forest.

A statistical test is performed to evaluate the statistical significance of the results. By comparing
the results of different prediction techniques, we can see that the GBDT model is statistically different
to any of other techniques, and receives the best model performance for all the three stations. Overall,
the GBDT model outperforms the other three models in station-level short-term subway ridership
prediction in terms of both RMSE and R2 measurements. As another ensemble learning method,
Random Forest yields the best prediction results among other three approaches excluding GBDT with
at most 36% increase of the RMSE value. On the contrary, SVM receives the worst performance for
subway ridership prediction at the three stations. This finding further confirms the advantage of GBDT
model in modeling complex relations between subway boarding ridership and bus transfer activities.

4.4. Model Interpretation

To explore the different influences of predictor variables on short-term subway ridership among
the DWL, FXM and HLG subway stations, the relative contributions of predictor variables for the
three subway stations were calculated using the optimal models as shown in Table 6, respectively.
A higher value of relative importance indicates stronger influences of predictor variables in predicting
short-term subway ridership.

As shown in Table 7, each predictor variable has a different impact on short-term subway ridership.
For all the three subway stations, the immediate previous subway ridership METROt−1 contributes
most in predicting short-term subway ridership with a relative importance of 82.03%, 85.06% and
92.28% for the three subway stations, respectively. This finding falls within our expectation that the
immediate previous ridership is closely related with the current subway ridership. The current bus
alighting passengers BUSt, with a contribution of 9.41%, 4.42% and 0.08% to the short-term subway
ridership prediction, respectively ranks the second, third and eighth most influential predictor variable
for the DWL, FXM and HLG subway stations. This result indicates that the bus transfer activities
around the DWL subway station have the most potentially significant effects on the subway ridership,
and the bus transfer activities around the HLG subway station have little effects on the subway
ridership. This is consistent with the fact that the DWL subway station is an important transfer station,
and a number of residents live around the HLG subway without needing transfer. For FXM station,
bus transfer activities contribute less than 5% of ridership. This is because the station is actually
within walking distance of Beijing Finance Street, where office workers can directly take subway for
commuting. Meanwhile, 26 bus stops are around FXM station, and these stops still transfer a certain
amount of passengers to the subway system.

Another interesting finding relates to the influence of time of day on short-term subway ridership.
For the three subway stations, the influence of time of day contributes 3.55%, 7.59% and 6.54% to the
short-term subway ridership, respectively. The factor of time of day is associated with the periodic
feature of subway ridership: subway ridership is usually high during peak hours and maintains at
a moderate level of ridership during non-peak hours. This finding confirmed the important role of
time of day in predicting subway ridership. Among other variables, the short-term subway ridership
at time step t − 2 METROt−2 and at time step t − 3 METROt−3 have slightly over 1% of contributions
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in predicting subway ridership for the DWL subway station, while their contributions become less
than 1% for the FXM and HLG subway stations.

Table 7. Relative influence of predictor variables on short-term subway ridership.

Variable
DWL Subway Station FXM Subway Station HLG Subway Station

Rank Relative
Importance (%) Rank Relative

Importance (%) Rank Relative
Importance (%)

METROt−1 1 82.03 1 85.06 1 92.28
METROt−2 4 1.71 4 0.95 4 0.20
METROt−3 5 1.65 5 0.77 3 0.46

BUSt 2 9.41 3 4.42 8 0.08
BUSt−1 6 0.55 6 0.44 6 0.11
BUSt−2 8 0.40 7 0.34 9 0.06
BUSt−3 7 0.41 8 0.27 5 0.16

Time of day 3 3.55 2 7.59 2 6.54
Date of month 10 0.12 9 0.10 7 0.10
Day of week 9 0.17 10 0.06 10 0.01

5. Summary and Discussion

Public Transportation plays an important role in reducing fuel consumption, lowering vehicle
emissions and alleviating traffic congestion. As reported in Park and Lee’s study, a strong positive
relationship between bus ridership and airborne particulate matter (PM10) can be found [41]. Therefore,
maximizing transit ridership will ultimately improve air quality. This study ranks the potential
influential factors on subway ridership, and investigates how varying the built environment impacts
on passenger transfer activities to subway systems. The research outcomes provide useful information
to design and optimize public transit facilities for attracting more passengers from private cars to the
public transport mode, and are expected to enhance the sustainability of the transportation system.

This study contributes to improving short-term subway ridership prediction, accounting for
bus transfer activities in a multimodal public transit system. The GBDT model is proposed to
handle different types of predictor variables, fit complex nonlinear relationships, and automatically
disentangle interaction effects between influential factors. Three subway stations with different land
uses are selected to explain the spatial heterogeneity. For each station, the short-term subway ridership
and bus alighting passengers are obtained based on the transit smart card data. Moreover, a series of
temporal factors are incorporated into the GBDT model for short-time subway ridership. The models
were built with various learning rates and tree complexities by fitting a maximum of trees.

In this study, the optimal GBDT model for each station was found by balancing algorithm
effectiveness and efficiency. Our study showed that the GBDT model has superior performance in
terms of prediction accuracy and model interpretation power. This is different from the traditional
computational intelligence algorithms (e.g., SVM, neural networks, and random forest)—“black-box”
procedures—and the relative influences of predictor variables on short-term subway ridership
predictions can be identified based on the optimal GBDT model. It is greatly helpful to better
understand the contribution of bus transfer activities and temporal factors on subway ridership
prediction. For all three stations, the immediate previous subway ridership and time of day
were found to generate the most important influence on short-term subway ridership prediction.
The relative influences of bus transfer activity variables on short-term subway ridership were shown
to be different according to various land uses associated with subway stations. For example, the bus
transfer activities around the DWL subway station were found to yield more influences on short-term
subway ridership than HLG station. These examples show that the GBDT model has the advantage
of incorporating different types of predictor variables, capturing complex nonlinear relationship,
and providing the relative importance of influential factors. Therefore, the GBDT model can also be
applied in the field of travel time prediction, travel flow prediction, etc.
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The proposed short-term subway ridership forecasting method can be applied to quantify the
impact of subway ridership burst under special events. Large events (e.g., concerts or soccer games)
lead to non-habitual passenger demands and may exceed the designed capacity of subway system.
If the contribution of buses on subway ridership is identified, more rational and timely management
strategies can be then be adopted, such as real-time train timetable adjustment and demand-driven
feeder bus allocation. This is especially useful for both operators and travelers to avoid overcrowding.
Meanwhile, forecasting subway ridership in the context of bus transfer activities provides insightful
evidences for subway system planning. Instead of focusing on the absolute ridership during peak
hours, the attractiveness to other transportation modes should be also taken into account for subway
station design. One limitation of the GBDT model in this study that should be noted is that the
statistical significance for influential factors cannot be captured. Further studies can be made to extend
the use of the advanced GBDT model for discrete response variables such as travel model choice.
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