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Abstract: Complex mechanical products are a priority area of advanced manufacturing strategy
in the USA and Europe. Excellent models for design processes of complex mechanical products
are essential for managers or designers to manage design processes and further improve design
efficiency. Multiple elements and complicated relationships between elements in the design processes
of complex mechanical products cause difficulties in systematically and quantitatively expressing
the design processes. Therefore, we put forth a supernetwork-based model for designing complex
mechanical products. First, we identified the key elements in the design processes of complex
mechanical products. Next, based on this we analyzed sub-elements of the key elements and
relationships between sub-elements. Then we built sub-networks with sub-elements as nodes
and their relationships as edges and the supernetwork model for design processes of complex
mechanical products based on the sub-networks and their relationships. Meanwhile, we also present
a method for combining linguistic variables with the corresponding triangular fuzzy numbers, and
a max/min synthesis method to accurately compute the edge weights. Finally, we suggest the
practical applications of the proposed model and give a comparison of the proposed model and
existing ones to verify the feasibility and validity of this study.

Keywords: design processes of complex mechanical products; supernetwork; design structure; design
tasks; design resources

1. Introduction

With the global economic downturn, the U.S. and German governments have developed
“a national strategic plan for advanced manufacturing” [1] and “high-tech 2020” [2], respectively.
Combining these strategies with the economic characteristics of China, the Chinese government
presented “China manufacturing 2025” [3]. As mentioned in the above strategies, the development of
the equipment manufacturing industry significantly facilitates economic growth. In the equipment
manufacturing industry, most products are complex mechanical ones [4]. In the whole life cycle of
complex mechanical products, the design process is crucial for companies to maintain a competitive
advantage [5–7]. As a tool for representing, understanding, and managing design processes,
an advanced model of the design processes of complex mechanical products is important to help
managers enhance design efficiency and competitive advantage [8]. Therefore, it is important to model
the design processes of complex mechanical products exactly.

Some models for the design processes of complex mechanical products have been developed.
Zhou et al. built a Meta synthesis model from the perspective of the design cycle and task
granularity [9,10], but the model failed to quantify the relationships between tasks. Van et al. [11],
Jia et al. [12], Cao, Qin, and Wang [13], Liu et al. [14] presented a model based on Petri Net from the
point of view of the design tasks of mechanical products, but it is difficult given their complexity.
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Meanwhile, there are many matrix forms to express the design processes. Specifically, [15–20]
developed a Design Structure Matrix (DSM)-based model for the design structures of complex
mechanical products. Van, Jia, and Cao [21], Qin, Wang, and Liu [22] established a model based
on the Design Relation Matrix (DRM) from the point of view of the design structures of complex
mechanical products. Bartolomei et al. [23] presented the Multiple-Domain Matrix (MDM) as
an organizing framework for modeling engineering systems. Carley and Reminga [24] proposed
a Meta-Matrix, which expressed the elements of organization and their relationships. Although the
above studies [15–24] make great contributions to modeling design processes, there are still some flaws:
firstly, the non-graphical expression of matrix decreases visualization. Secondly, DSM and DRM fail to
denote the types of relationships lying on the same hierarchy of matrixes or quantify relationships
between different hierarchies of matrixes. Although MDM can express the relationships between
different types of elements, it fails in quantifying the relationships between the same type of elements.
In addition, the above models mainly focus on design structures or tasks when expressing the design
processes of complex mechanical products, neglecting the dependent relationships between elements
in design processes such as structures, tasks, and resources. Due to the dependent relationships
containing design information, the neglect of them may cause repeated design activities, and then
impact on design efficiency.

From the above analyses, we can see that many studies concerning models for design processes of
products have been performed. Some models apply to relatively simple products, fail to quantify the
relationships between elements, or decrease visualization. Also, most of them neglect the relationships
between elements in design processes such as design structures, tasks, and resources. Due to the
dynamic factors in the design processes of complex mechanical products, the change in dynamic
factors will be propagated by the relationships between elements and then impact on the elements in
the design processes. For example, change is the rule in the design processes of complex mechanical
products. A change in one part will, in most cases, cause changes in other parts, relevant tasks,
and resources. Meanwhile, the different strength of relationships between elements will impact on
elements of the design process. So, systematic and quantitative expression of the design processes of
complex mechanical products is important to manage their design processes. Therefore, we present
a supernetwork-based model for the design processes of complex mechanical products. As a highly
abstract model of the real world, the supernetwork can model not only homogeneous nodes and their
relationships, but also heterogeneous nodes and the relationships between them in a network [25–27];
it also appears to be effective in studying complex systems consisting of a variety of elements and
relationships [28,29], and has been widely used to model intellectual, social, and supply chain areas [30–32].

In summary, the contributions of the paper are as follows: to help managers or designers better
manage the design processes of complex mechanical products and enhance design efficiency, we
present, for the first time, a supernetwork-based model of the design processes of complex mechanical
products, which can systematically express the design processes of complex mechanical products by
integrating three sets of key elements: design structures, tasks, and resources. Meanwhile, the proposed
model also can quantitatively express the relationships between the three sets of key elements with
edge weights. Using the proposed model, managers or designers can analyze the change impacts and
importance of design elements more accurately, and know which parts should be assigned additional
resources to respond to likely changes and so on.

The remainder of this paper is organized as follows. Section 2 identifies the key elements in design
processes of complex mechanical products and analyzes sub-elements and the relationships between
them. In Section 3, the sub-networks are built with the sub-elements as nodes and the relationships
between sub-elements as edges. Based on this, a supernetwork-based model for design processes of
complex mechanical products is established and relationships between sub-elements and elements are
quantified. A practical application of the proposed model and a comparison of the proposed model
with existing ones help verify the feasibility and validity of this study in Section 4. Conclusions are to
be found in Section 5.
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2. Identify the Key Elements and Analyze Their Relationships in the Design Processes of
Complex Mechanical Products

2.1. Identify Key Elements in the Design Processes of Complex Mechanical Products

The design processes of complex mechanical products contain design tasks, parts, designers,
and many other elements [33,34]. Based on previous studies, the design processes of complex
mechanical products can be divided into four stages: product plan, concept design, detailed design,
and trials/experimentation [35–43] as shown in Figure 1. The general association among elements in
design processes of complex mechanical products can be concluded as in Figure 2.

According to the identification of key elements based on system function [44], the design process is
a complex system structure composed of sequential structure, contractive structure, parallel structure,
and feedback structure. According to the inferences 1–4 proposed by Bian and Guo [44], we can judge
that the design structures, tasks, and resources are the key elements in the design processes of complex
mechanical products. The significance of them is as follows:

(1) Design structures not only determine the functions of complex mechanical products, but also
influence the decomposition of design tasks. Therefore, the design structures are key elements in
the design processes of complex mechanical products.

(2) Design tasks are necessary activities to achieve design structures and functions of complex
mechanical products. In turn, complex product design is a process of completing a series of
design tasks. Therefore, design tasks are key elements in the design processes of complex
mechanical products.

(3) Without knowledge, hardware, software, and human resources, design activities could not be
carried out. Therefore, design resources are key elements in the design processes of complex
mechanical products.

In summary, product structures are the basis for the decomposition of design tasks. Design tasks
are the basis for the allocation of design resources. Therefore, design processes of complex mechanical
products mainly comprise three sets of key elements: design structures, tasks, and resources. There are
a large number of relationships between structures, tasks, and resources. So the paper presents
a supernetwork-based model for design processes of complex mechanical products with three sets of
key elements, design structures, tasks, and resources, as nodes, with the relationships between them
as edges.
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(1) Sequential dependence. If the execution of a task requires outputs from an upstream task as its 
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2.2. Analyze the Relationships between Design Structures of Complex Mechanical Products

Parts are sub-elements in the design structures of complex mechanical products. There are
two types of relationships among parts, containment and associational relationships [45,46], as shown
in Figure 3.

(1) The containment relationship is longitudinal. It means a component is composed of parts.
When a component needs to be adjusted, relevant parts should also be changed.

(2) The associational relationship is horizontal. When there is a change in any one part, other
associational parts will be impacted.
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2.3. Analyze the Relationships between Design Tasks of Complex Mechanical Products

The sub-elements of design tasks of complex mechanical products comprise design sub-tasks that
are formed by decomposing design tasks into certain granularity, coupling degree, and evenness [47,48].
A design task represents an effort that must be performed in order to achieve key milestones in design
processes [49]. In general, its participants are work groups, the deliverables are information packages,
and the timescales is weeks or months [50].

On the basis of previous research [51,52], the relationships between design tasks of complex
mechanical products can be grouped into three types: sequential dependence, parallel independence,
and cross-coupling, as shown in Figure 4.

(1) Sequential dependence. If the execution of a task requires outputs from an upstream task as
its inputs, but the execution of the upstream task does not require outputs from it as input, the
relationship between the two tasks is sequential dependence.

(2) Parallel independence. The task will not be affected by other tasks of same granularity. That is,
there is no information interaction between them.
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(3) Cross-coupling. The relationship between the two tasks is bidirectional. The execution of a task
requires outputs from an upstream task as its inputs, while the execution of the upstream task
requires outputs from the one downstream as input. The relationship between the two tasks
is cross-coupling.
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2.4. Analyze the Relationships between Design Resources of Complex Mechanical Products

The design resources of complex mechanical products contain all the elements used in the
design processes of complex mechanical products. They can be divided into six types: knowledge
resources, human resources, hardware resources, software resources, financial resources, and time
resources [53–55]. Among them, knowledge resources are documents, books, historical materials,
network information, experience, and so on; human resources are participants in the design processes
of complex mechanical products, such as managers, designers, testers, and assessors; hardware
resources are computers, processing equipment, measuring equipment, reversing equipment, and so
on; software resources are CAE, CAPP, CAD, and so on. For financial and time resources, they can be
assigned to design tasks as special resources. The above design resources are shown in Figure 5.

There are various relationships between design resources. Specifically, designers and testers
use different hardware, software, and knowledge to design and test complex mechanical products;
designers in different fields cooperate with each other to design new products. In addition, designers
cooperate with testers and assessors to revise the design projects of new products. So, the relationships
between design resources can be summarized as:

(1) Cooperative relationship. Managers, designers, testers, and assessors cooperate with each other
to complete design tasks.

(2) Matching relationship. Different actors use different knowledge, hardware, and software
resources in their fields to complete design tasks.

Note that we do not consider negative relationships between design resources here, because those
should be considered in the assignment of design tasks. For the relevant identification methods of
conflict, refer to [56,57].
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3. Supernetwork-Based Model for Design Processes of Complex Mechanical Products 

According to the relationships between elements in design processes of complex mechanical 
products, if the parts of complex mechanical products are viewed as nodes and their relationships 
are viewed as edges, design structures of complex mechanical products can be regarded as a sub-
network model for design structures of complex mechanical products. Similarly, design sub-tasks 
and sub-resources are viewed as nodes and their relationships are viewed as edges, so the design 
tasks and resources can be regarded as a sub-network model for design tasks of complex mechanical 
products and a sub-network model for design resources of complex mechanical products, 
respectively. On the basis of the above analysis, design structures, tasks, and resources are viewed as 
nodes, and the relationships between design structures, tasks, and resources are viewed as edges, so 
the design processes of complex mechanical products can be viewed as a supernetwork consisting of 
three sub-networks: CPSN, CPTN, and CPRN.  

3.1. Sub-Network for Design Structure of Complex Mechanical Products 
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3. Supernetwork-Based Model for Design Processes of Complex Mechanical Products

According to the relationships between elements in design processes of complex mechanical
products, if the parts of complex mechanical products are viewed as nodes and their relationships are
viewed as edges, design structures of complex mechanical products can be regarded as a sub-network
model for design structures of complex mechanical products. Similarly, design sub-tasks and
sub-resources are viewed as nodes and their relationships are viewed as edges, so the design tasks and
resources can be regarded as a sub-network model for design tasks of complex mechanical products
and a sub-network model for design resources of complex mechanical products, respectively. On the
basis of the above analysis, design structures, tasks, and resources are viewed as nodes, and the
relationships between design structures, tasks, and resources are viewed as edges, so the design
processes of complex mechanical products can be viewed as a supernetwork consisting of three
sub-networks: CPSN, CPTN, and CPRN.

3.1. Sub-Network for Design Structure of Complex Mechanical Products

vsi denotes part i in the design structure of a complex product. esij denotes the relationship
between part i and j. wsij denotes the strength of esij. Then the set of nodes can be defined as
Vs = {vsi,i = 1, 2, 3, ..., m}. The set of edges can be defined as Es =

{
esij, i, j = 1, 2, ..., m, i 6= j

}
.

In addition, the high value integration of complex mechanical products requires us to precisely
express the design processes of complex mechanical products, so an edge weight is introduced, which
denotes the strength of the relationships between elements. The set of edge weight can be defined
as Ws =

{
wsij, i, j = 1, 2, ..., m, i 6= j

}
. The sub-network for design structures of complex mechanical

products can be defined as:
Gs = (Vs, Es, Ws). (1)

Note that there are directional edges and bi-directional edges in the sub-network-based model
for design structures of complex mechanical products, denoting containment and associational
relationships, respectively. Based on the above analysis, Gs is a directed network. In addition, to
distinguish between the different sub-networks composed of sub-elements and their relationships, the
relevant parameters of sub-networks for design structures, tasks, and resources are labeled with the
subscripts “s”, “t” and “r”, respectively.

The sub-network for design structures of complex mechanical products can be drawn by Ucinet
software. For example, product A is composed of five parts. Among the set of nodes and edges are
Vs = {vs1, vs2, vs3, vs4, vs5} and Es = {es12, es13, es21, es24, es31, es35, es42, es53}, respectively. vs1 contains
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vs2 and vs3. vs2 contains vs4 and vs5. vs2 associates with vs3. vs4 associates with vs5. The strength of the
relationships among them for product A are shown in Table 1.

Table 1. The strength of relationships between parts of product A.

vs1 vs2 vs3 vs4 vs5

vs1 0 0.4 0.2 0 0
vs2 0 0 0.4 0.1 0.2
vs3 0 0 0.5 0 0
vs4 0 0 0 0 0.2
vs5 0 0 0 0.6 0

Import the data from Table 1 into Ucinet and draw the sub-network for design structure of product
A as shown in Figure 6.
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3.2. Sub-Network for Design Tasks of Complex Mechanical Products

vtr denotes task r in the design tasks of complex mechanical products. etrl denotes the relationship
between r and l. wtrl denotes the strength of etrl . Then the set of edges can be defined as
Vt = {vtr, r = 1, 2, 3, ..., n}. The set of edges can be defined as Et = {etrl , r, l = 1, 2, ..., n, r 6= l}. The set
of edge weights can be defined as Wt = {wtrl , r, l = 1, 2, ..., n, r 6= l}. The sub-network for design tasks
of complex mechanical products can be defined as:

Gt = (Vt, Et, Wt). (2)

Likewise, the sub-network model for design tasks of complex mechanical products can be drawn
by Ucinet software. For example, the set of tasks is Vt = {vt1, vt2, vt3, vt4, vt5} and the set of edges is
Es = {es21, es24, es31, es32, es42, es53}. vt4 is the parallel independence on vt5. vt2 is the cross-coupling
with vt3. vt1 is the sequential dependence on vt2 and vt3. The strength of the relationships between
tasks is shown in Table 2.

Table 2. The strength of the relationships between design tasks.

vt1 vt2 vt3 vt4 vt5

vt1 0 0 0 0
vt2 0.2 0 0.5 0
vt3 0.8 0.7 0 0
vt4 0 0.9 0 0
vt5 0 0 0.8 0
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Import the data from Table 2 into Ucinet and draw the sub-network for design tasks of product A
as shown in Figure 7.
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3.3. Sub-Network for Design Resources of Complex Mechanical Products

vrh and vro denote human resources and other resources in the design processes of complex
mechanical products, respectively. The set of human resources and other resources can be defined as
Vrh =

{
vt1, ..., vti, ..., vth, ..., vtp, i, h = 1, 2, 3, ..., p

}
and Vro =

{
vtj, ..., vto, ...vtq, j, o = p + 1, p + 2, ..., q

}
,

so the set of design resources can be defined as Vr = {Vrh, Vro}. erih denotes the cooperative relationship
between human resources i and h. erho denotes the matching relationship between human resources
h and other resources o, so the set of edges between human resources and other resources can be
defined as Erh = {eih, i, h = 1, 2, 3, ..., p} and Ero =

{
ejo, j, o = p + 1, p + 2, ..., q

}
; therefore, the set

of edges between design resources can be defined as Er = {Erh, Ero}. wrih denotes the strength of
the cooperative relationship between human resources i and h. wrho denotes the strength of the
matching relationship between human resources h and other resources o, so the set of edge weights
between human resources and other resources can be defined as Wrh = {wih, i, h = 1, 2, 3, ..., p} and
Wro =

{
wjo, j, o = p + 1, p + 2, ..., q

}
; therefore, the set of edge weights between design resources can

be defined as Wr = {Wrh, Wro}. The sub-network for design resources of complex mechanical products
can be defined as:

Gr = (Vr, Er, Wr). (3)

Likewise, the sub-network for the design resources of complex mechanical products can be drawn
by Ucinet software. For example, the set of resources is Vr = {vr1, vr2, vr3, vr4, vr5}. Among them,
vr1 and vr2 denote human resources. vr3, vr4, and vr5 denote other resources. vr1 cooperates with vr2.
vr1 matches with vr3, vr5. vr2 matches with vr4. The strength of the relationships between resources is
shown in Table 3.

Table 3. The strength of the relationships between resources.

vr1 vr2 vr3 vr4 vr5

vr1 0.9 0.8 0 0.9
vr2 0.9 0 0.9 0

Import the data from Table 3 into Ucinet and draw the sub-network for design resources of
product A as shown in Figure 8.



Sustainability 2016, 8, 992 10 of 25
Sustainability 2016, 8, 992 10 of 25 

 
Figure 8. The sub-network for design resources of product A. 

3.4. Supernetwork-Based Model for the Design Processes of Complex Mechanical Products 

In the design processes of products, the design of parts requires the execution of relevant design 
tasks. The execution of design tasks requires the distribution of relevant design resources. There are 
bidirectional corresponding relationships between design structure and tasks. Also, bidirectional 
corresponding relationships exist between design tasks and resources. 

stE  denotes the set of edges between CPSN sG  and CPTN tG . trE  denotes the set of edges 

between CPTN tG  and CPRN tG . st trW ,W  denote the strength of st trE ,E , respectively. So a 

supernetwork-based model for design processes of complex mechanical products s t rG    can be 
defined as: 

 s t r s t r st tr st trG G ,G ,G ,E ,E ,W ,W   . (4) 

The sketch of supernetwork s t rG    is shown in Figure 9. 

vs1
the sub-network for design 

structure of complex product 

the sub-network for design 
tasks of complex product 

the sub-network for design 
resources of complex product 

vs3

vs2

vs5

vs4

vt1

vt2

vt3

vt4

vt5

vr1

vr2

vr3

vr4

vr5

parts

tasks

resources

legend

containment relationship

sequential dependence

associational relationsh

cross coupling

cooperative or  
matching relationship

relationship between 
sub-networks  

Figure 9. The sketch of supernetwork s t rG   . 

Figure 8. The sub-network for design resources of product A.

3.4. Supernetwork-Based Model for the Design Processes of Complex Mechanical Products

In the design processes of products, the design of parts requires the execution of relevant design
tasks. The execution of design tasks requires the distribution of relevant design resources. There are
bidirectional corresponding relationships between design structure and tasks. Also, bidirectional
corresponding relationships exist between design tasks and resources.

Est denotes the set of edges between CPSN Gs and CPTN Gt. Etr denotes the set of edges between
CPTN Gt and CPRN Gt. Wst, Wtr denote the strength of Est, Etr, respectively. So a supernetwork-based
model for design processes of complex mechanical products Gs−t−r can be defined as:

Gs−t−r = (Gs, Gt, Gr, Est, Etr, Wst, Wtr). (4)

The sketch of supernetwork Gs−t−r is shown in Figure 9.

Sustainability 2016, 8, 992 10 of 25 

 
Figure 8. The sub-network for design resources of product A. 

3.4. Supernetwork-Based Model for the Design Processes of Complex Mechanical Products 

In the design processes of products, the design of parts requires the execution of relevant design 
tasks. The execution of design tasks requires the distribution of relevant design resources. There are 
bidirectional corresponding relationships between design structure and tasks. Also, bidirectional 
corresponding relationships exist between design tasks and resources. 

stE  denotes the set of edges between CPSN sG  and CPTN tG . trE  denotes the set of edges 

between CPTN tG  and CPRN tG . st trW ,W  denote the strength of st trE ,E , respectively. So a 

supernetwork-based model for design processes of complex mechanical products s t rG    can be 
defined as: 

 s t r s t r st tr st trG G ,G ,G ,E ,E ,W ,W   . (4) 

The sketch of supernetwork s t rG    is shown in Figure 9. 

vs1
the sub-network for design 

structure of complex product 

the sub-network for design 
tasks of complex product 

the sub-network for design 
resources of complex product 

vs3

vs2

vs5

vs4

vt1

vt2

vt3

vt4

vt5

vr1

vr2

vr3

vr4

vr5

parts

tasks

resources

legend

containment relationship

sequential dependence

associational relationsh

cross coupling

cooperative or  
matching relationship

relationship between 
sub-networks  

Figure 9. The sketch of supernetwork s t rG   . Figure 9. The sketch of supernetwork Gs−t−r.



Sustainability 2016, 8, 992 11 of 25

The supernetwork for the design process of product A can also be drawn by Ucinet. The strength
of the relationships between design structure, tasks, and resources in shown in Tables 4 and 5.

Table 4. The strength of the relationships between design structures and tasks.

vs1 vs2 vs3 vs4 vs5

vt1 1 0 0 0 0
vt2 0 1 0 0 0
vt3 0 0 1 0 0.9
vt4 0 0 0 0 0.8
vt5 0 0 0.9 0.8 0

Table 5. The strength of the relationships between design tasks and resources.

vt1 vt2 vt3 vt4 vt5

vr1 0.9 0 0.1 0 0.6
vr2 0 0.9 0.4 0.5 0
vr3 0.8 0.1 0.6 0 0
vr4 0 1 0 0.9 0
vr5 1 0 0 0 0.9

Import the data from Tables 1–5 into Ucinet and draw the supernetwork model for the design
process of product A as shown in Figure 10.
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3.5. Compute Edge Weights in Supernetwork-Based Model for Design Processes of Complex
Mechanical Products

Fuzziness is one of the general characteristics of human thinking and objective things, and
the strength of the relationships between elements in the design processes of complex mechanical
products is no exception. In this case, it is hard to express the weight with clear data. Fuzzy numbers,
as a special fuzzy set, are an important way of expressing fuzzy information about objective things [58].
Linguistic variable, like “very good”, “good”, “poor”, etc. [59,60] can also express fuzzy information
of evaluation. In this case, we introduce the method of combining linguistic variables with fuzzy
mathematics to evaluate the edge weights. In addition, for different evaluations experts have different
background knowledge; the evaluation of the same objects often has a different degree of blurring,
which means that we need different sets of vague language variables. Under such circumstances, the
evaluation results are more realistic, but they also present difficulties in processing the evaluation
information. To solve this problem, this paper introduces the max/min synthesis [61].
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The set of evaluation experts is defined as E =
{

ep |p = 1, 2, . . . , P
}

. The set of evaluation

experts’ weights is defined as W =
{

wp |p = 1, 2, . . . , P
}

where 0 ≤ wp ≤ 1 and
P
∑

p=1
wp = 1. The set

of relationships between nodes is defined as C =
{

cq |q = 1, 2, . . . , Q
}

. The set of fuzzy language
sets is defined as L = {Lk |k = 1, 2, . . . , K } where Lk denotes the fuzzy language set k. For any
two fuzzy language sets Lg =

{
l1, l2, ..., lg′

}
and Lh = {l1, l2, ..., lh′}, where lg′ and lh′ are linguistic

variables, g′ and h′ denote the number of lg′ and lh′ , respectively, and g′ ≤ h′. µl` (y) , µlt (y) denote
the membership function between l` and lt. ΓLg Lh denotes the function of converting Lg into Lh which
is defined as:

ΓLg Lh (l`) =
{(

lt, δ`t

) ∣∣t ∈ {1, 2, ..., h′
}}

, l` ∈ Lg (5)

δ`t = max
y

min
{

µl` (y) , µlt (y)
}

. (6)

Using Equations (5) and (6), the fuzzy set
(

lt, δ`t

)
is derived. It describes the membership δ`t

between lt and l` belonging to the set of linguistic variables Lh and Lg, respectively. According to the
value δ`t , the linguistic variables in set Lh are equal to the linguistic variables in set l`, which is the
largest membership of linguistic variables set lt. Through this process, the linguistic variables in set Lg

are converted into the linguistic variables in set Lh.
After unifying the different fuzzy language sets of expert evaluation, we need to further quantify

the fuzzy language to determine the strength of the relationships between elements. If
_
v p,ij,q is defined

as the evaluation of relationship q between element i and j evaluated by expert ep, its triangle fuzzy
value is defined as:

_
v p,ij,q =

(
vl

p,ij,q, vm
p,ij,q, vu

p,ij,q

)
, (7)

where vl
p,ij,q, vm

p,ij,q and vu
p,ij,q denote the minimum, median, and maximum, respectively. So the triangle

fuzzy value
_
v ij,q denoting the relationship q between node i and j takes form (8):

_
v ij,q =

(
vl

ij,q, vm
ij,q, vu

ij,q

)
=

P

∑
p=1

wp
_
v p,ij,q. (8)

According to the CFCS method presented by Opricovis [62], the fuzzy evaluation information can
be converted into a clear value using Equation (9):

wij,q = l +

δ


(

vm
ij,q − l

) (
δ + vu

ij,q − vm
ij,q

)2 (
u− vm

ij,q

)
+
(

vu
ij,q − l

) (
δ + vm

ij,q − vm
ij,q

)2


(

δ + vm
ij,q − vl

ij,q

) (
δ + vu

ij,q − vm
ij,q

)2 (
u− vl

ij,q

)
+
(

vu
ij,q − l

) (
δ + vm

ij,q − vl
ij,q

)2 (
δ + vu

ij,q − vm
ij,q

)
, (9)

where l = min
{

vl
ij,q

}
, u = max

{
vu

ij,q

}
, δ = u− l, so:

wij =
Q

∑
q=1

wij,q. (10)

According to Equations (5)–(10), the edge weights denoting the strength of the relationships
between nodes in Gs−t−r are obtained.

Note that the weights are divided into similarity weight and dissimilarity weight in principle.
For similarity weight, the greater its value, the closer the corresponding nodes. However, dissimilarity
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weight is contrary to similarity weight in that the greater its value is, the less close the corresponding
nodes are. In this paper, the similarity weight is uniformly applied.

4. Case Study

4.1. Example of the Model Application

Changes are the rule and the design processes of complex mechanical products are no
exception [63]. The assessment of impacts on change help designers know which elements are
important and should be assigned additional resources to respond to likely changes. For this purpose,
we combine the indices of degree-changeability and reach-changeability in [64] to assess the importance
of parts, tasks, and resources, where degree-changeability is used to assess the direct impacts caused by
the source change, and reach-changeability is used to assess the indirect impacts. They take the form:

C(ODi) = 1− ODi
wmax · (n− 1)

. (11)

ODi denotes the sum of edge weights started from i and takes the form:

ODi = ∑
j=Ni

wij, (12)

where wmax denotes the maximum of weight wij.

C(ORi) = 1− ORi
n−1

ORi = ∑
j∈N,j 6=i

max
{

pij
}

pij =

{
wij/wmax, i connect with j directly

piu · puj, i connect with j indirectly

, (13)

where u is the penultimate node in the path from node i and j. The smaller C (ODi) is, the closer
the relationship between node i and its connecting nodes. In this situation, the change of node i will
cause big changes in the directly connecting nodes, so designers should emphasize the nodes of small
C (ODi). In a similar way, the smaller C (ORi) is, the easier node i propagates. Designers should also
emphasize the node of small C (ORi).

A wind-driven generator of type A is used to illustrate the application of the supernetwork-based
model for the design processes of complex mechanical products. It has 10 core assembly parts (as is
shown in Figure 11), about 30,000 parts, and about 20 years of service life [65].
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(1) Analyze nodes and edges

As the first step in the design of a wind driven generator, we obtain the core assemblies (as is
shown in Figure 11) and analyze the types of relationships between them. Because they are at the same
level of assembly, there is no containment relationship between them. However, there are associational
relationships between them, derived from the views of 10 experienced designers and three experts and
from the relative researches [66–69]. The results are shown in Table A1 of Appendix A. For example,
the blade is mainly related to the yaw system by gravity, lateral force, and torque.

If there are design information flows between two tasks, a relationship exists. Then, according
to the direction of the design information flows, we can analyze the types of relationships (as in
Section 2.3). The result is shown in Figure A2 of Appendix A. For example, the relationship between
the pitch blade and the electric machine is one of cross-coupling; the relationship between PWM
programmer and electric machine is parallel independence.

To assess the relationships between design resources, firstly classify the resources into human
resources and other resources. Secondly, assess the cooperation between humans and software in
past design processes (as is analyzed in Section 2.4. Specifically, the design resources of company H
are six designers, eight computers, two electromagnetic heaters, 50 auxiliary equipment, six two-ton
electric fork-lift trucks, and one each of 100-ton bridge crane, 60-ton bridge crane, and 32-ton bridge
crane. Due to the limited length of this article, the relationships between designers and software
are primarily analyzed. By interviewing designers of wind-driven generators, six designers can use
eight computers with different proficiencies. So there are matching relationships between designers
and computers. Proficiency is evaluated by the ratio of actual working time to rated working time
(obtained by assessors).

(2) Analyze the edge weight

In this procedure, the strength of the relationship is assessed by the assessment team, which is
composed of six designers of a wind-driven generator of type A, four designers of a wind-driven
generator of type B or C, and three experts working at Chongqing university. The 10 designers have
been working for the company for over five years.

The seven linguistic variables [65] and the corresponding triangular fuzzy numbers are shown
in Table 6. They are frequent expressions of natural language [70] and have been used in many
studies [71–73]. The “very small relationship” means that a big change in the design specification of
parts in the column impacts the part in the row (low sensitivity) [74]. Likewise, a “smaller relationship”
means a medium or low sensitivity to change.

Because different assessors have different background knowledge, the evaluations of the same
objects often have a different degree of blurring. The five linguistic variables [75] are shown in
Table 7. Then we computed the edge weights of the supernetwork model for the design process of
a wind-driven generator using Equations (5)–(10). After the calculation of weights, we made the
post-interview immediately to validate the weights. The result is shown in Table 8.

Table 6. The seven linguistic variables and the corresponding triangular fuzzy numbers.

Linguistic Variables ϕL
i,j,κ ϕM

i,j,κ ϕR
i,j,κ

most insignificant relationship 0 0 0.1667
more insignificant relationship 0 0.1667 0.3333

insignificant relationship 0.1667 0.3333 0.5
general relationship 0.3333 0.5 0.6667

significant relationship 0.5 0.6667 0.8333
more significant relationship 0.6667 0.8333 1
most significant relationship 0.8333 1 1
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Table 7. The five linguistic variables and the corresponding triangular fuzzy numbers.

Linguistic Variables ϕL
i,j,κ ϕM

i,j,κ ϕR
i,j,κ

insignificant relationship 0 0 0.25
insignificant relationship 0 0.25 0.5

general relationship 0.25 0.5 0.75
significant relationship 0.5 0.75 1

more significant relationship 0.75 1 1

Table 8. The edge weight’s matrix of sub-network for design structure.

Blade Yaw
System

Pitch
System Cabin Spindle Gear Control

System
Generating

System Hub Tower

1 2 3 4 5 6 7 8 9 10
1 0.36 0.22 0.58 0.14 0.29 0.31 0.46 0.72 0.19
2 0.31 0.41 0.07 0.17 0.31 0.22 0.48 0.29 0.1
3 0.46 0.5 0.12 0.53 0.19 0.29 0.26 0.34 0.12
4 0.36 0.29 0.15 0.21 0.5 0.07 0.46 0.38 0.43
5 0.46 0.58 0.31 0.19 0.17 0.17 0.26 0.38 0.38
6 0.36 0.26 0.34 0.7 0.36 0.43 0.17 0.22 0.26
7 0.34 0.24 0.22 0.46 0.26 0.36 0.07 0.17 0.12
8 0.6 0.43 0.26 0.34 0.19 0.26 0.07 0.72 0.58
9 0.67 0.04 0.06 0.19 0.31 0.26 0.22 0.09 0.07

10 0.03 0.22 0.14 0.07 0.14 0.19 0.22 0.11 0.34

In Table 8, the strength of the associational relationship between the blade and yaw systems is
0.36, which indicates a significant relationship. That is, a large change in the design specification of the
blade can impact on the yaw system.

Due to the limited length of this article, we take the pitch system as an example to analyze design
tasks and relationships. Also, we take designers and software as an example to analyze the strength of
the relationships between them. The results are shown in Tables A2 and A3 of Appendix A.

We imported Table 8 and Table A1 of Appendix A into Ucinet and drew the sub-network of
the design structure, tasks, and resources of a wind-driven generator as shown in Figures A1–A3 of
Appendix A.

In addition, the strength of the relationships between design tasks and resources was also assessed
by 16 designers, as shown in Table A4 of Appendix A.

(3) Analyze the degree-changeability

Based on the edge weights of the supernetwork for the design process of a wind-driven generator
and Equations (9) and (10), the node weights are computed. Then the degree-changeability and
reach-changeability are calculated using Equations (11) and (13). The results are shown in Tables 9
and 10, and Table A4 of Appendix A.

Table 9. The degree-changeability of the parts of a wind-driven generator.

No. Parts ODi C(ODi) No. Parts ODi C(ODi)

1 blade 3.73 0.57 6 gear 3.1 0.59
2 yaw system 2.36 0.69 7 control system 2.24 0.70
3 pitch system 2.81 0.63 8 generating system 3.45 0.54
4 cabin 2.85 0.62 9 hub 1.91 0.75
5 spindle 2.9 0.62 10 tower 1.46 0.81
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Table 10. The reach-changeability of the parts of a wind-driven generator.

No. Parts ORi C(ORi) No. Parts ORi C(ORi)

1 blade 4.75 0.91 6 gear 4.13 0.92
2 yaw system 5.47 0.90 7 control system 3.86 0.93
3 pitch system 4.27 0.92 8 generating system 5.79 0.89
4 cabin 4.72 0.91 9 hub 4.17 0.92
5 spindle 3.04 0.94 10 tower 3.93 0.93

According to Tables 9 and 10, the degree-changeability and reach-changeability of the generating
system are the smallest. Its change will cause great change to the design of a wind-driven generator.
Therefore, designers should give the generating system additional resources to allow it to respond
quickly. In addition, the assessment of change impacts on design tasks and resources are the same as
for the design structure.

4.2. Comparison Analysis

To verify the accuracy of the proposed model’s performance, we compared the analysis results
calculated by the proposed model with an existing one [64]; the results calculated by the latter are
shown in Table 11.

From Table 11 we can see that the degree-changeability and reach-changeability of the blade are
the smallest. Its change will cause great change to the design of a wind-driven generator. However, by
interviewing 10 designers who have been working in the company for over five years, we verified that
the impact of the generating system is bigger than that of the blade (as calculated by the proposed
model). Also, the 10 designers also approved the calculation results in Tables 10 and 11, so the
performance of the proposed model is accurate.

Table 11. The degree-changeability and reach-changeability calculated by the literature [64].

No. Parts C(ODi) C(ORi)

1 blade 0.47 0.72
2 yaw system 0.54 0.79
3 pitch system 0.48 0.73
4 cabin 0.53 0.76
5 spindle 0.50 0.75
6 gear 0.56 0.84
7 control system 0.54 0.81
8 generating system 0.51 0.75
9 hub 0.49 0.74
10 tower 0.48 0.73

From Sections 4.1 and 4.2, we know that the supernetwork model for design processes of complex
mechanical products can assess change impact and evaluate the importance of design elements.
In addition, the supernetwork model can also test and dispel design conflicts using the load and
capacity of network parameters.

5. Conclusions

Modeling the design processes of complex mechanical products has significance. At present,
most designers neglect systematic and quantitative expression, which may cause repetition of design
activities. To fill the gap, we identify the three sets of key elements in the design processes of complex
mechanical products, design structures, tasks, and resources, and integrate them. The first step of the
integrating method is to build a sub-network for every set of elements, with elements as nodes and
their relationships as edges. The second step is to build a supernetwork with the three sets of elements
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as nodes and the relationships between them as edges. The edge weight designates the strength of
the relationship.

Using the proposed model, managers or designers can manage design processes better.
For example, they can analyze change impacts and the importance of design elements more accurately,
and know which parts should be assigned additional resources to respond to likely changes.

Clearly, more work remains to be done. For example, it should be further considered how to cut
down the man-made factors in the quantification of weights and how to integrate other studies on
supernetworks to better manage the design processes of complex mechanical products. In addition, the
development of software tools to solve the complexity of computation should be further considered,
as well as simple and effective expert evaluating methods.
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Appendix A

Table A1. Relationships between parts of a wind-driven generator.

Blade Yaw System Pitch
System Cabin Spindle Gear Control

System
Generating

System Hub Tower

blade gravity, lateral
force, torque

relative
velocity load load torque torque rotational

inertia torque air load,
radius

yaw system rotation angle torque lateral forces fit, axial
force load torque yaw angle torque torque

pitch system blade azimuth load load torque torque load load load gravity

cabin gravity, load
gravity,

horizontal and
vertical distance

yaw angle axial thrust load load
area

coefficient,
height

area
coefficient,

height

gravity,
resistance

spindle load fit, axial force torque axial thrust torque, fit friction impulse load axial force,
fit

bending
moment

gear torque, drive
ratio load torque load torque, fit torque,

load
torque, drive

ratio load gravity

control
system torque torque load load friction torque, load load load gravity

generating
system angular speed extreme angle load, power gravity, type impulse load angular

speed load power, pitch
angle gravity

hub radius torque load diameter
torque,

bending
moment

load load,
weight load load

tower load bending
moment, thrust thrust thrust bending

moment thrust load load load
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Table A2. The edge weight matrix of the pitch system’s design tasks.

Pitch
Blade

Electric
Machine

Gear
Box

Main
Circuit

DSP
Digit

Circuit

Detection
Circuit

Sequential
Communication

Circuits
Battery Monitoring

Circuit
PWM

Programmer

Sequential
Communication

Programmer

Current Loop
and Speed Loop
Control Program

1 2 3 4 5 6 7 8 9 10 11 12
1 0.89 0.89 0.05 0.03 0.02 0.04 0.06 0.10 0.01 0.02 0.04
2 0.20 0.90 0.01 0.01 0.02 0.02 0.01 0.01 0 0 0.01
3 0.88 0.92 0.01 0.03 0.01 0.01 0.05 0.01 0.05 0.01 0.02
4 0.03 0 0.03 0.75 0.86 0.84 0.01 0.01 0.02 0.03 0.01
5 0.01 0.02 0.01 0.01 0.78 0.64 0.02 0.03 0.01 0.02 0.01
6 0.02 0.01 0.03 0.02 0.65 0.45 0.01 0.02 0.02 0.01 0.03
7 0.01 0.03 0.02 0.02 0.59 0.83 0.05 0.03 0.01 0.02 0.01
8 0 0.01 0.03 0.01 0.01 0.03 0.02 0.76 0.02 0.01 0.02
9 0.04 0.02 0.01 0.02 0.04 0.01 0.02 0.55 0.01 0.02 0.01

10 0.02 0 0.01 0.01 0.01 0.03 0.02 0.02 0.01 0.66 0.73
11 0.03 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.74 0.68
12 0.02 0.01 0.02 0.01 0.01 0.05 0.01 0.01 0.03 0.87 0.79

Table A3. The matrix of edge between designers and software.

7 8 9 10 11 12 13 14

1 0.82 0.91 0.13 0.63 0.10 0.28 0.55 0.96
2 0.97 0.16 0.97 0.96 0.49 0.80 0.14 0.42
3 0.92 0.80 0.96 0.66 0.04 0.85 0.93 0.69
4 0.76 0.74 0.39 0.65 0.27 0.03 0.87 0.64
5 0.03 0.82 0.70 0.32 0.95 0.43 0.38 0.77
6 0.80 0.19 0.49 0.65 0.71 0.75 0.28 0.24

Landscape: proficiency with which designers use software.
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Table A4. The matrix of edges between design structure and tasks of pitch system.

Pitch Blade Electric Machine Gear Box Main Circuit DSP Digit Circuit Detection Circuit

Pitch system 0.88 0.90 0.93 0.76 0.72 0.59

sequential dependence
interface circuits battery monitoring circuit PWM programmer sequential dependence

communication programmer
current loop and speed
loop control program

pitch system 0.56 0.69 0.52 0.49 0.46 0.55

Table A5. The relationship between design tasks and design resources.

Pitch
Blade

Electric
Machine

Gear
Box

Main
Circuit

DSP
Digit

Circuit

Detection
Circuit

Sequential
Dependence

Interface
Circuits

Battery Monitoring
Circuit

PWM
Programmer

Sequential
Dependence

Communication
Programmer

Current Loop
and Speed Loop
Control Program

1 0.79 0.90 0.79 0.79
2 0.90 0.82 0.64 0.84
3 1.00 0.63 1.00
4 0.78 0.78 0.81 0.59
5 0.60 0.60
6 0.65 0.93 0.60
7 0.65 0.96 0.73 0.78 0.94 0.71 0.65 0.96
8 0.69 0.87 0.65 0.69
9 0.75 0.77 0.58 0.92 0.75 0.77

10 0.82 0.55 0.90 0.94 0.55 0.62 0.82
11 0.87 0.94 0.96 0.59 0.87
12 0.85 0.74 0.90
13 0.91 0.62 0.98 0.91
14 0.79 0.83 0.80 0.90 0.79 0.79 0.83
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Table A6. The reachability matrix of a wind-driven generator’s parts.

Blade Yaw System Pitch System Cabin Spindle Gear Control System Generating System Hub Tower

blade 0.45 0.11 0.43 0.85 0.42 0.78 0.23 0.55 0.93
yaw system 0.79 0.96 1.00 0.62 0.05 0.39 0.35 0.30 1.00
pitch system 0.31 0.23 0.18 0.35 0.90 0.24 0.82 0.74 0.49

cabin 0.53 0.91 0.77 0.51 0.94 0.40 0.02 0.19 0.44
spindle 0.17 0.15 0.82 0.15 0.49 0.10 0.04 0.69 0.45

gear 0.60 0.83 0.87 0.14 0.08 0.13 1.00 0.18 0.31
control system 0.26 0.54 0.08 0.87 0.24 0.34 0.65 0.37 0.51

generating system 0.65 1.00 0.40 0.58 0.12 0.90 1.00 0.63 0.51
hub 0.69 0.08 0.26 0.55 0.18 0.37 0.58 0.65 0.82

tower 0.75 0.44 0.80 1.00 0.24 0.11 0.06 0.45 0.08
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