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Abstract: Demand Side Management in power systems plays an important role in ensuring a reliable
power supply and protecting the environment. Demand Side Management in the commercial sector
is vital for sustainable development during China’s industrial restructuring. A hybrid multi-criteria
decision making framework for evaluating Demand Side Management performance of commercial
enterprises is proposed from a sustainability perspective. A fuzzy Analytic Hierarchy Process
is employed to determine the weights of the criteria and a fuzzy technique for order preference
by similarity to an ideal solution is applied to rank Demand Side Management performance.
An evaluation index system is built, containing economic, social, environmental and technical criteria
associated with 15 sub-criteria. Four groups of expert panels from government departments, research
institutions, electricity utilities and commercial enterprises gave judgments on criteria weights and
criteria performances for alternatives. The effectiveness of the proposed hybrid framework was
demonstrated through a case study in Beijing, in which Demand Side Management performances
of four alternatives were ranked. Sensitivity analysis results indicate that the hybrid framework
is robust.
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1. Introduction

As the largest energy consumer and CO2 emitter in the world, China suffers from an increasing
plague of pollutant emissions, smog and water quality degradation [1,2]. Considering the imbalanced
economic and social development nationwide, insufficient power supplies still exist in some regions
including North China, the Yangtze River Delta and the Pearl River Delta during summers [3].
Demand Side Management (DSM) is conducted to improve the terminal users’ power consumption
pattern, optimize power resources distribution and promote equipment utilization. Through DSM we
can balance electrical power load, overcome electrical shortage, improve terminal energy efficiency,
promote clean energy power absorption, reduce greenhouse gas emissions and improve sustainable
development of the electric power industry [4,5]. DSM is an important mission to meet the target of an
electricity market reform in 2015 [6].

Following China’s industrial structure adjustment policy, the commercial sector, generally
referring to the service industry or the tertiary industry, has developed rapidly. The commercial
sector has become an important driving force to promote the Gross Domestic Product (GDP) and
electricity consumption [7]. Economic contribution and electricity consumption of the commercial
sector in some developed areas have surpassed than that of the industrial sector [8]. Thus, it is crucial
to encourage commercial enterprises to participate in DSM. Service activities, lighting, cooling, heating
and office equipment related to different enterprises mainly contribute to the energy consumption [9].
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DSM includes energy efficiency and demand response programs [10]. Efficiency improvement
efforts at terminal power equipment are the most important in energy efficiency programs, including
installing energy storage devices and applying energy-saving processes and equipment. Demand
response refers to modification of electricity consumption patterns by end users in response to
electricity price adjustments [4,11]. There are many techniques adopted in demand response programs,
such as time-of-use price, critical-peak price, direct load control and interruptible load control [12].
It is essential to form a framework to evaluate DSM performances. Through an evaluation framework,
authorities could measure the DSM implementation effects, control total energy consumption, promote
optimal distribution of electric power resources and adjust differential electricity price policies.

Conventional sustainability contains three dimensions—economic development, social progress
and environmental protection [13]. A framework for evaluating the DSM implementation effect will
be established according to conventional concepts. For the economic dimension, benefits and costs
of a DSM program including expenses occurred during project construction and operation, and the
investment pay-back periods as well as electricity fee savings were considered. The impacts from
the economic dimension reflected financial impacts from a DSM program at a micro level. For the
social dimension, macro impacts on society development induced by some DSM programs such as
contributions to the development of the energy industry, to power peak load shifting, to economic
growth and avoidable electricity construction investment were included. For the environmental
dimension, benefits from DSM such as greenhouse gas emission reduction, avoidable soil erosion and
geological structure damage, and natural resource conservation were considered. Considering the
importance and complexity of DSM techniques for program construction and operation, a technical
dimension which reflects applications of the energy saving technology, was added to the evaluation
framework [14,15]. For the technical dimension, factors including energy saving reconstruction
technology for an energy system, distributed generation technology, technical staff training and DSM
work processes construction were contained. The DSM performance evaluation are performed based
on multiple criteria, thus can be considered as a multi-criteria decision making (MCDM) issue [16,17].

Various MCDM approaches have been proposed to evaluate DSM performance, including
the scenario analysis method [18], the system dynamics model [19], the binary particle swarm
optimization [20] and the simulation methods [21–23]. However, because these studies only contained
a few evaluation indicators, these research results fail to reflect DSM performance comprehensively
and miss subjective rating information for decision makings. To overcome the shortcomings, other
techniques have been applied to evaluate overall DSM performance, including the analytic hierarchy
process (AHP) [17,24], the entropy weight method [25] and the preference ranking organization
methods for enrichment evaluations (PROMETHEE) [26].

AHP proposed by Saaty [27] is a suitable tool to clarify interdependent relationships among
criteria using a hierarchical structure and boosts advantages in determining the weights of different
criteria. The technique for order preference by similarity to an ideal solution (TOPSIS) has been
employed to appraise DSM performance [28]. Because of the clear and logical operation processes of
the TOPSIS, relative performances of each alternative can be obtained easily if criteria are complex
and abundant. In view of the vagueness and intangibility resulting from poor information and human
subjective judgments, fuzzy set theory should be employed to map linguistic ratings from decision
makers to quantitative data [29,30]. Thus, we proposed a hybrid MCDM technique, namely the fuzzy
AHP-TOPSIS approach, to evaluate DSM performance. The fuzzy AHP, proposed by Chang [31], was
introduced to obtain criteria weights to measure the average importance of the information. In order to
overcome the shortcomings of traditional TOPSIS in handling inherent ambiguity, Chen [32] combined
traditional TOPSIS with a fuzzy set theory and developed a fuzzy TOPSIS to address the evaluation
criteria with characteristics of the uncertainty from an MCDM. DSM performance can be finally ranked
using the fuzzy TOPSIS.
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The main contributions of this paper are:

(1) To the best of our knowledge, this is the first study on DSM performance in the commercial sector.
We provided a detailed and complete evaluation list of economic, social, environmental and
technical criteria to evaluate the DSM effects.

(2) The fuzzy AHP and the fuzzy TOPSIS methods have been employed in many research
fields [28–32] and have good effects in decision-making procedures of alternatives evaluation.
As we know, this is a hybrid MCDM model based on combining the fuzzy AHP weight method
with the fuzzy TOPSIS approach. We have introduced the model into DSM performance
evaluation and extended the application fields of these methods.

(3) Since experts with diverse professional backgrounds may give different decisions, it is necessary
to probe the influences of sub-criteria weights on final decision-making. We gave a novel
sensitivity analysis to research the performance of economic, social, environmental and
technological criteria for DSM performance evaluation by modifying the sub-criteria weights.

2. Methods

2.1. Fuzzy Set Theory and Fuzzy Numbers

Fuzzy set theory, introduced by Zadeh [33], can be employed to deal with the imprecision and
vagueness under an uncertain environment [34]. A fuzzy set, as a class of objects, is characterized by
a membership function with a continuum of grades. Each object is assigned a grade of membership
among (0, 1). If the membership value is one, the object belongs to the set completely. If the value is
zero, the object does not belong to the set. If the value is between zero and one, the object belongs
partially to the set. Fuzzy set theory can be employed to map qualitative information from human
decisions to quantitative data. Linguistic ratings such as “poor”, “fair” and “good” are represented as
numerical intervals.

Fuzzy numbers can be used to transform the qualitative judgments into quantitative data. Some
mathematical operators and measurement methods are introduced in a vague decision domain.
A triangular fuzzy number (TFN) is the most common type in applications due to their operational
simplicity. A TFN is designated as a triplet ã = (aL, aM, aR), where aL, aM and aR represent the smallest
value, the middle value and the largest value for the evaluation objects [35]. These values are all real
numbers. A TFN is shown in Figure 1. Let x represent the value in real number field, the membership
function µ(x) can be:

µ(x) =


(x− aL)/(aM − aL) aL ≤ x < aM

(aR − x)/(aR − aM) aM ≤ x ≤ aR

0 x < aL or x > aR

(1)
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In order to obtain clear information, some defuzzification methods should be applied to transfer
fuzzy numbers to crisp values with element characteristics in fuzzy sets. The graded mean integration
representation (GMIR) method is employed to transfer TFNs into crisp numbers in order to avoid
vagueness [36,37]. The graded mean integration representation value T(ã) of ã is:

T(ã) =
aL + 4aM + aR

6
(2)

2.2. Fuzzy AHP Weighting Method

Due to fuzzy pairwise comparisons of criteria from decision makers, fuzzy AHP was applied to
obtain the weights suitably [38]. Procedures of the criteria weights determination using the fuzzy AHP
method are:

Step 1: Establish a hierarchy structure model. Due to complex determination of an evaluation
index system resulting from various criteria, mass data and decision-making information, a hierarchy
structure of the evaluation criteria should be formed according to characteristics of a MCDM issue [39].
The hierarchy structure consists of a goal layer, the main criteria layer and the sub-criteria layer, as
shown in Figure 2.
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Step 2: Obtain pairwise comparisons from expert groups and assemble individual fuzzy
comparison matrices for the main criteria layer and the sub-criteria layer, respectively. We can clear
the relative importance of the criteria according to these matrices. First, a questionnaire should be
designed and distributed to all of the expert groups for obtaining the pairwise comparative judgments
of each layer. These judgments are expressed as linguistic variables with TFNs used by Chang [31],
as shown in Table 1 and Figure 3. Rankings for the criteria importance given by the expert groups
are depicted in Figure 3. Second, these individual fuzzy comparison matrices are formed at all levels.
Let ãk

ij represent the TFN corresponding to the pairwise comparative judgments of criterion i to j
(i, j = 1, · · · , n) from expert group k. In order to assemble individual fuzzy comparison matrices, some
rules should be listed: If i > j, ãk

ij corresponds to the TFNs in Table 1. If i < j, ãk
ij is the reciprocal TFNs

due to the symmetry on the individual fuzzy comparison matrix. If i = j, ãk
ij is (1, 1, 1). The individual

fuzzy comparison matrix Wk of expert group k is:

Wk =

∣∣∣∣∣∣∣∣∣∣∣

ãk
11 ãk

12 · · · ãk
1n

ãk
21 ãk

22 · · · ãk
2n

...
...

. . .
...

ãk
n1 ãk

n2 · · · ãk
nn

∣∣∣∣∣∣∣∣∣∣∣
n×n

(3)
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Table 1. Linguistic variables for evaluating the weights of the criteria.

Linguistic Terms TFNs Reciprocal TFNs Meaning

Equally important (EI) (1/2,1,3/2) (2/3,1,2) Criterion i is as important as
criterion j

Moderately more important (MI) (1,3/2,2) (1/2,2/3,1) Criterion i is moderately more
important than criterion j

Strongly more important (SI) (3/2,2,5/2) (2/5,1/2,2/3) Criterion i is strongly more
important than criterion j

Very strongly more important (VI) (2,5/2,3) (1/3,2/5,1/2) Criterion i is very strongly
more important than criterion j

Absolutely important (AI) (5/2,3,7/2) (2/7,1/3,2/5) Criterion i is absolutely more
important than criterion j
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It is important to test the consistency of the fuzzy comparison matrices. The TFNs in these
matrices should be transformed into T(ã) using Equation (2) at first. If the largest eigenvalue λmax of
each matrix is the criteria number n, it is consistent according to Saaty [40]. Consistency index (CI) can
be used to measure the deviation of the individual fuzzy comparison matrix away from the consistency
and is:

CI =
λmax − n

n− 1
(4)

The accuracy of the CI will be reduced if the criteria number increases. For overcoming the
shortcoming, random index (RI) and consistency ratio (CR) ware introduced to directly verify the
consistency of the fuzzy comparison matrices [41]. The RI values are only related with the order of
fuzzy comparison matrix and can be obtained applying the software of MATLAB: first, 1000 n-order
reciprocal matrices were formed randomly using 2/7, 1/3, 2/5, 1/2, 2/3, 1, 3/2, 2, 5/2, 3, and 7/2;
then, average k of their eigenvalues was calculated and the RI value for n-order reciprocal matrices is:

RI =
k− n
n− 1

(5)

The RI values for different orders can be computed through repeating the above processes and
are listed in Table 2. The CR is:

CR =
CI
RI

(6)
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Experiential threshold 0.2 is commonly regarded as the upper limit for CR of a fuzzy comparison
matric [41]. If the CR value is less than 0.2, this matric is consistent approximately.

Table 2. The values of RI.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.45 1.49 1.52 1.54 1.56 1.57 1.58

Step 3: Form the aggregated fuzzy comparison matrices by the geometric mean method in order to
obtain comprehensive importance for the criteria. Let ãI Jk = (aL

I Jk, aM
I Jk, aR

I Jk) be criterion I over J given
by expert decision group k in the main criteria layer, ãijk = (aL

ijk, aM
ijk, aR

ijk) be criterion i over j given by
expert decision group k in the sub-criteria layer k = 1, · · · , V, I, J = 1, · · · , m and i, j = 1, · · · , n. The
aggregated TFN ãI J = (aL

I J , aM
I J , aR

I J) of I over J in the main criteria layer is:

ãI J = (aL
I J , aM

I J , aR
I J) = (

V

∑
k=1

aL
I Jk

V
,

V

∑
k=1

aM
I Jk

V
,

V

∑
k=1

aR
I Jk

V
) (7)

and the aggregated TFN ãij = (aL
ij, aM

ij , aR
ij ) of i over j in the sub-criteria layer is:

ãij = (aL
ij, aM

ij , aR
ij ) = (

V

∑
k=1

aL
ijk

V
,

V

∑
k=1

aM
ijk

V
,

V

∑
k=1

aR
ijk

V
). (8)

The aggregated fuzzy comparison matrices of the main criteria layer (Wmain) and the sub-criteria

layer (Wsub) are:

Wmain
= (ãI J)m×m (9)

Wsub
= (ãij)n×n (10)

Step 4: Calculate values of fuzzy synthetic extent by summing the row vectors of the aggregated
fuzzy comparison matrices. Let the fuzzy synthetic extent of criterion I for the main criteria layer Hmain

I
be represented as (hmL

I , hmM
I , hmR

I ) and the fuzzy synthetic extent of criterion I for the sub-criteria layer
Hsub

i be represented as (hsL
i , hsM

i , hsR
i ). Hmain

I and Hsub
i are:

Hmain
I = m

√√√√ m

∏
J

ãI J (11)

Hsub
i = n

√√√√ n

∏
j

ãij (12)

where hmL
I = m

√
m
∏
J=1

aL
I J , hmM

I = m

√
m
∏
J=1

aM
I J , hmL

I = m

√
m
∏
J=1

aR
I J ; and hsL

i = n

√
n
∏
j=1

aL
ij, hsM

i = n

√
n
∏
j=1

aM
ij ,

hsL
i = n

√
n
∏
j=1

aR
ij .

Step 5: Transform the fuzzy synthetic extent values of the criteria to graded mean integration
representation values by using Equation (2) in order to avoid the synthetic extent fuzziness. For main
criterion I, the synthetic extent Tmain

I is:

Tmain
I = (hmL

I + 4hmM
I + hmR

I )/6 (13)
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For sub-criterion i, the synthetic extent Tsub
i is:

Tsub
i = (hsL

i + 4hsM
i + hsR

i )/6 (14)

Step 6: Calculate the main criterion weight wmain
I and the sub-criterion local weight wsub

i according
to the hierarchy structure:

wmain
I = Tmain

I × (∑ Tmain
I )

−1
(15)

wsub
i = Tsub

i × (∑ Tsub
i )

−1
(16)

Step 7: Calculate the global weights of sub-criteria. Let wSG
i be the global weight of sub-criterion i,

and wsub
i be the main criterion weight located in the parent node of the main criteria layer. The global

weight wSG
i of sub-criterion i is:

wSG
i = wmain

I × wsub
i (17)

2.3. Fuzzy TOPSIS Method

For uncertainty and imprecision of subjective judgments, the preference of alternatives were rated
using linguistic ratings with respect to subjective criteria. Linguistic variables developed by Chen [33]
were used to rate the subjective criteria performance, as listed in Table 3 and depicted in Figure 4. For
objective criteria, the values of alternatives are expressed in TFNs.

Table 3. Linguistic variables for evaluating the ratings of subjective criteria.

Linguistic Terms FTNs

Very Poor (VP) (0,0,0.2)
Poor (P) (0,0.2,0.4)

Good (G) (0.3,0.5,0.7)
Very Good (VG) (0.6,0.8,1)

Excellent (E) (0.8,1,1)
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The fuzzy TOPSIS approach comprises:
Step 1: Aggregate the linguistic ratings of alternatives given by V expert groups to obtain

comprehensive fuzzy ratings. Suppose that there are n alternatives O = {O1, O2, · · · , On} to be
prioritized, m criteria performance are determined by linguistic variables. Let x̃k

ir = (xkL
ir , xkM

ir , xkR
ir ) be

the fuzzy rating for criterion i of alternative r given by expert group k according to Table 3, xkL
ir , xkM

ir , xkR
ir
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represent the smallest value, the middle value and the largest value, i = 1, · · · , m, r = 1, · · · , n and
k = 1, · · · , V. The aggregate fuzzy rating x̃ir = (xL

ir, xM
ir , xR

ir) for criterion i of alternative r is:

x̃ir =
1
V

V

∑
k=1

x̃k
ir = (

1
V

V

∑
k=1

xkL
ir ,

1
V

V

∑
k=1

xkM
ir ,

1
V

V

∑
k=1

xkR
ir ) (18)

Step 2: Establish the initial fuzzy decision matrix D for alternatives according to actual objective
data and fuzzy subjective ratings, as expressed in:

D =


x̃11 x̃12 · · · x̃1n
x̃21 x̃22 · · · x̃2n

...
...

...
...

x̃m1 x̃m2 · · · x̃mn

 =


(xL

11, xM
11, xR

11) (xL
12, xM

12, xR
12) · · · (xL

1n, xM
1n, xR

1n)

(xL
21, xM

21, xR
21) (xL

22, xM
22, xR

22) · · · (xL
2n, xM

2n, xR
2n)

...
...

...
...

(xL
m1, xM

m1, xR
m1) (xL

m2, xM
m2, xR

m2) · · · (xL
mn, xM

mn, xR
mn)

 (19)

Step 3: Normalize an initial fuzzy decision matrix using the linear scaling transformation.
Different indicators may hold different features generally. Some indicators hold the benefit-type
feature, namely the higher the better. While others hold the cost-type feature, namely the lower the
better. The normalization processes for all indicators are needed to avoid dimensional differences
and ensure mathematical compatibility. Let ỹir be the normalized TFN of criterion i for alternative r,
donated by (yL

ir, yM
ir , yR

ir). For a benefit-type indicator, the normalization processing is:

ỹir = (
xL

ir
u+

i
,

xM
ir

u+
i

,
xR

ir
u+

i
) and u+

i = max
r
{xR

ir} (20)

For a cost-type indicator, the normalization processing is:

ỹir = (
u−i
xR

ir
,

u−i
xM

ir
,

u−i
xL

ir
) and u−i = min

r
{xL

ir} (21)

And the normalized fuzzy decision matrix D can be:

D =


ỹ11 ỹ12 · · · ỹ1n

ỹ21 ỹ22 · · · ỹ2n
...

...
...

...

ỹm1 ỹm2 · · · ỹmn

 =


(yL

11, yM
11, yR

11) (yL
12, yM

12, yR
12) · · · (yL

1n, yM
1n, yR

1n)

(yL
21, yM

21, yR
21) (yL

22, yM
22, yR

22) · · · (yL
2n, yM

2n, yR
2n)

...
...

...
...

(yL
m1, yM

m1, yR
m1) (yL

m2, yM
m2, yR

m2) · · · (yL
mn, yM

mn, yR
mn)

 (22)

Step 4: Build a weighted normalized fuzzy decision matrix Z to contain the importance of the
criteria. It can be obtained by multiplying the global sub-criterion weight wSG

i by ỹir of the normalized
fuzzy decision matrix D,

Z =


wSG

1 ⊗ ỹ11 wSG
2 ⊗ ỹ12 · · · wSG

n ⊗ ỹ1n

wSG
1 ⊗ ỹ21 wSG

2 ⊗ ỹ22 · · · wSG
n ⊗ ỹ2n

...
...

...
...

wSG
1 ⊗ ỹm1 wSG

2 ⊗ ỹm2 · · · wSG
n ⊗ ỹmn



=


(wSG

1 yL
11, wSG

1 yM
11, wSG

1 yR
11) (wSG

2 yL
12, wSG

2 yM
12, wSG

2 yR
12) · · · (wSG

n yL
1n, wSG

n yM
1n, wSG

n yR
1n)

(wSG
1 yL

21, wSG
1 yM

21, wSG
1 yR

21) (wSG
2 yL

22, wSG
2 yM

22, wSG
2 yR

22) · · · (wSG
n yL

2n, wSG
n yM

2n, wSG
n yR

2n)
...

...
...

...
(wSG

1 yL
m1, wSG

1 yM
m1, wSG

1 yR
m1) (wSG

2 yL
m2, wSG

2 yM
m2, wSG

2 yR
m2) · · · (wSG

n yL
mn, wSG

n yM
mn, wSG

n yR
mn)


. (23)

The global weights for all sub-criteria can be obtained using the fuzzy AHP method.
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Step 5: Define the fuzzy positive ideal solution Z+ and the fuzzy negative ideal solution Z−. Let T1

represent the benefit-type indicator set, T2 represent the cost-type indicator set, z̃+i = (z+L
i , z+M

i , z+R
i )

and z̃−i = (z−L
i , z−M

i , z−R
i ) represent the fuzzy positive ideal solution and the fuzzy negative ideal

solution for criterion i. Z+ and Z− are:

Z+ =
(
z̃+i
)
=
{(

max
r

z̃ir

∣∣∣ i ∈ T1

)
,
(

min
r

z̃ir

∣∣∣ i ∈ T2

)}
(24)

Z− =
(
z̃−i
)
=
{(

min
r

z̃ir

∣∣∣ i ∈ T1

)
,
(

max
r

z̃ir

∣∣∣ i ∈ T2

)}
(25)

where max
r

z̃ir = (max
r

wSub(global)
i yL

ir, max
r

wSub(global)
i yM

ir , max
r

wSub(global)
i yR

ir),

and min
r

zir = (min
r

wSub(global)
i yL

ir, min
r

wSub(global)
i yM

ir , min
r

wSub(global)
i yR

ir).

Step 6: Compute the distances d+r and d−r of each alternative from Z+ and Z− respectively.
Let dz(·, ·) represent the distance between two FTNs, d+r and d−r are:

d+r =
m

∑
i=1

dz(z̃ir, z̃+i ); d−r =
m

∑
i=1

dz(z̃ir, z̃−i ) (26)

According to Chen [32], the performance of the best alternative r is father from Z− and closer
to Z+ than others. Some approaches have been used to compute the distance between two TFNs.
The L2-metric distance approach is employed for easy implementation [42]. The distance d

(
z̃i, z̃j

)
between z̃i and z̃j is:

d
(
z̃i, z̃j

)
=

{[(
zL

i − zL
j

)2
+ 4×

(
zM

i − zM
j

)2
+
(

zR
i − zR

j

)2
]

/6
}1/2

(27)

Thus, the distances d+r and d−r of each alternative from z̃+i and z̃−i are:

d+r =
m

∑
j=1

{[(
zL

ir − z+L
i

)2
+ 4×

(
zM

ir − z+M
i

)2
+
(

zR
ir − z+R

i

)2
]

/6
}1/2

(28)

d−r =
m

∑
i=1

{[(
zL

ir − z−L
i

)2
+ 4×

(
zM

ir − z−M
i

)2
+
(

zR
ir − z−R

i

)2
]

/6
}1/2

(29)

Step 7: Compute the closeness coefficient value (CCr) of each alternative:

CCr =
d−r

d+r + d−r
(30)

The closeness coefficient emphasizes the distances close to the fuzzy positive solution Z+ and
away from the fuzzy negative ideal solution Z−, which is denoted by the scope of (0, 1). Alternatives
can be ranked according to the closeness coefficient values. The alternative with closest to Z+ and
farthest to Z− should be selected as the best one.

2.4. The Framework of Proposed Hybrid Fuzzy AHP-TOPSIS Model

The proposed fuzzy AHP-TOPSIS model to evaluate the DSM performance involves the following
three phases, as shown in Figure 5.
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Phase 1: Identify evaluation criteria and construct an index system. An appropriate expert decision
group was established to evaluate the criteria performance. According to experts’ recommendations
and enterprises characteristics, an appropriate evaluation index system was constructed from a
sustainability perspective.

Phase 2: Determine the weights of the evaluation criteria based on the fuzzy AHP approach.
A hierarchy structure for the evaluation index system was conducted and the fuzzy AHP method was
employed to determine the sub-criteria weights. First, executives, managers and experts affiliated
to the expert groups estimated the relative pairwise comparisons by using linguistic ratings with
the TFNs (as listed in Table 1) and a fuzzy pairwise comparison matrix of each expert was formed.
The consistency of the matrix was checked to ensure the reliability of the criteria weights. Second, a
fuzzy comparison matrix was aggregated according to Equations (6)–(9). Then, fuzzy synthetic extent
of each criterion was integrated by using Equations (10)–(13). Final, the main criteria weights and the
sub-criteria global weights were calculated according to Equations (14)–(16).

Phase 3: Evaluate the DSM performance by using the fuzzy TOPSIS method. First, the fuzzy
linguistic ratings were allocated to all potential alternatives with respect to the subjective criteria given
by expert groups according to Table 3. Second, the fuzzy ratings of all alternatives with respect to the
objective criteria were transferred into TFNs based on actual situation. Then, an initial fuzzy decision
matrix was established. At last, the fuzzy TOPSIS approach was employed to assemble the fuzzy
ratings of the criteria for all alternatives in order to calculate rating result of each potential alternative
(namely commercial enterprise). Closeness coefficient values of all potential alternatives were ranked
in a descending order. The higher the closeness coefficient value was, the better the DSM performance
of potential commercial enterprise was.
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The proposed hybrid MCDM approach based on the fuzzy AHP and the fuzzy TOPSIS approaches
have the following advantages. First, the applications of FTNs and linguistic ratings were used to
overcome partial or lacking quantitative data and transfer qualitative judgments into computable data.
Then, the fuzzy AHP weighting approach could reflect experts’ recommendations by the linguistic
ratings and represent the average importance of the evaluation criteria by the hierarchy structure.
At last, the fuzzy TOPSIS approach was applied to deal with insufficient quantitative data by using the
linguistic ratings. The proposed hybrid MCDM approach is much more suitable to handle practical
decision-making issues.

3. Evaluation Index System for the DSM Performance of Commercial Enterprises

An evaluation index system is particularly important to evaluate the DSM effect. It is vital to
adopt a series of criteria into the evaluation index system to reflect the inherent characteristics of DSM.
However, as the program implementations by these enterprises are in primary stages in China, there
are no consistent criteria to measure the performance. We try to establish the evaluation index system
to achieve sustainable development.

According to the conventional sustainability theory, sustainable development should be measured
through economic, social and environmental dimensions. Moreover, since the DSM implementation
involves complex technical conditions, a technical dimension was included to develop the original
theory. Therefore, the evaluation index system included economy, society, environment and technology
criteria, which were the main criteria based on Figure 2. Further, sub-criteria affiliated with the above
four main criteria were determined by the follows: first, initial evaluation sub-criteria were built
by referring to the Sustainability Reporting Guidelines of Global Reporting Initiative and Chinese
Corporate Social Responsibility Reporting Guidelines; second, some experts from the fields of economy,
society, environment and technology reviewed the initial evaluation sub-criteria and selected vital
ones according to their experiences and expertise; at last, less important sub-criteria were removed
and the final sub-criteria were built. The final evaluation index system is shown in Figure 6, including
15 sub-criteria. Detailed explanations of the sub-criteria are as below.

3.1. Economic Criteria (A1)

For the economic criteria, project investment and related cost should be considered. Alternatively,
DSM effects in energy conservation and enterprise service quality need to be taken into consideration.
Five sub-criteria affiliated with the economic criteria were selected to assess the DSM performance.

(1) Electricity savings (C1): Measure the reduction of the electricity consumption per unit area by
implementing DSM. Appropriate energy efficient programs can help the enterprises achieve their
goals to save energy.

(2) A DSM investment pay-back period (C2): Refers to total investment cost of DSM divided by
monthly returns. This sub-criterion measures the economic benefit for enterprises.

(3) Loss aversion related to forced outage (C3): Refers to losses from service interruptions caused by
forced outage. The forced outage probability can be reduced if an enterprise participates in DSM.

(4) Customer satisfaction with enterprise services (C4): Measures the impacts on customers’
subjective enjoyment for the services provided under DSM implementation. For the commercial
sector, higher customer satisfaction brings more business profits.

(5) Enterprise financing ability (C5): Refers to financing channels and fundraising scales faced by
these enterprises. A lot of capital investment is required for DSM implementation.
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3.2. Social Criteria (A2)

Four sub-criteria affiliated with the society criteria were finally chosen, which reflect the impacts
on the commercial sector under the DSM implementation at macro levels of the whole society.

(1) Contribution to the development of the energy industry (C6): includes the energy saving service
corporations, the distributed micro-grid systems etc.

(2) Contribution to power peak load shifting (C7): helps increase penetration of the renewable energy
sources and improve operation reliability of the power grid.

(3) Contribution to economic growth (C8): Refers to the contribution degree of the DSM implementations
to ensure energy supply security and maintain sustainable economic development.

(4) Electricity construction investment saving (C9): Measures avoidable power generation equipment
investment due to the electricity consumption reduction and avoidable power grid investment
due to the load transfer.

3.3. Environmental Criteria (A3)

Three sub-criteria affiliated with the environmental criteria were finally chosen into the
index system.

(1) Greenhouse gas emission reduction (C10): Measures the reduction of the environmental pollutant
(such as CO2 and NO2) emissions from the power generation sector due to DSM.
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(2) Avoidable soil erosion and geological structure damage (C11): Measures the reduction of
occurrence probability for soil erosion and geological structure damage benefiting from DSM.

(3) Natural resources conservation (C12): DSM is conducive to cutting the energy demand, which is
good to save limited natural resources, especially fossil fuel [3]. This sub-criterion measures the
reduction of the natural resources consumption by cutting the energy demand because of DSM.

3.4. Technical Criteria (A4)

These enterprises need to carry out technological innovation to implement DSM. The sub-criteria
affiliated with the technical criteria were summarized into:

(1) Energy saving transformation of electricity consumption devices (C13): Measures the applications
of energy saving equipment and technologies in a power system, including lighting, air
conditioning and heating. The sub-criterion reflects energy saving technological levels
of enterprises.

(2) Distributed energy utilization degree (C14): Refers to the application of a distributed energy
technology into a cooling-heating-power combined cycle, which helps to improve the energy
resources comprehensive utilization efficiency of the energy resources and the continuity
and reliability of energy supply. The distributed power generation technology, the smart
micro grid technology and the distributed energy storage technology are basically adopted
by entrepreneurs [43].

(3) DSM systems construction (C15): Includes appointing directors, hiring full-time management
personnel and training technical staff, which are based on enterprise status in order to ensure the
effectiveness and continuity of DSM implementation.

4. Empirical Analysis

The commercial sector in Beijing has exceeded the industrial sector in terms of GDP. The city
was selected as a DSM pilot city by China’s Ministry of Finance and National Development and
Reform Commission (NDRC) [8]. Beijing financial street, the gathering place of Chinese financial
institutions, was identified as the key area of DSM implementation according to governmental plans.
Four large-scale financial enterprises in the financial street were chosen as the empirical analysis
objects. These were similar in terms of business scale, office area and office equipment and complied
with peak valley electricity price standard. Meanwhile, these enterprises have implemented a series of
programs, including LED lamp reconstruction, chilled water storage system establishment, energy
saving optimization of air conditioning systems and high efficiency motor replacement. Four expert
groups (k = 1,2, . . . , 4) from government departments, research institutions, electricity utilities and the
commercial sector were formed to obtain the linguistic preference ratings of alternatives.

4.1. Determine the Weights of All the Criteria based on the Fuzzy AHP Technique

Considering the DSM implementation of the four large-scale financial enterprise alternatives, all
of the expert groups gave the comparative judgments of the criteria weights in the form of linguistic
ratings according to Table 1. Let DM1, DM2, DM3 and DM4 represent the expert groups from
government departments, research institutions, electricity utilities and commercial enterprises. The
CR values for comparative matrices were computed and listed in Table 4. All of the CR values are
below 0.2, through which we confirmed the consistency of comparative judgments given by each
expert group.
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Table 4. CR values of comparative matrices for all the levels.

CR Goal A1 A2 A3 A4

DM1 0.025 0.041 0.119 0.04 0.029
DM2 0.036 0.022 0.019 0.04 0.037
DM3 0.063 0.044 0.081 0.026 0.096
DM4 0.089 0.05 0.041 0.016 0.064

The fuzzy comparison matrices of all layers were aggregated according to Equations (7)–(10).
The aggregated results are listed in Tables 5–9. The values of fuzzy synthetic extent were calculated
and transformed according to Equations (11)–(14). The global weights of the criteria were computed
according to Equations (15)–(17), as listed in Table 10.

Table 5. The aggregated fuzzy numbers of main criteria weights.

A1 A2 A3 A4

A1 (1.0,1.0,1.0) (1.125,1.625,2.125) (0.575,0.792,1.085) (1.25,1.75,2.25)
A2 (0.493,0.667,1.085) (1.0,1.0,1.0) (0.425,0.542,0.753) (1.375,1.875,2.375)
A3 (1.125,1.542,2) (1.375,1.875,2.375) (1.0,1.0,1.0) (1.625,2.043,2.50)
A4 (0.45,0.583,0.835) (0.425,0.543,0.753) (0.505,0.683,0.893) (1.0,1.0,1.0)

Table 6. The aggregated fuzzy numbers of the ratings related to main criterion A1.

C1 C2 C3 C4 C5

C1 (1,1,1) (1,1.5,2) (0.433,0.56,0.793) (1.082,1.475,1.875) (1.625,2.125,2.625)
C2 (0.935,1.25,1.918) (1,1,1) (0.365,0.45,0.585) (0.875,1.2925,1.75) (0.625,1.125,1.625)
C3 (1.25,1.75,2.25) (1.75,2.25,2.75) (1,1,1) (1.625,2.0425,2.5) (2.125,2.625,3.125)
C4 (0.825,1.0425,1.335) (0.625,0.893,1.375) (0.505,0.683,0.893) (1,1,1) (0.675,0.875,1.128)
C5 (0.383,0.475,0.628) (0.585,0.835,1.5) (0.323,0.39,0.493) (1.225,1.625,2.043) (1,1,1)

Table 7. The aggregated fuzzy numbers of the ratings related to main criterion A2.

C6 C7 C8 C9

C6 (1,1,1) (0.725,1.043,1.418) (0.5,0.835,1.25) (0.625,0.96,1.375)
C7 (0.893,1.25,1.793) (1,1,1) (0.725,0.96,1.293) (1.125,1.543,2)
C8 (0.835,1.25,2) (0.975,1.375,1.793) (1,1,1) (1,1.5,2)
C9 (0.793,1.168,1.75) (0.575,0.793,1.085) (0.5,0.67,1) (1,1,1)

Table 8. The aggregated fuzzy numbers of the ratings related to main criterion A3.

C10 C11 C12

C10 (1,1,1) (1.5,2,2.5) (0.75,1.25,1.75)
C11 (0.408,0.518,0.71) (1,1,1) (0.45,0.585,0.835)
C12 (0.585,0.835,1.5) (1.25,1.75,2.25) (1,1,1)

Table 9. The aggregated fuzzy numbers of the ratings related to main criterion A4.

C13 C14 C15

C13 (1,1,1) (0.5,1,1.5) (1.125,1.625,2.125)
C14 (0.67,1,2) (1,1,1) (1,1.5,2)
C15 (0.475,0.628,0.918) (0.518,0.71,1.168) (1,1,1)
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Table 10. The fuzzy synthetic extent values and the weights of the evaluation criteria.

Main
Criteria

Fuzzy
Synthetic Extent

Local
Weight Sub-Criteria Fuzzy

Synthetic Extent
Local

Weight
Global
Weight

A1 (0.948,1.225,1.509) 0.279

C1 (0.947,1.214,1.508) 0.214 0.060
C2 (0.715,0.960,1.261) 0.170 0.047
C3 (1.498,1.840,2.172) 0.322 0.090
C4 (0.706,0.889,1.131) 0.158 0.044
C5 (0.617,0.759,0.989) 0.136 0.038

A2 (0.732,0.908,1.180) 0.210

C6 (0.690,0.956,1.245) 0.223 0.047
C7 (0.927,1.166,1.467) 0.272 0.057
C8 (0.950,1.267,1.636) 0.296 0.062
C9 (0.690,0.887,1.174) 0.209 0.044

A3 (1.259,1.559,1.856) 0.354
C10 (1.040,1.357,1.636) 0.423 0.150
C11 (0.568,0.671,0.840) 0.214 0.076
C12 (0.900,1.135,1.500) 0.363 0.128

A4 (0.557,0.682,0.865) 0.157
C13 (0.825,1.176,1.472) 0.373 0.059
C14 (0.875,1.145,1.587) 0.376 0.059
C15 (0.626,0.764,1.023) 0.251 0.039

4.2. Assemble the Initial Fuzzy Decision Matrix

The initial fuzzy decision matrix was established to integrate the original ratings .The TFNs
for the objective criteria and the subjective criteria were assembled by the arithmetic mean method.
C1 and C2 are objective sub-criteria for each alternative. The TFNs of C1 and C2 were obtained by
collecting the actual data. The four expert groups were asked to give linguistic preference ratings of
four alternatives (represented by O1, O2, O3 and O4) with respect to the subjective criteria except C1
and C2. The aggregate fuzzy linguistic ratings for each alternative can be computed by Equations (18)
and (19). The initial fuzzy decision matrix D is:

O1 O2 O3 O4

D =



(0.081, 0.089, 0.096) (0.077, 0.084, 0.091) (0.071, 0.076, 0.088) (0.07, 0.081, 0.095)
(0.056, 0.070, 0.089) (0.061, 0.083, 0.111) (0.061, 0.078, 0.101) (0.078, 0.095, 0.117)
(0.15, 0.35, 0.55) (0.225, 0.425, 0.625) (0.075, 0.175, 0.375) (0.075, 0.125, 0.325)
(0.35, 0.55, 0.7) (0.35, 0.50, 0.65) (0.425, 0.625, 0.775) (0.65, 0.85, 1)
(0.15, 0.3, 0.5) (0.15, 0.35, 0.55) (0.375, 0.575, 0.775) (0.65, 0.85, 1)

(0.075, 0.275, 0.475) (0, 0.2, 0.4) (0.3, 0.5, 0.7) (0.375, 0.575, 0.775)
(0.075, 0.275, 0.475) (0.075, 0.275, 0.475) (0.45, 0.65, 0.85) (0.575, 0.775, 0.925)
(0.225, 0.425, 0.625) (0.15, 0.35, 0.55) (0.45, 0.65, 0.85) (0.7, 0.9, 1)
(0.225, 0.425, 0.625) (0.15, 0.35, 0.55) (0.375, 0.575, 0.775) (0.65, 0.85, 1)

(0.3, 0.5, 0.7) (0.075, 0.275, 0.475) (0.575, 0.775, 0.925) (0.7, 0.9, 1)
(0.375, 0.575, 0.775) (0.225, 0.375, 0.575) (0.575, 0.775, 0.925) (0.65, 0.85, 1)

(0.3, 0.5, 0.7) (0, 0.2, 0.4) (0.525, 0.725, 0.925) (0.7, 0.9, 1)
(0.3, 0.5, 0.7) (0, 0.05, 0.25) (0.375, 0.575, 0.775) (0.575, 0.775, 0.925)

(0.075, 0.225, 0.425) (0.15, 0.25, 0.45) (0.35, 0.55, 0.7) (0.575, 0.775, 0.925)
(0.075, 0.225, 0.425) (0.075, 0.275, 0.475) (0.375, 0.575, 0.775) (0.7, 0.9, 1)



,

In D, each column vector represents the aggregate ratings of all the criteria for each alternative.

4.3. Calculate the Fuzzy Positive Ideal Solution and the Fuzzy Negative Ideal Solution

The fuzzy positive ideal solution and the fuzzy negative ideal solution should be computed
to obtain the ranking results. Among the fifteen sub-criteria, C2 and C3 were cost-type criteria,
and the rest were of benefit-type. The initial fuzzy decision matrix was normalized according to
Equations (20)–(22). The weighted normalized fuzzy decision matrix D was obtained according
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to Equation (23). The fuzzy positive ideal solution Z+ and fuzzy negative ideal solution Z− were
calculated according to Equations (24) and (25), and are listed in Table 11.

Table 11. The fuzzy positive ideal solution and fuzzy negative ideal solution.

j C1 C2 C3 C4 C5

z̃+j (0.050,0.055,0.06) (0.023,0.028,0.034) (0.011,0.016,0.03) (0.029,0.037,0.044) (0.025,0.032,0.038)
z̃−j (0.043,0.047,0.055) (0.027,0.034,0.044) (0.21,0.054,0.09) (0.015,0.022,0.029) (0.006,0.013,0.021)

j C6 C7 C8 C9 C10

z̃+j (0.023,0.035,0.047) (0.036,0.048,0.057) (0.043,0.056,0.062) (0.029,0.037,0.044) (0.105,0.135,0.15)
z̃−j (0,0.012,0.024) (0.005,0.014,0.026) (0.009,0.022,0.034) (0.007,0.015,0.024) (0.011,0.034,0.064)

j C11 C12 C13 C14 C15

z̃+j (0.049,0.064,0.076) (0.09,0.116,0.128) (0.037,0.049,0.059) (0.037,0.049,0.059) (0.028,0.036,0.04)
z̃−j (0.017,0.028,0.044) (0,0.026,0.051) (0,0.003,0.016) (0.01,0.016,0.029) (0.003,0.011,0.019)

4.4. Determine the Preference Rakings of the Alternatives

The distances of each alternative from the fuzzy positive ideal solution and the fuzzy negative
ideal solution were calculated according to Equations (26)–(29):

d+1 = 0.3481, d+2 = 0.4727, d+3 = 0.1863, d+4 = 0.0447

d−1 = 0.2277, d−2 = 0.1483, d−3 = 0.3377, d−4 = 0.4351

The closeness coefficient for each alternative was calculated by using Equation (30). The results are:

CC1 = 0.3954, CC2 = 0.2388, CC3 = 0.6445, CC4 = 0.9068

The closeness coefficient values were ranked in decreasing order

CC4 � CC3 � CC1 � CC2

It is shown that O4 is the best alternative, followed by O3, O1 and O2.

5. Discussion

Alternative O4 was the best according to the above results. To obtain better insight from the fuzzy
AHP-TOPSIS application on DSM performance evaluation, we will explore the impacts of sub-criteria
weights and performance.

According to the normalized fuzzy decision matrix D, the sub-criteria performance of four
alternatives are shown in Figure 7, which reflects the important information effectively considering the
criteria type. The larger the sub-criteria value is, the better the alternative performance will be. Global
weights of all sub-criteria were drawn in Figure 8.
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It is shown that for alternative O4 (marked in green in Figure 7), the sub-criteria except C1 and
C2 have the best performance compared to that of other three alternatives. Meanwhile, the weight
values of C1 and C2 are medium (rank No. 6 for C1 and No. 10 for C2 as shown in Figure 7). O4 is
regarded as the best one among all alternatives according to the overall rankings. For alternative O3
(marked in red in Figure 7), majority sub-criteria except C1 have good performance. Considering
the weights, O3 ranks the second among all the alternatives. For O2 (marked in blue in Figure 7),
eleven sub-criteria present the poorest performance. Considering the weight values, O2 is the worst
alternative among all alternatives. From Figure 8, it is shown that C10, C11, and C12 affiliated with the
environmental criteria, C3 affiliated with the economic criteria and C8 affiliated with the social criteria
attracted more attention from the expert groups. Conversely, C4 and C5 affiliated with the economic
criteria, C9 affiliated with the social criteria and C15 affiliated with the technical criteria are relatively
less important. This result reflects that the public has realized the importance of protecting the living
environment. More and more serious environmental problems occurring in China including smoggy
weather and sand dust storm are threatening people’s health and daily life [44,45]. An increasingly
prominent energy crisis is realized by more and more entrepreneurs, politicians and academics [46].
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Current environmental conditions may attract experts’ attention on environmental, economic, social
and technological aspects when they make judgments on DSM performances.

There were some uncertainties in decision-making processes when sub-criteria weights were
determined by fuzzy AHP. Different experts may give different judgments, according to which the
weights will vary. A sensitivity analysis about the sub-criteria weights should be performed to check
the robustness and the effectiveness of the preference decision results. The fifteen sub-criteria were
assigned into four groups according to main criteria, namely economic, social, environmental and
technical group. The closeness coefficient values calculated by Equation (30) were regarded as the
ranking scores of alternatives.

For performing the sensitivity analysis, the sub-criteria weights were increased by 20%, 40%, 60%
and 80% and reduced by 20%, 40%, 60% and 80% compared with the basic weights (namely the global
weights shown in Table 10). Let Wi be the basic weight of sub-criterion i, δ be the weight variation
coefficient, namely −80%, −60%, −40%, −20%, 0%, 20%, 40%, 60% and 80%. The adjusted weight W∗i
of sub-criterion i is:

W∗i = Wi × (1 + δ) (31)

As the sum of all sub-criteria weights is set at 1, the rest are sequentially adjusted

W∗j = Wj × (1−W∗i )/(1−Wi) (32)

where Wj is the basic weight of sub-criterion j; W∗j is the adjusted weight of sub-criterion j; and i,
j = 1, . . . , 15, i 6= j.

It is seen that the weight changes of the five sub-criteria in the economic group exert influences on
the final ranking scores in Figure 9. It is shown that the DSM performance scores of all four alternative
remain relatively stable with the weight changes of C2, C4 and C5. As the importance of C1 raises,
the ranking scores of alternative O1 and O2 increase. Meanwhile, the ranking score of O4 (the best
alternative) decreases slightly. As C3 becomes more and more important, the ranking scores of O3 and
O4 (the best alternative) decrease obviously, while the ranking scores of O1 and O2 increase. However,
no matter how the weights of C1 and C3 change, O4 still obtains the highest score and is regarded
as the best one. In the case, no matter how the weights of sub-criteria in the economic group change,
O4 still gets the highest ranking scores and that indicates O4 is always the best.Sustainability 2016, 8, 1041 19 of 23 
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The cases in which the weights of three sub-criteria fluctuate in the environmental group are
shown in Figure 11. For C10, C11 and C12, as the weight increases, the score of O1 has little change,
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The cases in which the weights of three sub-criteria fluctuate in the technical group are shown in
Figure 12. As the weight of C13 increases, the ranking score of O4 increases slightly, while the score
of O2 decreases. As the weight of C14 increases, the ranking score of O4 increases slightly and its
superiority becomes greater, while the score of O1 decreases. For the weight fluctuations of C15, the
scores of all alternatives have little variations. Just as that in the economic, social and environmental
groups, O4 is still the optimal alternative no matter how the three sub-criteria weights change in the
technical group.

Base on the above analysis, it is seen that O4 always obtains the highest score among all
alternatives, which indicates that the DSM performance evaluation framework by applying the fuzzy
AHP-TOPSIS approach is reliable and robust.
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6. Conclusions

The hybrid framework for the DSM performance evaluation in the commercial sector was built
from a sustainability perspective, which was proven feasible and effective in the empirical analysis.
Some conclusions has been drawn:

(1) It is found that C10 and C12 affiliated with the environment criteria obtain more attention from
experts, and alternative O4 was chosen as the best, followed by O3, O1 and O2;

(2) A sensitivity analysis for the sub-criteria weights were performed to test the robustness and
effectiveness of evaluation results, which indicated that the ranking results remain stable no
matter how the weights of the sub-criteria change.

Although this hybrid framework is reasonable, robust and practical to evaluate and rank DSM
performance, limitations may still appear with the changes of objective conditions. Considering the
complexity and variability of such practical problems, other MCDM methods such as fuzzy VIKOR,
fuzzy ANP or fuzzy PROMETHEE to rank the DSM performance should be used in future research.
Meanwhile, the ranking results obtained from different MCDM methods can also be compared to
improve the evaluation framework. Moreover, the evaluation index system can be improved by
consulting more specific experts from fields related to the environment, the economy, and so on. The
sub-criteria should be updated timely with changes of government policies and economic situations.

Acknowledgments: This study is supported by the Fundamental Research Funds for the Central Universities
under Grant (No. 2016XS68), Energy Foundation (No. G-1509-23762) and Asian Development Bank technical
assistance project (Contract number: 123124-S52728).

Author Contributions: Jun Dong and Huijuan Huo conceived and designed the research method framework;
Huijuan Huo performed the empirical analysis and wrote the paper; and Sen Guo gave some ideas to enrich the
first draft and form the final draft.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2016, 8, 1041 22 of 23

References

1. Zhao, H.; Guo, S.; Fu, L. Review on the costs and benefits of renewable energy power subsidy in China.
Renew. Sustain. Energy Rev. 2014, 37, 538–549. [CrossRef]

2. Wang, H.; Zhang, Y.; Lu, X.; Nielsen, C.P.; Bi, J. Understanding China’s carbon dioxide emissions from both
production and consumption perspectives. Renew. Sustain. Energy Rev. 2015, 52, 189–200. [CrossRef]

3. Zhou, K.; Yang, S. Demand side management in China: The context of China’s power industry reform.
Renew. Sustain. Energy Rev. 2015, 52, 954–965. [CrossRef]

4. Ming, Z.; Song, X.; Mingjuan, M.; Lingyun, L.; Min, C.; Yuejin, W. Historical review of demand side
management in China: Management content, operation mode, results assessment and relative incentives.
Renew. Sustain. Energy Rev. 2015, 25, 470–482. [CrossRef]

5. Strbac, G. Demand side management: Benefits and challenges. Energy Policy 2008, 36, 4419–4426. [CrossRef]
6. Zeng, M.; Yang, Y.; Wang, L.; Sun, J. The power industry reform in China 2015: Policies, evaluations and

solutions. Renew. Sustain. Energy Rev. 2016, 57, 94–110. [CrossRef]
7. Zhang, X.P.; Cheng, X.M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ.

2009, 68, 2706–2712. [CrossRef]
8. Zhao, Z.; Yu, C.; Yew, M.; Liu, M. Demand side management: A green way to power Beijing. J. Renew.

Sustain. Energy 2015, 7, 041505. [CrossRef]
9. Arteconi, A.; Hewitt, N.J.; Polonara, F. State of the art of thermal storage for demand-side management.

Appl. Energy 2012, 93, 371–389. [CrossRef]
10. Eissa, M.M. Demand side management program evaluation based on industrial and commercial field data.

Energy Policy 2011, 39, 5961–5969. [CrossRef]
11. Albadi, M.H.; Saadany, E.F. A summary of demand response in electricity markets. Electr. Power Syst. Res.

2008, 78, 1989–1996. [CrossRef]
12. Wang, J.; Bloyd, C.N.; Hu, Z.; Tan, Z. Demand response in China. Energy 2010, 35, 1592–1597. [CrossRef]
13. Cobuloglu, H.I.; Büyüktahtakın, İ.E. A stochastic multi-criteria decision analysis for sustainable biomass

crop selection. Exp. Syst. Appl. 2015, 42, 6065–6074. [CrossRef]
14. Papaefthymiou, G.; Hasche, B.; Nabe, C. Potential of heat pumps for demand side management and wind

power integration in the German electricity market. IEEE Trans. Sustain. Energy 2012, 3, 636–642. [CrossRef]
15. Lund, H.; Kempton, W. Integration of renewable energy into the transport and electricity sectors through

V2G. Energy Policy 2008, 36, 3578–3587. [CrossRef]
16. Sianaki, O.A.; Hussain, O.; Dillon, T.; Tabesh, A.R. Intelligent decision support system for including

consumers’ preferences in residential energy consumption in smart grid. In Proceedings of the Second
International Conference on Computational Intelligence, Modelling and Simulation, Liverpool, UK,
28–30 September 2010.

17. Tanoto, Y.; Santoso, M.; Hosea, E. Multi-dimensional assessment for residential lighting demand side
management: A proposed framework. Appl. Mech. Mater. 2013, 284, 3612–3616. [CrossRef]

18. Miara, A.; Tarr, C.; Spellman, R.; Vörösmarty, C.J.; Macknick, J.E. The power of efficiency: Optimizing
environmental and social benefits through demand-side-management. Energy 2014, 76, 502–512. [CrossRef]

19. Dawadi, S, Ahmad, S. Evaluating the impact of demand-side management on water resources under
changing climatic conditions and increasing population. J. Environ. Manag. 2013, 114, 261–275.

20. Gudi, N.; Wang, L.; Devabhaktuni, V. A demand side management based simulation platform incorporating
heuristic optimization for management of household appliances. J. Environ. Manag. 2012, 43, 185–193.
[CrossRef]

21. Pina, A.; Silva, C.; Ferrão, P. The impact of demand side management strategies in the penetration of
renewable electricity. Energy 2012, 41, 128–137. [CrossRef]

22. Fehrenbach, D.; Merkel, E.; McKenna, R.; Karl, U.; Fichtner, W. On the economic potential for electric load
management in the German residential heating sector—An optimizing energy system model approach.
Energy 2014, 71, 263–276. [CrossRef]

23. Dallinger, D.; Wietschel, M. Grid integration of intermittent renewable energy sources using price-responsive
plug-in electric vehicles. Renew. Sustain. Energy Rev. 2012, 16, 3370–3382. [CrossRef]

24. Lee, D.K.; Park, S.Y.; Park, S.U. Development of assessment model for demand-side management investment
programs in Korea. Energy Policy 2007, 35, 5585–5590. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2014.05.061
http://dx.doi.org/10.1016/j.rser.2015.07.089
http://dx.doi.org/10.1016/j.rser.2015.03.036
http://dx.doi.org/10.1016/j.rser.2013.05.020
http://dx.doi.org/10.1016/j.enpol.2008.09.030
http://dx.doi.org/10.1016/j.rser.2015.12.203
http://dx.doi.org/10.1016/j.ecolecon.2009.05.011
http://dx.doi.org/10.1063/1.4927149
http://dx.doi.org/10.1016/j.apenergy.2011.12.045
http://dx.doi.org/10.1016/j.enpol.2011.06.057
http://dx.doi.org/10.1016/j.epsr.2008.04.002
http://dx.doi.org/10.1016/j.energy.2009.06.020
http://dx.doi.org/10.1016/j.eswa.2015.04.006
http://dx.doi.org/10.1109/TSTE.2012.2202132
http://dx.doi.org/10.1016/j.enpol.2008.06.007
http://dx.doi.org/10.4028/www.scientific.net/AMM.284-287.3612
http://dx.doi.org/10.1016/j.energy.2014.08.047
http://dx.doi.org/10.1016/j.ijepes.2012.05.023
http://dx.doi.org/10.1016/j.energy.2011.06.013
http://dx.doi.org/10.1016/j.energy.2014.04.061
http://dx.doi.org/10.1016/j.rser.2012.02.019
http://dx.doi.org/10.1016/j.enpol.2007.05.029


Sustainability 2016, 8, 1041 23 of 23

25. Aalami, H.A.; Moghaddam, M.P.; Yousefi, G.R. Modeling and prioritizing demand response programs in
power markets. Electr. Power Syst. Res. 2010, 80, 426–435. [CrossRef]

26. Yang, L.; Deuse, J. Multiple-attribute decision making for an energy efficient facility layout design.
Procedia CIRP 2012, 3, 149–154. [CrossRef]

27. Saaty, T.L. What is the analytic hierarchy process? Math. Model. Decis. Support 1988, 48, 109–121.
28. Sianaki, O.A.; Masoum, M.A. A fuzzy TOPSIS approach for home energy management in smart grid

with considering householders’ preferences. In Proceedings of the 2013 IEEE PES Innovative Smart Grid
Technologies (ISGT), Washington, DC, USA, 24–27 February 2013.

29. Ciabattoni, L.; Ferracuti, F.; Grisostomi, M.; Ippoliti, G.; Longhi, S. Fuzzy logic based economic analysis of
photovoltaic energy management. Neurocomputing 2015, 170, 296–305. [CrossRef]

30. Choudhary, D.; Shankar, R. An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal
power plant location: A case study from India. Energy 2012, 42, 510–521. [CrossRef]

31. Chang, D.Y. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655.
[CrossRef]

32. Chen, C.T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst.
2000, 114, 1–9. [CrossRef]

33. Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3–28. [CrossRef]
34. Mardani, A.; Jusoh, A.; Zavadskas, E.K. Fuzzy multiple criteria decision-making techniques and

applications—Two decades review from 1994 to 2014. Exp. Syst. Appl. 2015, 42, 4126–4148. [CrossRef]
35. Liao, H.; Xu, Z.; Zeng, X.J. Distance and similarity measures for hesitant fuzzy linguistic term sets and their

application in multi-criteria decision making. Inform. Sci. 2014, 271, 125–142. [CrossRef]
36. Chen, S.H.; Li, G.C. Representation, ranking and distance of fuzzy number with exponential membership

function using graded mean integration method. Tamsui Oxf. J. Manag. Sci. 2000, 16, 123–131.
37. Zhao, H.; Guo, S. Selecting green supplier of thermal power equipment by using a hybrid MCDM method

for sustainability. Sustainability 2014, 6, 217–235. [CrossRef]
38. Gold, S.; Awasthi, A. Sustainable global supplier selection extended towards sustainability risks from

(1 + n)th tier suppliers using fuzzy AHP based approach. IFAC-PapersOnLine 2015, 48, 966–971. [CrossRef]
39. Li, H.; Guo, S. External economies evaluation of wind power engineering project based on analytic hierarchy

process and matter-element extension model. Math. Probl. Eng. 2013, 2013. [CrossRef]
40. Saaty, T.L. Decision making—The analytic hierarchy and network processes (AHP/ANP). J. Syst. Sci.

Syst. Eng. 2004, 13, 1–35. [CrossRef]
41. Junior, F.R.L.; Osiro, L.; Carpinetti, L.C.R. A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to

supplier selection. Appl. Soft Comput. 2014, 21, 194–209. [CrossRef]
42. Li, D.F. Compromise ratio method for fuzzy multi-attribute group decision making. Appl. Soft Comput. 2007,

7, 807–817. [CrossRef]
43. Wang, Y.; Wang, J.; Dong, X.; Du, P.; Ni, M.; Wang, C.; Yao, L.; Zhang, B. Guest Editorial Smart Grid

Technologies and Development in China. IEEE T. Smart Grid 2016, 7, 379–380. [CrossRef]
44. Li, M.; Zhang, L. Haze in China: Current and future challenges. Environ. Pollut. 2014, 189, 85–86. [CrossRef]

[PubMed]
45. Wang, T.; Yan, C.Z.; Song, X.; Li, S. Landsat images reveal trends in the aeolian desertification in a source

area for sand and dust storms in China’s Alashan Plateau (1975–2007). Land Degrad. Dev. 2013, 24, 422–429.
[CrossRef]

46. Zweig, D.; Eriksen, S.S. China’s Energy Anxiety. In Sino-US Energy Triangles: Resource Diplomacy under
Hegemony; Routledge: Abingdon, UK, 2015; p. 256.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.epsr.2009.10.007
http://dx.doi.org/10.1016/j.procir.2012.07.027
http://dx.doi.org/10.1016/j.neucom.2015.01.086
http://dx.doi.org/10.1016/j.energy.2012.03.010
http://dx.doi.org/10.1016/0377-2217(95)00300-2
http://dx.doi.org/10.1016/S0165-0114(97)00377-1
http://dx.doi.org/10.1016/0165-0114(78)90029-5
http://dx.doi.org/10.1016/j.eswa.2015.01.003
http://dx.doi.org/10.1016/j.ins.2014.02.125
http://dx.doi.org/10.3390/su6010217
http://dx.doi.org/10.1016/j.ifacol.2015.06.208
http://dx.doi.org/10.1155/2013/848901
http://dx.doi.org/10.1007/s11518-006-0151-5
http://dx.doi.org/10.1016/j.asoc.2014.03.014
http://dx.doi.org/10.1016/j.asoc.2006.02.003
http://dx.doi.org/10.1109/TSG.2015.2502490
http://dx.doi.org/10.1016/j.envpol.2014.02.024
http://www.ncbi.nlm.nih.gov/pubmed/24637256
http://dx.doi.org/10.1002/ldr.1138
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Fuzzy Set Theory and Fuzzy Numbers 
	Fuzzy AHP Weighting Method 
	Fuzzy TOPSIS Method 
	The Framework of Proposed Hybrid Fuzzy AHP-TOPSIS Model 

	Evaluation Index System for the DSM Performance of Commercial Enterprises 
	Economic Criteria (A1) 
	Social Criteria (A2) 
	Environmental Criteria (A3) 
	Technical Criteria (A4) 

	Empirical Analysis 
	Determine the Weights of All the Criteria based on the Fuzzy AHP Technique 
	Assemble the Initial Fuzzy Decision Matrix 
	Calculate the Fuzzy Positive Ideal Solution and the Fuzzy Negative Ideal Solution 
	Determine the Preference Rakings of the Alternatives 

	Discussion 
	Conclusions 

