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Abstract: According to the economic and energy consumption statistics in Jiangsu Province, we
combined the GM (1, 1) grey model and polynomial regression to forecast carbon emissions. Historical
and projected emissions were decomposed using the Logarithmic Mean Divisia Index (LMDI)
approach to assess the relative contribution of different factors to emission variability. The results
showed that carbon emissions will continue to increase in Jiangsu province during 2015–2020 period
and cumulative carbon emissions will increase by 39.5487 million tons within the forecast period.
The growth of gross domestic product (GDP) per capita plays the greatest positive role in driving
carbon emission growth. Furthermore, the improvement of energy usage efficiency is the primary
factor responsible for reducing carbon emissions. Factors of population, industry structure adjustment
and the optimization of fuel mix also help to reduce carbon emissions. Based on the LMDI analysis,
we provide some advice for policy-makers in Jiangsu and other provinces in China.
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1. Introduction

Recently, the issue of climate change has been under increasing levels of scrutiny by governments
and relevant stakeholders worldwide. The United Nations Intergovernmental Panel on Climate Change
(IPCC) has released five assessment reports which analyzed the root causes of climate change and its
effect on the planet in the years 1990, 1995, 2001, 2007, with the most recent in 2012. The literature
on the subject overwhelmingly suggests that climate change is highly correlated to carbon emissions,
and as a result the study of carbon emissions is of unparalleled significance under the background of
climate change.

Lying on the eastern coast of mainland China, Jiangsu province (Jiangsu, hereafter), is one
of the leading provinces in manufacturing electronics and apparel items. It has a gross domestic
product (GDP) of 6.5 trillion yuan ($980 billion USD) in 2015, ranking second nationally. The annual
fossil fuel energy consumption of Jiangsu also ranks very highly within the country. As is shown
in Figure 1, energy consumption in Jiangsu rapidly increased from 2005–2014, the total amount of
energy consumption remains high despite a declining growth rate. Although Jiangsu has advanced
manufacturing capabilities and emission reduction technology, due to the construction of high-speed
inter-city railways connecting 26 out of 44 counties and cities, it is estimated that the process for
urbanization and industrialization of Jiangsu will be further accelerated resulting in increased energy
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demands and economic development-derived carbon emissions. Therefore, conducting a scientific
analysis of the future trend of carbon emissions for Jiangsu and devising methods of emission reduction
are of great importance.
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The relationship between economic growth, energy consumption, and carbon dioxide emissions
has been extensively analyzed over the past two decades. Kais [1] provided new empirical evidence
to confirm that the Environmental Kuznets Curve (EKC) hypothesis, which was first defined by
Simon Kuznets [2], posited an inverted U-shaped curve between economic growth and environmental
degradation. Lau [3] indicated that good institutional quality is important in controlling carbon dioxide
emissions in the process of economic development. The findings of Gallego-Álvarez [4] showed a
reduction in emissions that generates a positive impact on financial performance, contributing to the
literature on the relationship between carbon emission reduction and corporate performance.

Estimating and forecasting the amounts of carbon dioxide (CO2) emitted into the atmosphere
are crucial for planning and analyzing mitigation efforts and for development scenarios of future
emissions. Burke [5] investigated carbon dioxide emissions from the combustion of fossil fuels and the
manufacture of cement. The works of Tan [6] and Ertugrul [7] provided several extensive studies on
the calculation of carbon emissions. A plausible method of computer modeling combining genetic
algorithms and a chemical reactor network was developed by Christopher [8] to predict alternative fuel
gaseous emissions. Multivariable regression analysis was merged with partial life cycle assessment
(LCA) and building information modeling (BIM) for the prediction of environmental degradation
within the housing sector [9]. However, forecasting results depended on statistical data, which change
rapidly over time. The grey prediction model is an alternative forecasting tool for systems with
complex, uncertain and chaotic structures because of their low data requirements to build forecasting
models [10]. Initially proposed by Deng [11], the grey model (GM) was used to quantify uncertainty and
information insufficiency. Following its proposal, the grey model has been used in various advanced
applications. Wang [12] established a small-sample effective rolling GM (1, 1) model under eight
different datasets to forecast future gas consumption. The metabolic grey model (MGM), metabolic
residual-error grey model (MREGM), and the metabolic Markov-residual-error grey model (MMREGM)
were proposed by Chen [13] and used to predict the capacity of lithium-ion batteries in relation to
discharge cycles throughout their lifetimes. The GM (1, 1) model is currently one of the most widely
used grey prediction models for predicting carbon emissions [14,15].

The index decomposition analysis (IDA) method has been widely applied to analyze factors
influencing carbon emissions. IDAs are mainly divided into Laspeyres index decomposition and Divisia
index decomposition analyses [16]. The LMDI method was introduced and developed by Ang [17],
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who concluded it to be the most preferred decomposition analysis due to its robustness, adaptability
and transparency in the interpretation of results. Various studies have used LMDI to investigate carbon
emissions at regional and national scales [18–20]. Wang [21] found that economic development was
the largest factor of increasing carbon dioxide emissions through a modified production-theoretical
decomposition analysis approach.

The analysis of carbon emission-related content previously described is applied in various
industries and fields of research. The research scope refers to the nationwide level, provincial level, and
urban areas. However many of the influencing factors, accounting methods, and emission performance
are only targeted towards the past and cannot be used to predict future trends. In the recent National
Climate Change Plan (2014–2020) published by the National Development and Reform Commission,
the State Council confirmed that China would commit to reduce its CO2 emissions per unit of GDP
in 2020 by at least 40%–50% as compared to 2005, and it was considered as an indicator of economic
development in long-term planning. In this paper, the decomposition analysis for carbon emission
factors is focused on future economic development and the energy consumption trend of the province
of Jiangsu. In order to meet the target of long-term emission reductions, all relevant statistical data are
conducted using a grey prediction model and a method of LMDI decomposition has been applied to
future emissions projections, which is aimed at describing future directions of emission reduction for
Jiangsu and providing advice on the formulation of emission reduction policies for Jiangsu and other
provinces with similar economic and environmental circumstances.

The rest of this paper is organized as follows: Section 2 presents the methodology and data;
forecasting and decomposition results are put forward in Section 3; Section 4 provides a discussion
of the results; and Section 5 gives the conclusion and puts forward advice based on the results of
the analysis.

2. Methodology and Data

2.1. Data Source

The data used in the following study includes population, energy consumption data, and
economic data, etc., which were obtained from the Regional Statistical Yearbook [22–51].

Population and economic data were collected from the Jiangsu Statistical Yearbook
2001–2015 [22–35]. Energy consumption data for each sector were extracted from the China Energy
Statistical Yearbook 2001–2015 [35–51]. Energy consumption of Jiangsu was divided into three parts:
primary, secondary, and tertiary industries. The types of fuels consumed by three industries included
eight typical kinds: raw coal, cleaned coal, coke, gasoline, diesel, fuel oil, liquefied petroleum
gas, and natural gas. For ease of calculations, we categorize these eight types of energy sources
as coal, petroleum, and natural gas; and CO2 emissions are calculated with the three aggregated fuels.
Corresponding to the types of energy sources, this paper takes the mean values of raw coal, cleaned
coal, and coke’s carbon emission coefficients as coal’s carbon emission coefficient, and the mean values
of gasoline, diesel, fuel oil, and liquefied petroleum gas’ emission coefficients as oil’s carbon emission
coefficient. Due to the small variation in the coal and petroleum energy source’s inter-source carbon
emission coefficients, and the addition of this paper’s main study of the evolution of emission increases
and structural composition, the aggregation essentially will not have an impact on the final conclusion.
The CO2 emission factors for the eight types of fuels and three reclassified types are summarized
in Table 1.

CO2 emissions are calculated by the following equation:

C = ∑ iei × fi × ki (1)

where ei denotes the consumption of fuel i (unit: cubic meter for liquefied petroleum gas, and natural
gas; kg for other fuels); fi is the standard coal coefficient used to convert the different types of energy
to standard coal equivalents (SCE), which is derived from the General Principles of Comprehensive
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Energy Consumption Calculation (unit: kgce/cubic meter; kgce/kg); ki is the CO2 emission factor for
different types of fuels from the Guidelines on Provincial Greenhouse Gas Inventories.

Table 1. Various fuel CO2 emission factors (unit: kg/kgce).

Original Fuels Factors Aggregated Fuels Factors

Raw Coal 0.7559
Coal 0.7889Cleaned Coal 0.7559

Coke 0.8550

Gasoline 0.5538

Oil 0.56715
Diesel 0.5921

Fuel Oil 0.6185
Liquefied Petroleum Gas 0.5042

Natural Gas 0.4483 Natural Gas 0.4483

2.2. GM (1, 1) Model

The algorithm of the GM (1, 1) grey prediction model can be summarized as follows:
Step 1: the non-negative time-sequence data X(0) is expressed as:

X(0) =
{

x(0)(1), x(0)(2), . . . , x(0)(n)
}

(2)

where n ≥ 3.
Step 2: take accumulated generating operation (AGO) on X(0) to weaken modulation tendencies:

X(1) =
{

x(1)(1), x(1)(2), . . . , x(1)(n)
}

(3)

where x(1)(n) =
n
∑

k=1
x(0)(k).

Step 3: the basic form of GM (1, 1) is described by the following equation:

X(0)(t) + a · X(1)(t) = u (4)

where t denotes the independent variables in the system, a represents the developed coefficient, and u
is the grey controlled variable. The model requires solutions for a and u.

Step 4: by using the ordinary least-square method, coefficient
_
a becomes:

_
a =

[
a
u

]
=
(

BT B
)−1

BTYn (5)

where:

B =


− 1

2 (x(1)(1) + x(1)(2)) 1 · · · 1
− 1

2 (x(1)(2) + x(1)(3)) 1 · · · 1
... 1 · · · 1
− 1

2 (x(1)(n − 1) + x(1)(n)) 1 · · · 1

 , and Yn =
[

x(0)1 (2), x(0)1 (3), · · · , x(0)1 (n)
]T

;

Step 5: according to the estimated coefficients a and u, the response equation can be obtained:

_
x
(1)

(t + 1) = (x(0)(1)− u
a
)e−at +

u
a

(6)
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Step 6: by performing inverse accumulated generating operation (IAGO) on
_
x
(1)

, the prediction
value is produced:

_
x
(0)

(t + 1) = −a · (x(0)(1)− u
a
)e−at (7)

or:
_
x
(0)

(t + 1) =
_
x
(1)

(t + 1)−_
x
(1)

(t) (8)

To demonstrate the reliability of the GM (1, 1) model, the posterior variance test is used to discuss
the results of fitting and prediction. Criteria of the posterior variance test include the indicators,
posterior variance ratio C, and small error probability P.

The posterior variance ratio is defined as follows:

C =
S2

S1
=

√
S2

2

S1
2 (9)

where S2
2 = 1

m−1

m−1
∑

t=1
(ε(0)(t)− ε(0)(t))

2
, and S1

2 = 1
m−1

m
∑

t=1
(x(0)(t)− x(0)(t))2.

ε(0)(t) represents the residual between the predicted value
_
x
(0)

(t) and the actual value x(0)(t) at
time t.

Small error probability P is expressed as P =
{∣∣∣ε(0)(t)− ε(0)(t)

∣∣∣ < 0.6745S1

}
. The range of

indicator values C and P is such that: C > 0, 0 ≤ P ≤ 1, where P > 0.95 and C < 0.35 indicates a highly
accurate forecast, P > 0.60 and C < 0.80 indicates a reasonable forecast, and P < 0.60 and C > 0.80
indicates an unreasonable range.

2.3. Polynomial Regression Analysis

Polynomial regression analysis is a powerful statistical tool for estimating relationships between
variables, which has many applications in different areas, such as engineering, the environmental
sciences, finance, and economics. It can be summarized by the following steps:

(1) Determine the number of polynomials by observing the changing trend of the actual data.
(2) Transform the general polynomial y = a0 + a1x + a2x2 + · · · + amxm into a linear function

y = a0 + a1z1 + a2z2 + · · ·+ amzm, where z1 = x, z1 = x2, · · · , zm = xm.
(3) Estimate the parameters a0, a1, a2, · · · , am by using the ordinary least-square method.
(4) Calculate the predicted values with the estimated multivariate linear function.

2.4. LMDI Decomposition Model

The LMDI decomposition approach is widely used in studies of environment and energy problems.
A practical guide to Log-Mean Divisia Index Method I (LMDI-I ) is given by Ang [17]. Changes in
CO2 emissions from industry may be studied by quantifying the contributions the variability of six
different factors: population, GDP (PPP) per capita, industrial activity mix, energy intensity, fuel
mix, and CO2 emission factors. The subcategories of the aggregate are the industrial sectors and fuel
types. The decomposition analysis problem can be formulated either additively or multiplicatively.
In multiplicative decomposition, we decompose the CO2 emissions changes into the following factors:

C =
m

∑
i=1

n

∑
j=1

Cij

Eij
×

Eij

Ei
× Ei

Gi
× Gi

G
× G

R
× R =

m

∑
i=1

n

∑
j=1

kij × nij × ei × si × w × r

Variable definitions are summarized in Table 2.
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Table 2. Definitions of variables.

Variables Definitions Unit

R Population 1.0 × 104 persons
G GDP 1.0 × 108 yuan
Gi GDP of industrial sectors 1.0 × 108 yuan
Ei Gross energy consumption of industrial sectors 1.0 × 104 tce
Eij Consumption of fuel j in industrial sector i 1.0 × 104 tce
Cij CO2 emissions arising from fuel j in industrial sector i 1.0 × 104 tons
r Population size 1.0 × 104 persons
w GDP per capita yuan/person
si Share of GDP of industrial sector i Percentage point
ei Energy intensity in industrial sector i tce/1.0 × 104 yuan
nij Fuel mix (share of consumption of fuel j in gross Energy consumption in industrial sector i) Percentage point
kij CO2 emission coefficient: CO2 emission per unit of Fuel j in industrial sector i 1.0 × 104 tons

In additive decomposition, we decompose the increased carbon emissions:

∆C = ∆Cr + ∆Cw + ∆Cs + ∆Ce + ∆Cn + ∆Ck

Similar to some related studies, because CO2 emission coefficients of various energy sources
are all assumed to be fixed when calculating CO2 emissions, the term ∆Ck in the equation does not
contribute to CO2 emission variability and has a value of zero. Hence, the final drivers of CO2 emission
variability are decomposed into five corresponding factors:

∆C = ∆Cr + ∆Cw + ∆Cs + ∆Ce + ∆Cn

where ∆Cr denotes the CO2 increase or decrease increments as caused by a change in population; ∆Cw

is the increment of CO2 emissions caused by change of GDP per capita; ∆Cs is the increment of CO2

emissions caused by changes in industrial structure, which is represented by a share of GDP in the
industrial sector i; ∆Ce is the increment of CO2 emissions caused by changes in energy intensity; and
∆Cn is the increment of CO2 emissions caused by change in the proportion of energy consumption.
The LMDI formulae are summarized in Table 3 where m represents the types of industry, n represents
the types of energy, and t represents the year.

Table 3. The LMDI formulae.

Additive Decomposition

Change Scheme LMDI Formulae

∆C = ∆Cr + ∆Cw + ∆Cs + ∆Ce + ∆Cn

∆Cr =
m
∑

i=1

n
∑

j=1
(

Ct+1
ij −Ct

ij

lnCt+1
ij −lnCt

ij
)× ln( r(t+1)

r(t) )

∆Cw =
m
∑

i=1

n
∑

j=1
(

Ct+1
ij −Ct

ij

lnCt+1
ij −lnCt

ij
)× ln(w(t+1)

w(t) )

∆Cs =
m
∑

i=1

n
∑

j=1
(

Ct+1
ij −Ct

ij

lnCt+1
ij −lnCt

ij
)× ln( si(t+1)

si(t)
)

∆Ce =
m
∑

i=1

n
∑

j=1
(

Ct+1
ij −Ct

ij

lnCt+1
ij −lnCt

ij
)× ln( ei(t+1)

ei(t)
)

∆Cn =
m
∑

i=1

n
∑

j=1
(

Ct+1
ij −Ct

ij

lnCt+1
ij −lnCt

ij
)× ln( nij(t+1)

nij(t)
)

3. Results

3.1. Forecasting Results

In the primary industry, natural gas consumption remained zero over the past 15 years, and it is
less likely to be consumed on a large scale in the future. As a result, it is assumed that the consumption
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is still zero in the forecast period. To better evaluate the performance of the GM (1, 1) model, indicator
values C and P are calculated and the model evaluation results are given in Table 4.

Table 4. GM (1, 1) model evaluation results.

Prediction Terms C Value P Value

Population 0.1536 1.0000
Primary Industry GDP 0.1351 1.0000

Secondary Industry GDP 0.1511 1.0000
Tertiary Industry GDP 0.0795 1.0000

Primary Industry Coal Consumption 0.3891 1.0000
Primary Industry Oil Consumption 0.4019 0.9333

Primary Industry Natural Gas Consumption model is not suitable for prediction
Secondary Industry Coal Consumption 0.4185 1.0000
Secondary Industry Oil Consumption 0.3208 0.8889

Secondary Industry Natural Gas Consumption 1.4430 0.3333
Tertiary Industry Coal Consumption 0.6940 0.7333
Tertiary Industry Oil Consumption 0.2309 1.0000

Tertiary Industry Natural Gas Consumption 1.4464 0.3333

In accordance with the optimum range of indicator values C and P, as previously mentioned, most
of the model produced very good estimates except for secondary industry natural gas consumption
and tertiary industry natural gas consumption. Those two terms were predicted by the polynomial
regression model. Results are shown in Table 5.

Table 5. Evaluation results of polynomial regression analysis.

Prediction Terms Prediction Model Adjusted R2

Secondary Industry Natural Gas Consumption Y = −0.202X3 + 8.639X2 − 32.021X + 27.044 R2 = 0.9906
Tertiary Industry Natural Gas Consumption Y = −0.22X3 + 1.387X2 − 9.005X + 11.305 R2 = 0.9054

The prediction results of the above factors are shown in Table 6.

Table 6. Prediction results.

Prediction Terms Unit 2015 2016 2017 2018 2019 2020

Population /10,000 persons 8079.24 8130.83 8182.75 8234.99 8287.58 8340.50
Primary Industry GDP 1.0 × 108 RMB 4301.58 4773.69 5297.61 5879.04 6524.27 7240.33

Secondary Industry GDP 1.0 × 108 RMB 39,486.8 44,824.1 50,882.8 57,760.5 65,567.9 74,430.5
Tertiary Industry GDP 1.0 × 108 RMB 39,193.4 46,392.8 54,914.8 65,502.2 76,492.5 91,076.2

Primary Industry Coal Consumption 1.0 × 104 tce 35.10 34.09 33.11 32.16 31.23 30.33
Primary Industry Oil Consumption 1.0 × 104 tce 358.61 383.63 410.41 439.05 469.69 502.47

Primary Industry Natural Gas Consumption 1.0 × 104 tce 0 0 0 0 0 0
Secondary Industry Coal Consumption 1.0 × 104 tce 8865.8 9563.3 10,315.5 11,127.0 12,002.3 12,946.5
Secondary Industry Oil Consumption 1.0 × 104 tce 371.87 348.84 327.23 306.96 287.95 270.11

Secondary Industry Natural Gas Consumption 1.0 × 104 tce 896.88 984.51 1068.77 1148.44 1222.29 1289.13
Tertiary Industry Coal Consumption 1.0 × 104 tce 21.32 20.36 19.45 18.58 17.75 16.96
Tertiary Industry Oil Consumption 1.0 × 104 tce 1908.72 2068.22 2241.04 2428.31 2631.23 2851.11

Tertiary Industry Natural Gas Consumption 1.0 × 104 tce 132.05 150.82 170.12 189.81 209.76 229.85

3.2. LMDI Decomposition Results

Table 7 shows CO2 emissions and the contribution of the various factors from 2000–2014.
Table 7 reflects the decomposition of increased carbon emissions. The combined effect on carbon

emissions was 47.2428 million tons between the years of 2000–2014. Between the years 2000–2014,
population, changes in industrial structure, economic structure, energy intensity, and energy structure
contributed 3.8604 million tons, 96.7029 million tons, −7.1764 million tons, −45.2076 million tons, and
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−936.5 thousand tons to carbon emissions, respectively. Negative values of total contribution indicate
reduced carbon emissions as compared to the previous year. Except for years 2000, 2004, 2011, and
2012, carbon emissions in other years continued to rise. Based on the LMDI decomposition approach,
we can identify the extent to which the total changes of these influencing factors contributed to the
total growth of carbon emissions. As is shown in Figure 2, among those factors, economic structure
played the greatest positive role in increasing carbon emissions, and energy intensity is the key factor
for reducing carbon emissions. The remaining three factors, population, industrial structure, and fuel
mix, have limited effects.

Table 7. Decomposition of the CO2 emissions from 2000–2014 (unit: 10,000 tons).

Year Population Economy
Structure

Industry
Structure

Energy
Intensity

Fuel
Mix

Total
Contribution

2001–2000 10.11 228.10 0.52 −326.77 −4.00 −92.04
2002–2001 15.17 258.33 23.93 −181.72 −6.65 109.06
2003–2002 17.99 390.85 43.72 −190.45 −12.64 249.46
2004–2003 27.73 567.95 56.64 370.05 21.67 1044.04
2005–2004 30.68 732.04 11.69 −1045.57 −29.47 −300.64
2006–2005 36.84 613.55 −8.00 896.50 60.10 1598.97
2007–2006 47.14 917.56 −59.39 −353.43 −6.93 544.95
2008–2007 29.92 997.84 −58.91 −437.24 −18.05 513.55
2009–2008 38.33 625.59 −79.54 −404.40 8.46 188.43
2010–2009 49.02 1149.17 −121.51 −789.77 −3.12 283.79
2011–2010 26.68 1188.22 −112.33 −142.57 4.15 964.15
2012–2011 20.11 700.65 −116.01 −824.69 −53.40 −273.35
2013–2012 17.75 704.92 −162.01 −865.38 −37.55 −342.27
2014–2013 18.58 595.54 −136.42 −225.31 −16.22 236.16

Total 386.04 9670.29 −717.64 −4520.76 −93.65 4724.28

Sustainability 2016, 8, 1018 8 of 15 

3.2. LMDI Decomposition Results 

Table 7 shows CO2 emissions and the contribution of the various factors from 2000–2014. 

Table 7. Decomposition of the CO2 emissions from 2000–2014 (unit: 10,000 tons). 

Year Population Economy 
Structure 

Industry 
Structure 

Energy
Intensity Fuel Mix Total 

Contribution 
2001–2000 10.11 228.10 0.52 −326.77 −4.00 −92.04 
2002–2001 15.17 258.33 23.93 −181.72 −6.65 109.06 
2003–2002 17.99 390.85 43.72 −190.45 −12.64 249.46 
2004–2003 27.73 567.95 56.64 370.05 21.67 1044.04 
2005–2004 30.68 732.04 11.69 −1045.57 −29.47 −300.64 
2006–2005 36.84 613.55 −8.00 896.50 60.10 1598.97 
2007–2006 47.14 917.56 −59.39 −353.43 −6.93 544.95 
2008–2007 29.92 997.84 −58.91 −437.24 −18.05 513.55 
2009–2008 38.33 625.59 −79.54 −404.40 8.46 188.43 
2010–2009 49.02 1149.17 −121.51 −789.77 −3.12 283.79 
2011–2010 26.68 1188.22 −112.33 −142.57 4.15 964.15 
2012–2011 20.11 700.65 −116.01 −824.69 −53.40 −273.35 
2013–2012 17.75 704.92 −162.01 −865.38 −37.55 −342.27 
2014–2013 18.58 595.54 −136.42 −225.31 −16.22 236.16 

Total 386.04 9670.29 −717.64 −4520.76 −93.65 4724.28 

Table 7 reflects the decomposition of increased carbon emissions. The combined effect on carbon 
emissions was 47.2428 million tons between the years of 2000–2014. Between the years 2000–2014, 
population, changes in industrial structure, economic structure, energy intensity, and energy 
structure contributed 3.8604 million tons, 96.7029 million tons, −7.1764 million tons, −45.2076 million 
tons, and −936.5 thousand tons to carbon emissions, respectively. Negative values of total 
contribution indicate reduced carbon emissions as compared to the previous year. Except for years 
2000, 2004, 2011, and 2012, carbon emissions in other years continued to rise. Based on the LMDI 
decomposition approach, we can identify the extent to which the total changes of these influencing 
factors contributed to the total growth of carbon emissions. As is shown in Figure 2, among those 
factors, economic structure played the greatest positive role in increasing carbon emissions, and 
energy intensity is the key factor for reducing carbon emissions. The remaining three factors, 
population, industrial structure, and fuel mix, have limited effects. 

 
Figure 2. Decomposition of CO2 emissions from 2000–2014 (unit: 10,000 tons). 
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According to the decomposition results in Table 8, cumulative carbon emissions will increase by
39.5487 million tons during the forecast period. Economic growth will still be the main driving force
and variability in energy intensity will be the main constraint in the growth of carbon emissions.
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Table 8. Decomposition of CO2 emissions from 2015–2020 (unit: 10,000 tons).

Year Population Economy
Structure

Industry
Structure

Energy
Intensity

Fuel
Mix

Total
Contribution

2016–2015 59.69 1306.05 −131.46 −545.84 −16.54 671.90
2017–2016 64.26 1410.97 −146.14 −591.58 −10.11 727.40
2018–2017 69.15 1524.03 −162.27 −641.26 −2.87 786.79
2019–2018 74.41 1645.81 −179.97 −695.01 5.12 850.36
2020–2019 80.05 1776.93 −199.38 −752.97 13.79 918.43

Total 347.57 7663.80 −819.23 −3226.66 −10.61 3954.87

4. Discussion

4.1. Economic Factors Analysis

As is easily seen in Table 7, throughout the years 2000–2010, the effect of economic growth on rising
carbon emissions in Jiangsu Province is positive and has a rising trend. Since 2011, the contribution of
economy structure has experienced a declining trend in increasing CO2 emissions. This result conforms
with the fact that the economic growth slowed down during China’s ‘Twelfth Five Year Plan’ period
(2011–2015), as compared to the ‘Eleventh Five Year Plan’, where the economy underwent a significant
surge. Due to the global economic depression, China’s domestic economic development entered a
new state of normalcy. In the complex global political and economic environment, Jiangsu actively
promoted the optimization and upgrading of industrial structure. The province has maintained
a stable rate of rapid growth under the relatively large stress of economic depression. Following
the optimization of the industrial structure and the recovery of the global economy it is predicted
that, within the estimation period, the contribution of Jiangsu’s economic structure will continue an
upwards trend. As seen in Table 8, the overall increase in carbon emission caused by economic factors
will be 76.6380 million tons, which then leads to the conclusion that, in curbing carbon emissions,
a path of reducing economic growth must be taken. Though Jiangsu has made great contributions to
the China’s economic development over the years, and the regional GDP is ranking at the forefront,
there exists a great disparity between residential living standards and civil construction. In the near
future, the task of developing the economic situation and improving residential living standards
will continue to exist, while the economic growth speed of Jiangsu will not undergo a significant
decrease. Thus, it can be seen that, with respect to Jiangsu, it is not enough to only rely on the control of
economic growth for emission reduction; what is more important is to cooperate with other emission
reduction-related affairs.

4.2. Energy Intensity Factor Analysis

Energy intensity is the ratio of energy consumption divided by GDP, which shows energy usage
efficiency. As Table 7 shows, the energy intensity has little contribution to carbon emission increase
within the period of 2000–2014. The result reveals that the energy efficiency has improved significantly
and has contributed greatly to reducing carbon emissions. As shown in Figure 3, the three major
industries’ contributions to the energy intensity are essentially negative; moreover, the largest negative
contribution came from the secondary industry. The contribution to energy intensity from the primary
industry remained constant, and the value of negative contribution every year is minor. The reason for
this might be that the size of the primary industry is very small and, by taking this into consideration,
the future devotion to the improvement of the secondary industry energy intensity should be given.

With the vigorous promotion of energy-conserving and emission-reducing equipment and
technology, it is estimated that the energy efficiency for Jiangsu will continually increase as energy
intensity decreases. Macroeconomic control that is mainly focused on energy conservation and
emission reduction policies will be strengthened. The effect from earlier emission reduction policies
will gradually bear fruit and, as shown in Table 8, during the time of forecasting data, energy intensity
is still a main factor in curbing carbon emission growth.
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4.3. Industrial Structure Factor Analysis

According to the value of the contribution from the industrial structure on carbon emissions
varying in Table 7 above, the historical data can be divided into two stages:

(1) Covering a period of 2000–2005, the effect on carbon emission amount from the industrial
structure fluctuates and the absolute value is small. Therefore, the change of the industrial
structure has a limited restricting effect on carbon emissions.

(2) During the period of 2006–2014, the absolute value of contributions from the industrial structure
on emission reduction has increased, which obviously shows trend of carbon emission reduction.

During the study estimation period, adjustments to the industrial structure had an obvious
increasingly restrictive effect on carbon emission growth. As seen from Table 8, the absolute value of
the industrial structure’s yearly contribution rose. From Table 9 it can be shown that, in the future,
the secondary industry in Jiangsu will play an important role in emission reductions. The tertiary
industry will increase its amount of the carbon emissions. Calculations demonstrate that, during the
period of estimation, total input averages of the secondary and tertiary industries were 45% and 50%,
respectively. Furthermore, the average annual contribution of energy intensity on carbon emissions for
secondary and tertiary industries, respectively, are −1.8383 million tons and 313,800 tons. Therefore,
the slightly lower proportion of the secondary industry output will result in good emission reductions.
Though the proportion of tertiary industry increased every year, there were limited effects on carbon
emissions. In the future, Jiangsu will continue the trend of transforming itself from higher proportions
of secondary industries to tertiary ones, and this will have a great effect on emission reductions.

Table 9. Incremental effects of industrial structure from 2015–2020 (unit: 10,000 tons).

Year Primary Industry Secondary Industry Tertiary Industry Total Effects

2016–2015 −9.86 −149.47 27.87 −131.46
2017–2016 −10.57 −165.12 29.55 −146.14
2018–2017 −11.33 −182.24 31.30 −162.27
2019–2018 −12.15 −200.95 33.13 −179.97
2020–2019 −13.05 −221.37 35.04 −199.38
Average −11.39 −183.83 31.38 −163.85
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4.4. Energy Structure Factor Analysis

As seen from historical data, there is a slight effect of the energy consumption structure on carbon
emissions which then leads to the proposition that energy structure composition has a relatively small
influence on carbon emissions. Generally speaking, adjusting the energy structure would have an
unstable and limited effect on carbon emission reductions. Starting in 2003, it can be shown that
the energy structure had made positive contributions to carbon emissions. As Figure 4 illustrates,
perhaps there was a decline in the ratio of petroleum consumption, which was accompanied by a
gradual increase in the ratio of natural gas consumption. Lending credence to this hypothesis, the
ratio of petroleum consumption decreased from 38% in 2003 to 24% in 2014 and, also as a result of the
implementation of a west-east transmission of natural gas policy, the ratio of natural gas consumption
increased to 9% from 2.31% in 2005. During the estimation period, adjustments of energy structures
does not have an obvious effect on the restriction of increasing carbon emission growth; however, this
effect is gradually disappearing. The reason for this is that the proportion of coal consumption was not
significantly lowered. As is shown in Table 6, estimation data of the three major industries (primary,
secondary, and tertiary) shows that the demand for coal grows daily. When energy consumption
categories in Jiangsu are mostly comprised of coal, petroleum, and natural gas, small changes in the
energy structure does not have a great effect on carbon emission reduction. With regard to energy
sources, future strategies of emission reduction in this province must increasing rely on energy
utilization efficiency.
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4.5. Demographic Factors Analysis

As seen from historical data, the effect on carbon emission from demographic factors is stable,
and changes in numerical values are not obvious. In recent years, Jiangsu was faced with the
problem of rapid increases in population size and, for some cities, floating populations, i.e., the
part of the population which resides in an area for a certain amount of time and for an array of
reasons, but are not generally considered during an official census exercise, have exceeded the actual
long-term/permanent resident population. Urbanization has consumed a lot of building materials and
energy while, at the same time, people’s consumption habits have also significantly changed. All of
these factors will contribute to increasing levels of energy consumption and, correspondingly, carbon
emissions. According to model decomposition, it was found that population growth will lead to more
carbon emissions during the period of 2015–2020. The absolute value of carbon emission caused by
demographic factors is not large, but it ranks second only to economic factors. As Table 7 shows,
the effect on carbon emissions from demographic factors is expected to be up to 3.4757 million tons
from 2015–2020.
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5. Conclusions and Suggestions

5.1. Conclusions

In this research, a grey prediction model combined with a polynomial regression model was
applied to calculate future carbon emissions from 2015–2020. Based on historical and predicted carbon
emissions, we used the LMDI decomposition model to analyze the contributions of different factors
to changing carbon emissions in Jiangsu. We aimed at discussing the future direction of emission
reduction for Jiangsu and providing advice on the formulation of emission reduction policies not only
for the province studied in this work, but for other provinces of similar socioeconomic backgrounds.

From the analysis we can conclude that:

(1) During the period of 2015–2020, the carbon emission of Jiangsu Province will increase at a
constant pace.

(2) Rapid economic growth is the main driving force that results in increasing carbon emissions.
Energy intensity is the key factor for reducing carbon emissions. The results are consistent with
the conclusion of the literatures [6,18,21].

(3) Changes in the level of population size and structure, as well as industrial and
energy-consumption structures, will also affect carbon emissions.

(4) It is very likely that Jiangsu province will achieve a decrease of 40%–50% in CO2 emissions per
unit of GDP in 2020 as compared to the 2005 target. According to the prediction results, the
population will increase to 83.4 million in 2020 from 75.88 million in 2005; total GDP of the three
industries (primary, secondary, tertiary) will be 17,274.7 billion yuan ($2.6044 trillion, USD); and
carbon emissions will reach 130.4 million tons per year. Under such circumstances, the CO2

emissions per unit of GDP of the primary, secondary, and tertiary industry in 2020 will decrease
by 55.11%, 42.96%, and 75.2%, respectively, as compared to 2005.

5.2. Suggestions

According to the conclusions made, the following advice for Jiangsu province and other provinces
with similar situations is put forward:

(1) The economic growth speed of Jiangsu will not undergo a significant decrease in the short term.
Thus, it can be seen that with respect to Jiangsu, it is not enough to only rely on the control
of economic growth for emission reduction; what is more important is to cooperate with other
emission reduction related affairs.

(2) As energy intensity is the key factor for reducing carbon emissions, it is necessary for enterprises
to improve energy utilization efficiency. In terms of the energy consumption structure of Jiangsu,
enterprises should be encouraged to control the rate of raw coal consumption and total energy
consumption, and promote the usage of natural gas or other clean energies. Furthermore,
as the largest negative contribution of the energy intensity factor comes from the secondary
industry, it is suggested that the adjustments and upgrades of the industrial structure should be
adhered to and new environmental protection technologies should be used to transform existing
industrial enterprises.

(3) As the transformation process of development centers changes to the tertiary industry, focus
should be paid to the carbon emission of the tertiary industry, for there is a great need for
energy in some parts of the tertiary industry, such as the catering and transportation industries.
Therefore, the adjustment of the industrial structure should not only be focused on reducing the
proportion off secondary industries, but the characteristics of the tertiary industry should also
be considered.

(4) It is essential for each city to revise original policies to meet long-term emission reduction targets,
and pay attention to the industry that can achieve low- or zero-emissions in all stages of their
life cycles.
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