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Abstract: This paper proposes a centralized data envelopment analysis (DEA) model for industrial
optimization based on several different production technologies among several regions. We
developed this model based on improved Kuosmanen environmental DEA technology, which avoids
positive shadow price on undesirable outputs. We also designed a dual model for our centralized
DEA model, and used it to analyze shadow prices on CO2 emissions. We further employed the
proposed model to determine the optimal path for controlling CO2 emissions at the sector level for
each province in China. At sectoral level, manufacturing showed the highest potential emissions
reduction, and transportation was the largest accepter of emission quotas. At regional level, western
and northeastern areas faced the largest adjustments in allowable emissions, while central and eastern
areas required the least amount of adjustment. Because our model represents increase or decrease in
emissions bidirectionally in terms of shadow price analysis, this setting makes the shadow price on
CO2 emissions lower than strong regulation (decreasing CO2 emissions along with increasing value
added) used by directional distance function (DDF).
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1. Introduction

Climate change caused by greenhouse gas (GHG) emitted by human activity is one of the most
urgent global issues of our time. According to Stern [1], if no action is taken to reduce GHG emissions,
the overall cost of climate change will be equivalent to the loss of at least 5% of the world’s GDP per
year. Numerous countries have taken action to reduce their greenhouse gas emissions by enforcing
market-oriented or administration-oriented regulations, including energy/carbon taxation, cap and
trade systems, energy efficiency standards, and subsidies for new and renewable energy. China,
the world’s largest developing country and possessor currently of the most dynamic economy, has
seen a dramatic increase in energy consumption and CO2 emissions over the past three decades.
According to International Energy Agency (IEA) report, Mainland China (excluding Hong Kong)
emitted 8205.9 million tons of CO2 in 2012, making it the world’s largest CO2 emitter at 25.9% of
the world’s total. China’s CO2 emissions sources were mainly fossil fuel combustion (90%) and
cement production (10%); coal consumption accounted for about 70% of CO2 emissions from fossil fuel
combustion. As for sector shares of China’s CO2 emissions, manufacturing and power generation are
the largest contributors, accounting for more than 70% of China’s total CO2 emissions. Transportation
and household sectors contributed only about 10% [2]. These phenomena are particularly notable when
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comparing China to developed countries, where CO2 emissions come mostly from transportation and
household sectors. Controlling CO2 emissions in the production sector and enforcing dramatic, but
proven-feasible, adjustments to industrial structure is highly necessary to ensure rational distribution
of CO2 emissions among transport, consumption, production, and processing industries, and to
decrease China’s overall carbon footprint.

In order to control the country’s excessive energy consumption and resulting CO2 emission
problem, China’s central government has established a series of energy conservation and emissions
reduction regulations. Specifically, China has committed to reducing its CO2 emissions by 40%–45%
from 2005 levels per unit of GDP by 2020. Considering the sizeable differences in natural environment,
resources, and economic development across different provinces, the government decomposed the
national emissions reduction target to the province level, as outlined in the 11th and 12th Five Year
Plans (FYPs) (in the 12th FYP, China outlined policies to decrease energy consumption and cut CO2

emissions 16% and 17%, respectively, in 2015 compared to the end of the 11th FYP). In an effort to most
effectively share the burden of carbon emissions, emissions reduction plans at both provincial and
sectoral levels require further research.

Previous studies have examined CO2 allocation according to well-established environmental
production technology [3]. For example, Färe et al. [4] developed a generalized DEA framework for
determining the optimal inter-temporal CO2 allocation for 28 OECD countries. They found that OECD
countries should be with weak regulations during 1991–1998 and strong regulations during 2000–2006
on CO2 emissions, which is different to immediate CO2 emissions reduction regulations advocated
by Stern. The same research team further extended this model to multi-undesirable outputs (e.g.,
CO2, NOx, and SO2) and proposed methods of allocating undesirable outputs for U.S. electric power
plants under command-and-control and tradable permit regulations [5]. The results indicate that
tradable permit regulation yields more potential gains than command-and-control regulation and in
most cases good output increases more when three or more bad outputs are traded. Zhou et al. [6]
transformed the CO2 allocation problem into an optimal path for controlling CO2 emissions under
specific spatial, temporal, and spatial-temporal allocation strategies in China’s 30 provinces. It is found
that the spatial-temporal allocation strategy can achieve optimal CO2 emissions distribution.

We established the model proposed here according to our own research and a careful review of the
literature. First, we transformed the existing model from a constant returns to scale (CRS) to variable
returns to scale (VRS) assumption, in terms of desirable and undesirable output joint-production
framework, which better represents the real-world production in industry. Next, we improved the
method of representing “environmental production technology”, avoiding the emergence of positive
shadow price on undesirable outputs. Of course, the traditional approach to manage weak disposability
in the DEA model is to set undesirable output constraints as equal, resulting in positive shadow price,
which does not reflect real-world production conditions. We set undesirable constraints as less than or
equal to each other (Färe (2014) introduced an inequality for undesirable outputs to avoid any condition
when less desirable output can be yielded by producing more undesirable output; he also indicated
that the inequality can yield unbounded output sets, which can be avoided by setting the right-hand
side of output sets equal to a bound such as the largest observed undesirable output value), which
avoids positive shadow price but still meets weak disposability and null-jointness assumptions [5,7,8].
Finally, we conducted an empirical study from the provincial level to the sector level in different
provinces and regions, allowing us to examine production technology homogeneously in sectors
among provinces rather than heterogeneously in provinces across the entire nation, exploring China’s
optimal CO2 emissions path with new and valuable information.

The remainder of this paper is organized as follows. Section 2 provides a literature review focusing
on allocation methods based on DEA techniques. In Section 3, we propose new environmental DEA
technology and space-temporal centralized DEA model, plus strategies for controlling emissions at
various levels (sectoral and regional) in China. Section 4 presents the data and variable descriptions
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for China, and the results obtained using the proposed model. Section 5 makes conclusions and policy
recommendations based on our findings.

2. Literature Review

CO2 emission is closely related to industrial production, and especially the combustion of fuel
necessary for production processes. For the sake of analysis, it is an “undesirable output” that is
produced simultaneously with “desirable outputs”. If we consider the environmental capacity for
CO2 emissions to be limited, CO2 emissions are an exhaustible resource. The optimal utilization of
CO2 emission is both temporal and spatial, and achieves the maximum economic outputs with limited
impact on the environment.

DEA is a specific method of using non-parametric mathematical programming to approximate
production technology [9]. The principle of DEA is to allow data to speak for itself, rather than
forcing any rigid, arbitrarily specified functional form [10]. This principle was originated by activity
analysis [11–15] and non-parametric production analysis [16–20]. According to established DEA
methodology, it can be implemented to solve resource allocation among peer decision making units
(DMUs). Some researchers assume that there is a powerful, centralized decision-making environment
for allocating resources to DMUs so as to maximize the summarized benefits or minimize the
summarized costs. Golany and Tamir [21], for example, integrated efficiency, cost-benefit, and equality
into an aggregated non-radial oriented DEA allocation model. Lozano and Villa [22] proposed
a centralized reallocation DEA model, implementing step-by-step optimization according to the
productive efficiency of a group of DMUs [23]; this model set unique shadow prices of inputs and
outputs, as opposed to Golany and Tamir. Asmild et al. [24] extended the centralized reallocation DEA
model to the BCC model, which only adjusts any previously inefficient DMUs. Mar-Molinero et al. [25]
simplified the BCC centralized model using common intensity variables, which made measuring the
productive efficiency of DMU groups as easy as measuring the single productive efficiency of average
inputs and outputs of the DMUs. Fang [26] explored several centralized reallocation DEA models and
proposed a generalized model that incorporates several advantages.

In addition to the series of Lozano models, researchers have used other optimization models
based on DEA for resource allocation. Korhonen and Syrjänen [27] developed a multiple-objective
linear programming model based on production technology for allocating resources. Hadi-Vencheh
et al. [28] proposed a strongly efficient resource allocation model based on inverse DEA which
maintains DMU efficiency levels after allocation. Amirteimoori and Tabar [29] provided a DEA-based
fixed-resource allocation model that considers lower and upper goals achieved by individual DMUs.
Athanassopoulos [30] developed the goal programming and data envelopment analysis (GoDEA)
model, which combines the centralized target-based planning model and data envelopment analysis.

A wealth of previous researchers have used the DEA model to investigate CO2 allocation,
specifically. Gomes [31] developed the zero-sum game DEA (ZSG-DEA) model, taking CO2 as the
input variable allocated among Kyoto Protocol Contracting Parties—ZSG-DEA was proven to realize
technical efficiency for all DMUs after optimization by multiplying an allocation coefficient. Other
researchers applied ZSG-DEA, including Serro [32], Wang et al. [33], Pang et al. [34], and Chiu et al. [35],
and provided valuable findings; Lozano et al. [36] used the centralized reallocation DEA model for
emissions allocation. Notable studies on the centralized DEA model were conducted by Wu et al. [37],
Singh and Majumdar [38], Sun et al. [39], Homayounfar et al. [40], and Feng et al. [41].

As reviewed above, prior research on allocation models and methods based on DEA has
mostly concentrated on weight restrictions with user-specified preference structure [42]. Decision
maker preference information can also be incorporated into DEA by employing the multiple criteria
decision-making concept [43,44]. A well-known drawback of weight restrictions is the fact that
their use in the multiplier model implicitly changes the model of production technology in the
envelopment form [45], and that they inappropriately represent the demands of real-world productive
activities [46]; in other words, their use makes the traditional meanings of “technical efficiency” and
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“technologically feasible improvement” become unsubstantiated [47,48]. Comparing to the other
research up to now, this paper considers the weights of the outputs and inputs will only be restricted
by the constraints used to form environmental production technology, without any user-specified
preference restriction on weights. In that way, we can ensure the optimized activities will be projected
on the facet of environmental production technology, then allocates CO2 emissions in effort to maximize
the aggregated desirable outputs.

3. Methodology

3.1. Environmental DEA Technology

The joint production of desirable and undesirable outputs can be described as “environmental
production technology”. It depicts the process of converting input vectors (x) to desirable output
vectors (y) and undesirable output vectors (b) [3]:

T “ tpx, y, bq : x can produce py, bqu (1)

The production technology set (T) is assumed to satisfy the following assumptions:

(1) If px, y, bq P T and 0 ď θ ď 1, then px, θy, θbq P T (weak disposability for desirable and
undesirable outputs).

(2) If px, y, bq P T and b “ 0, then y “ 0 (null-jointness of desirable and undesirable outputs).

The conceptual definition of environmental production technology can be approximated by
piecewise linear combinations of the observed data, which is similar theoretically to DEA form; as such,
it can also be called “environmental DEA technology” [49,50]. Under CRS assumption, environmental
production technology T can be approximately formulated as follows:

T̂W “ tpx, y, bq :
K
ř

k“1
zkxmk ď xm, m “ 1, 2, ¨ ¨ ¨ , M

K
ř

k“1
zkynk ě yn, n “ 1, 2, ¨ ¨ ¨ , N

K
ř

k“1
zkbjk “ bj, j “ 1, 2, ¨ ¨ ¨ , J

zk ě 0, k “ 1, 2, ¨ ¨ ¨ , Ku

(2)

Under VRS assumption, environmental production technology T can be approximately
characterized as Shephard environmental DEA technology [51] and Kuosmanen environmental DEA
technology [52].

The formulation of Shephard environmental DEA technology is as follows:

T̂S “ tpx, y, bq :
K
ř

k“1
zkxnk ď xn, n “ 1, 2, ¨ ¨ ¨ , N

θ
K
ř

k“1
zkymk ě ym, m “ 1, 2, ¨ ¨ ¨ , M

θ
K
ř

k“1
zkbjk “ bj, j “ 1, 2, ¨ ¨ ¨ , J

0 ď θ ď 1,
K
ř

k“1
zk “ 1

zk ě 0, k “ 1, 2, ¨ ¨ ¨ , K u

(3)

where θ is the abatement factor, which ensures that T̂s satisfies the two assumptions above. The second
and third constraints in Model (3) are non-linear, and must be converted to linear form. We defined a
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new variable, rzk, then let rzk “ θzk replace the old variable. The converted model can be expressed as
follows:

T̂S “ tpx, y, bq :
K
ř

k“1
rzkxnk ď θxn, n “ 1, 2, ¨ ¨ ¨ , N

K
ř

k“1
rzkymk ě ym, m “ 1, 2, ¨ ¨ ¨ , M

K
ř

k“1
rzkbjk “ bj, j “ 1, 2, ¨ ¨ ¨ , J

0 ď θ ď 1,
K
ř

k“1
rzk “ θ

rzk ě 0, k “ 1, 2, ¨ ¨ ¨ , K
xn ě min txnku u

(4)

It is worth noting that we added constraint xn ě min txnku , which prevents the condition θ “ 0
causing rzk “ 0 so that any activity px, 0, 0q will be feasible. This is because according to the first
constraint in Model (3), input vectors x cannot be smaller than the observed practical value.

An improvement upon Shephard environmental DEA technology, Kuosmanen environmental
DEA technology can be expressed as follows:

T̂K “ tpx, y, bq :
K
ř

k“1
zkxnk ď xn, n “ 1, 2, ¨ ¨ ¨ , N

K
ř

k“1
θkzkymk ě ym, m “ 1, 2, ¨ ¨ ¨ , M

K
ř

k“1
θkzkbjk “ bj, j “ 1, 2, ¨ ¨ ¨ , J

0 ď θk ď 1,
K
ř

k“1
zk “ 1

zk ě 0, k “ 1, 2, ¨ ¨ ¨ , K u

(5)

The difference between Models (3) and (5) is that Model (5) takes multiple abatement factors with
desirable and undesirable outputs [53]. The strength of Model (5) is that it allows for each observed
activity to abate by a different abatement factor before the convex combination is formed, opening
the possibility that a target DMU with less abatement cost reduces more. Model (5) also includes
non-linear constraints, so it must be converted to solvable form with linear constraints. The converted
model is as follows:

T̂K “ tpx, y, bq :
K
ř

k“1
pzk ` λkqxnk ď xn, n “ 1, 2, ¨ ¨ ¨ , N

K
ř

k“1
zkymk ě ym, m “ 1, 2, ¨ ¨ ¨ , M

K
ř

k“1
zkbjk “ bj, j “ 1, 2, ¨ ¨ ¨ , J

K
ř

k“1
pzk ` λkq “ 1

zk ě 0, λk ě 0 , k “ 1, 2, ¨ ¨ ¨ , K u

(6)

Because Kuosmanen environmental DEA technology sets equal undesirable output constraints,
positive shadow price may emerge on undesirable outputs (as also discussed by Kuosmanen and
Kazemi Matin [54]). To avoid this, we adopted a suggestion by Leleu [55] and set an ď on undesirable
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output constraints (the same work done under CRS assumptions can be found in a study by Färe et al.
(2014) [5]). Our proposed environmental DEA technology can be expressed as follows:

T̂New “ tpx, y, bq :
K
ř

k“1
zkxnk ď xn, n “ 1, 2, ¨ ¨ ¨ , N

K
ř

k“1
θkzkymk ě ym, m “ 1, 2, ¨ ¨ ¨ , M

K
ř

k“1
θkzkbjk ď bj, j “ 1, 2, ¨ ¨ ¨ , J

0 ď θk ď 1,
K
ř

k“1
zk “ 1

zk ě 0, k “ 1, 2, ¨ ¨ ¨ , K u

(7)

We created a numerical example comparing T̂W, T̂S, T̂K, and T̂New by output sets P̂Wpxq, P̂Spxq,
P̂Kpxq and P̂Newpxq. Considering the production activity with one input, one desirable output, and one
undesirable output, four observed DMUs and constructed output sets were analyzed as presented in
Table 1 and Figure 1.
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Table 1. Comparison between P̂Wpxq, P̂Spxq, P̂Kpxq and P̂Newpxq.

DMU A B C D

b 2 5 7 8
x 5 2 8 3
y 6 3 9 2

As shown in Figure 1, all the output sets satisfy Assumptions (1) and (2). Meanwhile, all the
output sets above are the compact sets, but P̂Newpxq is not a bounded and closed set due to the strong
disposability set on input. Because P̂Kpxq possesses multi abatement factors and P̂Spxq possesses a
single abatement factor, which makes P̂Kpxq larger than P̂Spxq (see P̂Kp3q is larger than P̂Kp3q). Therefore,
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the DMU in P̂Kpxq has more choices to conduct undesirable output abatement. However, we often
observe a negative slope in the frontier of P̂Kpxq (see piecewise lines are located on the right side of
line BC in P̂Kpxq), on which the shadow price of undesirable output is positive (e.g., ´By{Bc ą 0)and
the marginal abatement cost is negative (e.g., By{Bc ă 0). Hence, this anti-fact situation must be
improved. We improved P̂Kpxq to P̂Newpxq according to a suggestion made by Leleu [55], and set
strong disposability on undesirable output, making P̂Newpxq satisfies two necessary assumptions. The
success of doing so is evidenced by piecewise horizontal lines on the right side of line BC in P̂Newpxq,
which can avoid the positive shadow price emerging on undesirable output.

3.2. Centralized Model for New Environmental DEA Technology

The centralized model based on new environmental DEA technology was designed to reallocate
undesirable outputs to allow the substitution of CO2 emissions between DMUs in order to maximize
total desirable outputs. After centralized optimization, all DMU activities are as efficient as possible
under the potential desirable outputs and allocated undesirable outputs set by the model. All DMU
activities in the time period t are marked with a subscript t. There is an emissions control coefficient δ
for period t, which implies that the total emissions permitted is equal to δmultiplied by the aggregate
baseline emissions for all the DMUs. Then, the centralized DEA model for reallocation of CO2

emissions can be formulated as follows:
Total control strategy (Primal):

max
T
ř

t“1

S
ř

s“1

K
ř

l“1
ŷt

s,l

s.t.
K
ř

k“1
pzt

s,k,l ` λ
t
s,k,lqx

t
s,m,k ď xt

s,m,l , m “ 1, ¨ ¨ ¨ , M

K
ř

k“1
zt

s,k,ly
t
s,k ě ŷt

s,l

K
ř

k“1
zt

s,k,lb
t
s,k ď b̂t

s,l

K
ř

k“1
pzt

s,k,l ` λ
t
s,k,lq “ 1

T
ř

t“1

S
ř

s“1

K
ř

l“1
b̂t

s,l “ δ ¨
T
ř

t“1

S
ř

s“1

K
ř

l“1
bt

s,l

zt
s,k,l ě 0, λt

s,k,l ě 0, ŷt
s,l ě ε, b̂t

s,l ě ε

t “ 1, ¨ ¨ ¨ , T; s “ 1, ¨ ¨ ¨ , S ; l “ 1, ¨ ¨ ¨ , K;

(8)

Sectoral control strategy (Primal):

max
T
ř

t“1

S
ř

s“1

K
ř

l“1
ŷt

s,l

s.t.
K
ř

k“1
pzt

s,k,l ` λt
s,k,lqx

t
s,m,k ď xt

s,m,l , m “ 1, ¨ ¨ ¨ , M

K
ř

k“1
zt

s,k,ly
t
s,k ě ŷt

s,l

K
ř

k“1
zt

s,k,lb
t
s,k ď b̂t

s,l

K
ř

k“1
pzt

s,k,l ` λ
t
s,k,lq “ 1

T
ř

t“1

K
ř

l“1
b̂t

s,l “δs ¨
T
ř

t“1

K
ř

l“1
bt

s,l

zt
s,k,l ě 0, λt

s,k,l ě 0, ŷt
s,l ě ε, b̂t

s,l ě ε

t “ 1, ¨ ¨ ¨ , T; s “ 1, ¨ ¨ ¨ , S ; l “ 1, ¨ ¨ ¨ , K;

(9)
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In Models (8) and (9), the number of time periods, environmental production technology and
observed activity are T, S and K. We used the piecewise linear programming constraints to form
Kuosmanen environmental production technology. The first and second constraints represent the
strong disposability of M inputs and one desirable output, respectively. The third constraint represents
the strong disposability of one undesirable output. zt

s,k,l and λt
s,k,l are the intensity variables valued

according to Kuosmanen environmental production technology. The fourth constraint denotes variable

returns to scale. All the possible combinations of desirable and undesirable outputs
´

ŷt
s,l , b̂t

s,l

¯T

with fixed input xt
s,l will be optimized by maximizing the aggregated Tˆ Sˆ K activities’ desirable

outputs. ŷt
s,l ě ε and b̂t

s,l ě ε ensure that the optimized desirable output and undesirable output take
the value greater than zero. In order to control the undesirable outputs, we designed two models to
denote sectoral and total undesirable outputs control strategies in Models (8) and (9), respectively:

(1)
T
ř

t“1

S
ř

s“1

K
ř

l“1
b̂t

s,l “ δ ¨
T
ř

t“1

S
ř

s“1

K
ř

l“1
bt

s,l , can be defined as total control strategy, which implies that the

total undesirable outputs permitted is equal to δmultiplied by the aggregate baseline undesirable
outputs from all DMU.

(2)
T
ř

t“1

K
ř

l“1
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In Models (10) and (11), vt
s,m,l , µ

t
s,l andωt

s,l are the dual variables of first three constraints of primal
model. They interpret the marginal contributions for aggregated Tˆ Sˆ K desirable outputs from
inputs, desirable output and undesirable output, so we name them shadow prices. ϕt

s,l is the dual
variable of the convexity constraint of primal model.
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4. Empirical Study

4.1. Data

The mathematical model provided above was instantiated using Chinese production data at the
sectoral level for several provinces. We set the time period t from 1995 to 2011 (In general, reference base
year sets are 1990, 1995, 2000, 2005. The Kyoto Protocol set the reduction target for industrial countries,
in which average CO2 emission from 2008 to 2012 reached 95% by 1990. Because China established
its market-based economic institution in 1992, and its economy is yet transitioning, we set the base
year as 1995 [56]. Chinese CO2 emissions from fuel combustion in 1995–2010 accounted for 64.3% of
the total emissions from 1971–2010 [57]. We collected as much recent data as possible.), constructed
environmental DEA technologies S = {agriculture, manufacturing, construction, transportation, service}
at provincial, multi-sectoral level, and the observed DMUs K = {Beijing, Tianjin, Hebei, Shanxi, Inner
Mongolia, Liaoning, Jilin, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong,
Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan, Chongqing+Sichuan (since Chongqing was a
part of Sichuan before 1997, the data for Chongqing in 1995–1996 is inseparable from Sichuan; therefore,
we combined them together from 1997–2011), Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia,
Xinjiang}. The number of activities collected was Tp17q ˆ Sp5q ˆ Kp29q “ 2465.

We described activities as capital stock (K) and labor force (L) as inputs, and sectoral value added
(Y) as desirable outputs and CO2 emissions (C) as undesirable outputs. We collected energy data for all
provinces in each sector, but did not use them as inputs, because CO2 emission is the transformation
form of energy inputs considering the energy mix weighted with CO2 emission coefficients. As shown
in Model (8), we gave strong disposability to the undesirable output, making it similar to the common
input; that way, when we added energy and CO2 emission simultaneously as inputs, a substitutional
relationship formed. However, there is a positive correlation between CO2 and energy. Given this, we
leave out energy input. The similar processing can be referred to [4,58].

While estimating capital stock at sectoral level, it is easy to obtain the provincial-level capital stock
according to the method developed by Zhang [59], but there is no support specifically for obtaining
sectoral capital stock data by province. We implemented an approach suggested by Guo [60], Gan
and Zheng [61] and Lv and Zhou [62]: first, we collected the new fixed assets at province/sector level
from 1981 to 2011. We then took the five-year moving average of the province/sector time series
(the new fixed asset data for years before 1985 took the moving average from 1981, and our methods
were developed in effort to eliminate interference between these data, price indices, and investment
depreciation rate), then used it to aggregate the new fixed assets from 1981 to each year province/sector
level. We then computed the sectoral new fixed asset proportions province-by-province, then used
the proportions to allocate the provincial-level capital stock to the province/sectoral level. The new
fixed asset data 1981–1985, 1996–1998, and 2002–2011 we used came from the Statistical Yearbooks of
China’s Investment in Fixed Assets [63]. The data from1986–1995 and 1999–2001 came from the China
Statistical Yearbook [64], and the provincial-level capital stock was estimated by perpetual inventory
approach taking 1952 as the base year. In order to estimate provincial capital stock, we took gross fixed
capital formation as the annual investment data, then converted it to a 2000 constant price using the
investment price index. We estimated the labor force at province/sector level according to 1995–2011
employment data by sector and region from the 1996–2012 China Labor Statistical Yearbook [65].

We estimated value added at province/sector level according to 1995–2011 data from the
1996–2012 China Statistical Yearbook, and converted the data to 2000 constant price according to
the value added index [66]. Energy consumption at province/sector level was estimated according to
end-use energy consumption, with basic data collected from the energy balance table in the 1996–2012
China Energy Statistical Yearbook [67]. We used the standard coal conversion coefficient to convert
these data to standard coal equivalent, and the portion of energy consumption of raw material in the
manufacturing sector was removed from the energy balance table.
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Table 2. Descriptive statistics of inputs and outputs for province/sector level over 1995–2011.

Index Sector Unit Dimension Quantity Mean Standard
Deviation Minimum Maximum

Capital Stock (2000
constant price)

Agriculture 100 million RMB provincial sector 29ˆ17 379.46 417.68 25.61 2843.24
Manufacturing 100 million RMB provincial sector 29ˆ17 6182.51 6558.73 274.76 48,577.60
Construction 100 million RMB provincial sector 29ˆ17 186.14 219.64 9.30 2134.61

Transportation 100 million RMB provincial sector 29ˆ17 1905.75 1687.42 61.25 9526.33
Service 100 million RMB provincial sector 29ˆ17 6370.96 7042.74 145.72 39,632.95

Labor Force

Agriculture 10 thousand persons provincial sector 29ˆ17 1099.34 853.02 37.09 3996.00
Manufacturing 10 thousand persons provincial sector 29ˆ17 426.05 399.76 19.60 2283.46
Construction 10 thousand persons provincial sector 29ˆ17 146.53 141.98 9.80 715.10

Transportation 10 thousand persons provincial sector 29ˆ17 87.86 84.37 8.40 792.02
Service 10 thousand persons provincial sector 29ˆ17 594.30 396.37 40.70 1915.42

Energy (standard
coal equivalent)

Agriculture 10 thousand tons provincial sector 29ˆ17 179.18 122.51 7.96 691.64
Manufacturing 10 thousand tons provincial sector 29ˆ17 3702.02 3135.19 76.72 17,649.98
Construction 10 thousand tons provincial sector 29ˆ17 74.77 82.01 1.12 605.01

Transportation 10 thousand tons provincial sector 29ˆ17 493.44 477.83 13.73 2716.30
Service 10 thousand tons provincial sector 29ˆ17 318.02 297.73 3.13 1969.78

Value Added (2000
constant price)

Agriculture 100 million RMB provincial sector 29ˆ17 600.36 450.00 33.51 2065.31
Manufacturing 100 million RMB provincial sector 29ˆ17 2567.06 3115.48 42.99 19,950.01
Construction 100 million RMB provincial sector 29ˆ17 343.27 299.55 14.45 1760.92

Transportation 100 million RMB provincial sector 29ˆ17 399.12 409.84 8.44 2916.87
Service 100 million RMB provincial sector 29ˆ17 1671.10 1735.37 50.31 10,590.03

CO2

Agriculture 10 thousand tons provincial sector 29ˆ17 565.88 374.80 22.43 1948.69
Manufacturing 10 thousand tons provincial sector 29ˆ17 12,408.36 10,493.94 265.52 58,033.89
Construction 10 thousand tons provincial sector 29ˆ17 220.54 220.70 8.03 1598.10

Transportation 10 thousand tons provincial sector 29ˆ17 1148.49 1064.41 33.30 6123.26
Service 10 thousand tons provincial sector 29ˆ17 1082.89 1004.35 17.84 6034.86
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To estimate CO2 emissions at province/sector level, we considered 20 distinct types of end-use
energies as the sources of carbon emission. The emission coefficients were taken from 2006 IPCC
guidelines for national greenhouse gas inventories. To calculate the emission coefficients of electricity
and heat generation, we computed the total CO2 emissions from energy mix inputs for generating
electricity and heat nationally, then converted these energy mix inputs to standard coal equivalent as
the denominator, and plugged in the total CO2 emissions to be divided by this denominator to obtain
the emission coefficients of electricity and heat.

To obtain enough activities to construct the environmental DEA technology, we instantiated
the proposed model using the province/sector level data gathered as discussed above (as shown in
Table 2). We further aggregated the sector-level data by province into sectoral data by region, which
provided more convenient analysis (with less influence due to administrative divisions). We followed
the technique proposed by the China State Council Development Research Center and divided the 29
provinces into four areas: east, central, west and northeast. The four areas were then further divided
into eight economic regions, as shown in Table 3.

Table 3. Compositions of four areas and eight economic regions in China.

Area Economic Region Provinces

East
Northern Coastal Beijing, Tianjin, Hebei, Shandong
Eastern Coastal Shanghai, Jiangsu, Zhejiang

Southern Coastal Fujian, Guangdong, Hainan

Central
Middle Yellow River Shanxi, Inner Mongolia, Henan, Shaanxi

Middle Yangtze River Anhui, Jiangxi, Hubei, Hunan

West
Southwest Guangxi, Chongqing+Sichuan, Guizhou, Yunan
Northwest Gansu, Qinghai, Ningxia, Xinjiang

Northeast Northeast Liaoning, Jilin, Heilongjiang

4.2. Main Results

We take CO2 emissions at province/sector level as the research objective, using Models (8) and (9)
with the data in Table 2 to research optimal CO2 emissions allocations in different sectors within
different provinces between 1995 and 2011. To appropriately set the emission control coefficient δ,
we employed two patterns of restriction. First, we set δ “ 1 corresponding to Model (8), made the
aggregated CO2 emissions for five sectors from all provinces mixed equally to their gross emissions
from 1995–2011. Second, we set δs “ 1 following Model (9), controlled the aggregated sectoral CO2

emissions including all provincial sub-sectors equal to its actual emissions from 1995–2011. Then,
the annually optimal allocation of CO2 emissions was solvable using above models, for all eight
economic regions.

In the regional agriculture sectors, as shown in Figure 2, under sectoral emissions control strategy,
compared to actual emissions, middle Yangtze River and southwest regions were allocated more
emission quotas than middle Yellow River, northwest, or northeast regions. More CO2 emissions
allocated to middle Yangtze River and southwest regions would then produce more value-added yield
than the other regions. This can be attributed to different agricultural mechanization levels and water
resources endowment in northern and southern China. Mechanized production processes in southern
China are more difficult than in northern China due to the abundance of mountains and hills in the
south. Mechanization is carbon-intensive. At the same time, however, the natural supply of water in
southern China saves costs that would otherwise accrue for irrigation, also saving energy input. As
far as grain production overall, rice in southern China can be harvested 2–4 times more often than
the wheat in northern China. To this effect, southern China has overall low energy input and high
grain output compared to northern China. Additionally, under total emissions control strategy, the
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agriculture sector showed low emissions overall and as such should accept emission quotas from
other sectors.Sustainability 2016, 8, 0000 
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Figure 3 shows the optimal emission paths for regional manufacturing sectors under sectoral
emissions control and total emissions control strategies with their actual emissions. Under sectoral
emissions control strategies, eastern coastal and southern coastal regions (i.e., more developed parts of
the country) showed high energy use efficiency and the potential to produce more value-added yield.
To this effect, eastern and southern coastal regions were given more emission quotas in 1995–2011.
Other regions, conversely, were limited by emissions reduction regulations of varying degree. Northern
coastal, middle Yellow River, and southwest regions began dramatically overproducing CO2 emissions,
so those regions must improve energy use efficiency as soon as possible. Under total emissions
control strategy, the manufacturing sector in each region obtained lower emission quotas than the
control sectoral emissions allowance, suggesting that policies should be implemented to ensure that
manufacturing emission quotas are extended to other sectors.

Given that the aggregated emissions from 29 provinces is equal to the actual emissions aggregated
at the province level for regional construction sectors. As marked by red lines in Figure 4, construction
in the northern coastal region must be strongly regulated. Northern coastal region inputs excessive
energy into building infrastructure and housing, and absolutely must significantly improve energy
use efficiency. Northwest and northeast regions obtained emission quotas greater than their actual
emissions from 2003 to stay financially viable. The eastern coastal region faced similar emissions
reduction regulations as the northern coastal region. The middle Yellow River, middle Yangtze River,
and southwest regions should reduce their emissions in early periods and increase emissions in latter
periods, indicating that the energy efficiency of the construction sector in these regions improved
rapidly. Suppose that emission quotas are transferable across sectors and regions, as marked by green
lines in Figure 4, the construction sector in each region obtained more emission quotas than their actual
emissions, suggesting that construction should accept emission quotas from other sectors and does not
require any major emissions reduction policies be enacted.
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As shown by red lines in Figure 5, for regional transportation sector, goods transported most
commonly in northwest and northeast regions are coal, industrial equipment, and production materials,
which have low value-added yield compared to agriculture products and tourism. To this effect,
northwest and northeast regions received emissions reduction regulations in 1995–2011. Southwest
region was allowed to increase its emissions from 2003 to 2011 even though its actual emissions
dramatically increased, which can be attributed to energy efficiency for the transportation sector in
southwest region improved rapidly in 2003–2011. The energy efficiency of the transportation sector
was higher in southern coastal region than other regions, so it obtained emission quotas from other
regions in 2005–2010. Northern coastal, eastern coastal, middle Yellow River, and middle Yangtze
River regions were required to reduce emissions in 1995–2003, but still received more emission quotas
in 2003–2011. These results altogether suggest that strategies where emissions are reduced first and
increased later are suitable for these regions, evidenced by their enhanced energy efficiency over time.
Results also suggested that the transportation sector should accept emission quotas from other sectors,
because it is not a major producer of emissions.
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As marked by red lines in Figure 6, under sectoral emissions control strategy, northern coastal
regions received strict emissions reduction regulations. The energy input for the service sector in
the northern coastal region was excessive, and efficiency of energy utilization should be improved
immediately. The northeast region also received emissions reduction regulation, as it employs extensive
heating equipment (which is carbon-intensive) to cope with its cold climate. Middle Yangtze River and
southwest regions obtained their emission quotas continuously in 1995–2011, suggesting that these
regions should increase emissions to release value-added potential in observed time series. Eastern
coastal and southern coastal regions, as mentioned above, are China’s most developed areas and
showed high energy efficiency and value-added yield in the service sector, so they do not particularly
require emissions reduction regulations. Under total emissions control strategy, as marked by green
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lines in Figure 6, the service sector in almost all regions received more emissions than actual—the only
exception was the northern coastal region, which received strict emissions reduction regulations in
2006–2011. Northern coastal region, to this effect, is urgently tasked with improving its service sector’s
energy efficiency. In general, the service sector should obtain emission quotas from other sectors as it
does not require any major reduction in emissions.

In order to compare the differences between optimal emission paths and actual emission paths
according to controlled sectoral and total emissions, we defined the degree of cumulative deviation
as follows:
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Figure 6. Optimal emission paths for regional service sectors. 
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Similarly, we defined the following absolute quantity of cumulative deviation for optimal emission
path and actual emission path:
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In Models (12) and (13), s P tsectoral emissions control, total emissions controlu,
t “ t1995´ 2011u, l P tagriculture, manufacturing, constructing, transportation, serviceu. bpsqtl
denotes optimal emissions from emissions control strategy s in sector l at period t, and bt

l denotes
actual emissions from sector l at period t.

As shown in Table 4, under sectoral emissions control strategy, the degree of deviation was largest
in the construction sector and smallest in manufacturing. In effect, there were significant differences
in construction emissions efficiency between provinces, and the manufacturing sector needs tightly
controlled energy inputs overall. Under total emissions control strategy, the degree of deviation was
largest in the transportation sector (attributed to receiving the largest emissions quota, 259.38 million
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tons, from the manufacturing sector, as transportation networks expanded).The second largest accepter
of emission quotas was the agriculture sector, which required mechanization (and related energy
input) to substitute for labor force input. The service sector also has rigid energy demands to maintain
operation, but its energy input is not the important production factor—instead, most of its energy
consumption was due to mechanical heating and refrigeration.

As shown in Table 5, western and northeastern areas had the largest degree of deviation
under sectoral emissions control, indicating that western and northeastern China utilize energy
very differently between their respective provinces and sectors. Eastern area had the smallest degree
of deviation under sectoral emissions control, indicating that the gaps in emissions efficiency between
provinces in eastern China are fairly narrow. Under total emissions control strategy, the degrees
of deviation are similar to those under sectoral emissions control strategy. Central, western, and
northeastern areas show low emission efficiency overall, so these areas should provide emission quotas
to eastern areas, which have higher emission efficiency.

We used Models (10) and (11) to measure the shadow price on CO2 emissions under sectoral
and total emissions control strategies. We also measured the shadow price under variable returns to
scale, based on the directional distance function. The directional distance function serves to increase
desirable outputs and reducing undesirable outputs with the directional vector pgy, gcq “ p1, ´ 1q
and the same scaling factor β. The specific expression can be found in a previous study [68].

The average shadow price for all province/sectors over 1995–2011 from strategies of sectoral
emissions control (SEC), total emissions control (TEC), and directional distance function (DDF) can
be calculated.

Table 4. Cumulative deviations between optimal and actual emission paths at sector level.

Sector
Deviation Under Sectoral Emissions Control Deviation Under Total Emissions Control

Degree Quantity (Unit: 10 Thousand Tons) Degree Quantity (Unit: 10 Thousand Tons)

Agriculture 0.635 0 0.091 173655
Manufacturing 0.128 0 0.072 -784174
Construction 1.984 0 0.141 173426

Transportation 0.539 0 0.183 259380
Service 0.439 0 0.081 177712

Table 5. Cumulative deviations between optimal and actual emission paths at area level.

Area Deviation Under Sectoral Emissions Control Deviation Under Total Emissions control

Degree Quantity (Unit: 10 Thousand Tons) Degree Quantity (Unit: 10 Thousand Tons)

East 0.951 117,672 0.908 123,870.9
Central 1.146 ´47,519.2 1.123 ´28,893.7

West 1.758 1932.418 1.939 ´28,708.4
Northeast 1.794 ´72,085.3 1.905 ´66,268.8

As shown in Table 6, under sectoral emissions control strategy, the shadow price of manufacturing
and construction sectors were both zero. To this effect, these sectors can obtain maximum value-added
yield by allocating CO2 emission quotas appropriately within each sector. Agriculture, transportation,
and service sectors showed negative values after optimization, indicating that these sectors should
receive more emission quotas from other sectors to increase their value-added yield. The transportation
sector had the largest negative value, suggesting that it needs more emission quotas to reach its
value-added potential. The shadow prices for all sectors were zero under total emissions control
strategy, indicating that all productive activities obtained maximum value-added yield by allocating
CO2 emission quotas across all sectors.
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Table 6. Average values of provincial CO2 emission shadow prices for each sector.

Year
(1995–2011)

Agriculture Manufacturing Construction Transportation Service

DDF SEC TEC DDF SEC TEC DDF SEC TEC DDF SEC TEC DDF SEC TEC

Average ´0.504 ´0.050 0 ´0.090 0 0 ´1.471 0 0 ´0.152 ´0.109 0 ´0.921 ´0.057 0

The directional distance function optimization model aims to establish policies that target CO2

emissions while increasing value-added yield for all productive activities. Our proposed model aims to
optimize allocation of fixed, undesirable output quantity to maximize the desirable output. The shadow
price generated through our model is smaller than that of the directional distance function model due
to the lack of necessity for severe regulations to decrease undesirable output when increasing desirable
output simultaneously.

5. Conclusions

The optimal path for controlling CO2 emissions, classified by both sector and region, represents
a cross-analytical foundation for sectoral and regional emissions reduction policies. Many previous
studies have explored the DEA approach to allocate emissions allowances at different levels, but in this
study, we developed a new environmental DEA technology based on Kuosmanen environmental DEA
technology which changes weak disposability to strong disposability on undesirable outputs, and
ensures non-positive shadow price on undesirable outputs. We proposed a centralized DEA model
based on multi-sector and multi-region data over time to explore efficiency maximization in China.
The model was applied to study the optimal allocation of CO2 emissions for each province and its
sectors in China from 1995 to 2011, specifically, and the optimal paths for controlling CO2 emissions
at sectoral and regional levels under sectoral emissions control and total emissions control strategies
were derived. We also designed a dual model for our centralized DEA model, and used it to analyze
the shadow price on CO2 emissions.

We conducted an empirical analysis on a sample of province/sector level data from 1995–2011.
The results indicate that the manufacturing sector showed the most dramatic reduction in emissions,
and emissions in the agriculture, construction, transportation, and service sectors all increased. The
transportation sector was the largest accepter of emission quotas. Under sectoral emission control
regulation, the construction sector must significantly increase its energy use efficiency, as its allowable
emissions must undergo the most dramatic adjustment. Under total emission control regulation, the
emission quotas should be removed from the manufacturing sector.

Agriculture, construction, transportation, and service sectors should receive more emission quotas
to release their value-added potential. At the region level, western and northeastern areas require the
most drastic adjustment to allowable emissions, which can be attributed to differences in emission
efficiency among regions (as described in detail above). Eastern area has high energy use efficiency,
so it can obtain more emission quotas from other areas. Based on our shadow price analysis, total
emission control regulation policies can indeed enhance value-added potentials for all sectors. If
optimization of CO2 emissions is centralized, emissions increase or decrease bidirectionally, ensuring
that the shadow price on CO2 emissions is lower than the directional distance function regulation,
decreasing CO2 emissions and increasing value-added yield.

Despite the merits of this study, it did encounter limitations. First, we only considered agriculture,
manufacturing, construction, transportation, and service sectors. The manufacturing sector, in
particular, is divisible into more detailed sub-sectors. Second, our centralized model aims to realize the
optimal allocation of CO2 emission quotas while maximizing desirable output, which keeps capital
and labor force input fixed, and fails to account for the price level of other production factors. In
future, we plan to include the price of production factors into the dual model of our centralized
model and research their influence on the allocation of CO2 emission quotas. Third, our model
mainly depicts environmental production technology and focuses on desirable output potentials while
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allocating undesirable outputs, but selecting detailed technology to improve emission efficiency is the
next necessary step. We plan to discover how to integrate our centralized DEA model into energy
technology system optimization platforms, such as TIMES (The Integrated MARKAL-EFOM System)
(http://www.iea-etsap.org/web/Times.asp), LEAP (Long range Energy Alternatives Planning System)
(http://www.energycommunity.org/default.asp?action=47), and AIM (The Asian Pacific Integrated
Model) (http://www-iam.nies.go.jp/aim/datalibrary.htm) in future studies.
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