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Abstract: Many countries are attempting to reduce energy consumption and CO2 

emissions while increasing the productivity and efficiency of their industries. An 

undesirable-output-oriented data envelopment analysis (DEA) model with slacks-based 

measure (SBM) was used to evaluate the changes in the environmental efficiency of the 

transportation sector in 30 Chinese provinces (municipalities and autonomous regions) 

between 2003 and 2012. The potential for decreasing CO2 emissions and energy saving 

was also assessed. Transportation was found to be inefficient in most of the provinces and 

the average environmental efficiency was low (0.45). The overall average efficiency 

reached a maximum in 2005 and continually decreased until a minimum was reached in 

2009; since then, it has increased. In general, transportation is more efficient in eastern 

than in central or western China. A sensitivity analysis was also carried out on the input 

and output indicators. Based on these findings, some policies are proposed to improve the 

environmental efficiency of the transportation sector in China. 
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1. Introduction  

The rapid economic development of China has led to environmental issues being of great concern, 

and, therefore, the focus of much research. Chinese economic development has, for the past three 

decades, mainly relied on energy and labor-intensive industries. Energy is mainly produced from coal 

and other fossil fuels in China, and the high demand for energy from the industrial and transportation 

sectors means that large amounts of greenhouse gases (one of which is carbon dioxide) are produced. 

China’s Twelfth Five Year Plan for 2011–2015 (State Council of the People’s Republic of China 

(SCPRC), 2011) [1] made the recommendation: Actively respond to global climate change. Take 

significantly reducing energy consumption intensity and carbon dioxide emission intensity as a binding 

target, and effectively control greenhouse gas emissions. More and more people are now realizing the 

importance of reducing energy consumption in order to decrease energy-related emissions and protect 

the environment. It is therefore essential that some evaluation is made of the environmental 

efficiencies of different Chinese industries. In particular, air pollution in China has also become more 

of a problem in recent years, and one reason for this is that exhaust emissions from the transportation 

sector have been increasing. The transportation sector is the second-largest source of emissions of air 

pollutants, accounting for 22% of global CO2 emissions in 2010 (3% more than in 2009). Almost 

three-quarters of these emissions were caused by road transportation. It is therefore crucial that the 

environmental efficiency of the transportation sector is evaluated so that policies can be implemented 

to ensure that the sector develops in a more rational way than is currently the case. 

The remainder of the paper is structured as follows: Section 2 contains a review of the literature 

relevant to this topic, and the methodology of this study is explained in Section 3. Section 4 contains 

some results and Section 5 presents the discussion and policy implications. Finally, some conclusions 

are made in Section 6. 

2. Literature Review  

It has been widely advocated that the environmental efficiencies of all economic activities should be 

measured to provide quantitative data to use in analyzing and developing environmental policy 

analysis [2]. The data envelopment analysis (DEA) model is the main method used for measuring 

environmental efficiency; this model only requires inputs and outputs to be quantified. Charnes et al. [3] 

first proposed the original Constant Return to Scale Data Envelopment Analysis (CCR-DEA), which is 

a nonparametric approach that measures the relative efficiency of decision-making units (DMUs) by 

comparing multiple inputs with a single output. The DEA is used to identify best practices within a set 

of comparable decision-making units (DMUs), leading to the identification of an “efficient frontier”. 

The CCR model is appropriately referred to as providing a radial projection, in which, specifically, 

each input is reduced by the same degree of proportionality. Traditional DEA assumes that all the 

outputs should be maximized for a given input level. However, when undesirable outputs are generated 

as by-products of desirable outputs, this assumption is no longer appropriate. In recent years, as the 

process of manufacturing and production has often been accompanied by undesirable outputs, 

efficiency that includes undesirable outputs is referred to as “environmental” efficiency [4]. Many 
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more advanced DEA models have accounted for undesirable outputs in the production process, such 

modelling approaches being classified into two types: indirect and direct [4,5].  

Indirect approaches are based on the translation of original data and the use of traditional DEA 

models. One method considers the undesirable outputs as inputs [6], but this method is against the  

true production process. Others add a large scalar or a multiplicative inverse to undesirable output 

values [7,8], but these methods can alter the efficient frontier, and the ratios of the original data can be 

destroyed. Scheel [5] suggested separating the desirable and undesirable outputs by giving the 

undesirable outputs a negative sign, but this approach can only be applied to one undesirable. In 

another alternative approach, all undesirable outputs are multiplied by −1 and added together with a 

proper translation vector for the undesirable outputs [9]. However, in many real life applications this 

transformation of data may not make sense.  

Direct approaches imply that the undesirable output data are applied directly into the modification 

of the DEA model in order to treat the undesirable output appropriately. Previous approaches include 

Hyperbolic Efficiency (HE) measure [10] and the Directional Distance Function (DDF) model [11], 

but these are complex and may not provide the best measures of efficiency. Bian [12] extended the 

additive DEA model introduced by Charnes et al. [13] by taking into account the slack variables. Some 

more recent methods apply a combination of models in the DEA approach, for example Portela et al. [14] 

proposed the range directional model, Fukuyama and Weber [15] proposed the directional network 

slack-based inefficiency model, and Färe et al. [16] proposed a slack-based model using DDF as a 

framework. More recently, Sueyoshi et al. [17] extended the basic original model of RAM (Range 

Adjusted Measure) introduced by Cooper et al. [18] to integrate undesirable outputs.  

Tone [19] firstly proposed the slack-based measure (SBM) model and Zhou et al. [2] extended it so 

that it could incorporate undesirable output, by minimizing the ratio of the average undesirable output 

reduction to the average desirable output increment. This non-radial model is generally treated as a 

composite index for modeling economic environmental performance. First, compared to radial 

efficiency measurement, this model provides a higher discriminating power in modeling environmental 

performance [2]. Second, in the non-radial approach, inputs and outputs are not impelled to improve 

uniformly [20]. Third, the efficiency indicator for each variable in the process can be identified in order 

to increase the efficiency of the DMU being studied. 

Rather than being based on methodological orientation, much of the literature instead focuses on 

empirical orientation, using the DEA model to consider undesirable outputs. The focus is mainly on 

three aspects: the application of various different approaches, the effect of environmental regulation on 

environmental efficiency, and the sources of pollution caused by different industries. Among the 

application of approaches discussed in previously, the DDF approach [21,22] and the SBM model [23,24] 

are the most popular. The effect of environmental regulation on environmental efficiency has two possible 

outcomes: Telle and Larsson [25] found that environmental regulations hamper productivity growth; 

however, some authors argue that environmental regulation can increase environmental efficiency [26–28]. 

Because different industrial sectors emit different types of pollution, different studies tend to focus on 

different undesirable outputs, such as SO2 in the electrical utility industry [29], NOx in the glass 

industry [30,31], and CO2 in many industries and water pollution in the pulp and paper industry [25].  

For the transportation sector, Tongzon [32] used DEA to measure the efficiency of four Australian 

and twelve international container ports, while Merkert et al. [33] evaluated the important determinants 
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of efficiency for 58 passenger airlines. Lin and Hong [34] evaluated the operational performance of 20 

major airports around the world using the DEA model. Chang et al. [35] and Chung et al. [36] 

analyzed the environmental and energy efficiency of China’s transportation sector and maximize the 

energy-saving potential of the transportation sector in China’s 30 administrative regions. However, 

little of this research in the transportation sector considers changes over longer time scales, and 

contained few analyses of spatial scales. 

In the work described herein, we used related inputs index, desirable outputs index and CO2 

emissions as undesirable outputs index in the transportation sector in China between 2003 and 2012, in 

order to establish a CCR-DEA model and a DEA model considering undesirable output using the 

slacks-based measure (SBM). The models were used to investigate the environmental efficiency of the 

transportation sector in China. We also determined the potential energy saving that the provinces could 

have achieved between 2003 and 2012. This study forms a valuable contribution to the literature by 

using a considering undesirable output SBM-DEA model to assess the environmental efficiency of the 

Chinese transportation sector and the potential for decreasing the CO2 emissions from it. The temporal 

and spatial changes in the environmental efficiency of the Chinese transportation sector between 2003 

and 2012 have not previously been analyzed in this way; results from this and similar studies could be 

used directly to inform future transport policy in China and elsewhere. 

3. Materials and Methods 

3.1. Data Envelopment Analysis  

The DEA model was formulated by A. Charnes, W.W. Cooper, and E. Rhodes in 1978 [3] and is 

based on Farrell’s [37] non-parametric production frontier function. The DEA model uses 

mathematical programming based on multiple inputs and outputs to estimate the relative efficiency of 

DMUs. Relative efficiency classifies a DMU as an efficient or inefficient DMU. An efficient DMU has 

the most appropriate combinations of input and output variables, which constitute the efficiency 

frontier. The relative position of a DMU with respect to this efficiency frontier is used as a measure of 

the extent of the efficiency of an inefficient DMU. As the constituents of DMUs change, the degree of 

relative efficiency can change accordingly. The use of a DEA can avoid subjective human judgments, 

because it does not require any predetermined functional forms. In addition, the number of evaluated 

DMUs should be more than twice the total selected number of inputs and outputs; otherwise, the 

validity and credibility of the results of a study will be severely compromised.  

CCR-DEA Model. The basic DEA model is the CCR model introduced by Charnes et al. [3], which 

was developed to measure production efficiency under constant return to scale (CRS) conditions. The 

efficiency of a DMU is a comparative measure of how well it actually processes its inputs to achieve 

its outputs. The model presumes that DMUj (j = 1,…, n) uses input Xij (i = 1,…, m ), and produces 

output Yrj (r = 1,…, s). The relative efficiency value of DMUj can then be obtained as follows: 

Maximize ℎ = ∑∑  
(1)

Subject to: 
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∑∑ ≤ 1, = 1,… ,  , , ≥ ε ≥ 0, = 1,… , , = 1,… ,  

where hj is the efficiency value given to unit n; ur and vi denote the input and output weights, respectively; ε 

represents the extremely small positive number (set as 10−6) required to make all ur, vi positive.  

SBM model considering undesirable outputs: We suppose that there are n decision-making units 

(DMUs), expressed as DMUj (j = 1, 2,…, n). X and Y are the input and output variables, respectively, 

and m, s1 and s2 are the numbers of inputs, desirable outputs, and undesirable output variables, 

respectively. si is the slack variable, representing excess input. Each DMU has m types of inputs  
Xij (i = 1, 2, …, m), s1 types of desirable output Yij (i = 1, 2, …, s1), and s2 types of undesirable output 

Cij (i = 1, 2, …, s2), so the vectors for the inputs, desirable outputs and undesirable outputs can be 

expressed as X ∈ Rm, Y ∈ Rs1, and C ∈ Rs2, respectively. The matrices X, Y, and C are defined below.  

[ ]1, , m n
nX x x R ×= ∈ ; 1

1 , , s n
nY y y R × = ∈ 

;
 2

1 , , c s n
nC c R × = ∈  ;  

X > 0, Y > 0 and C > 0 

The production possibility set P under constant returns to scale is defined below. 

( ){ }, , c , , c , 0P x y x X y Y C= ≥ λ ≤ λ ≥ λ λ ≥   

According to Tone (2001, 2004) [19,38], the undesirable outputs SBM-DEA model can be 

expressed as shown in Equation (2).  
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0 0 0 0 0 0 0 0S.T. ; ;c ; 0, 0, 0, 0y c y c
ox X s y Y s C s s s s− −= λ + = λ − = λ + ≥ ≥ ≥ λ ≥  

where  and  are the slacks in the inputs and outputs, respectively, and λ is the weight vector. A 

particular decision-making unit is efficient if and only if ρ* = 1, i.e., when s− = 0, sy = 0, sc = 0. If ρ* < 1, 

which indicates that the evaluation unit is inefficient, it is necessary to optimize the inputs, desirable 

outputs, and undesirable outputs to improve the environmental efficiency value. 

The slack variable 	is the excess of carbon emissions, and, in this study, it was used to estimate 

the potential for decreasing the carbon emissions in each province.  

3.2. Indicator Selection and Data Sources 

This paper examines 30 provinces, autonomous regions, and municipalities in mainland China, 

excluding Tibet, due to the lack of relevant energy data. Considering that this research focused on  

the regional transportation sector in China, three factors were selected as the inputs and two factors as 

the outputs.  

Inputs. The basic principles of economics suggest labor and capital as the two main inputs. Thus, 

the amount of labor employed and the amount of fixed capital investment were used as the non-energy 
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input values, and the volume of energy consumed in the transportation sector was used as the energy 

input value. Almost all the literature on energy or environmental efficiency measurement uses these 

three inputs [39]. Because capital stock data are not available, assuming the case of a constant 

depreciation rate, changes in investment can closely convey changes in capital stock [40]. We used the 

amount of fixed capital investment to represent capital stock input, common with other authors [41,42]. 

Even though it is a commonly recommended proxy for cases where data are unavailable, there are also 

some limitations to this approach because fixed capital investment can differ from true capital input.  

The outputs can be divided into desirable and undesirable.  

Desirable outputs. The desirable outputs select the amount of added value from the transportation 

sector based on current prices. The desirable output used in this paper was “Gross Domestic Product 

by transportation sector”, because GDP is a value added concept. The China Statistical Year book 

considers the “Gross Domestic Product by transportation sector” to be the “value-added of 

transportation sector”; furthermore, we checked and found the values of these two items were the 

same. In fact, GDP has many of the same characteristics as revenue, and we therefore used the added 

value amount as an output, in common with other authors [35]. 

Undesirable outputs. CO2 emissions related to the fuel consumed in the transportation sector were 

treated as undesirable outputs. Data for the consumption of different fuels by the transportation sector 

were taken from the Chinese Energy Statistics Year Books for 2004–2013.  

Following the guidelines developed by the Intergovernmental Panel on Climate Change  

(IPCC, 2006) [43] for building National Greenhouse Gas Inventories (Volume 2 and Equation (2.2), 

we estimated CO2 emissions from the combustion of different fossil fuels using Equation (3). 	 = 	 × × × × (44/12) (3)

Table 1 shows the data for CO2 emissions, which are related to the total amount of carbonaceous 

fuel combusted (A), the carbon content factor (CCF), the heat equivalent (HE), and the carbon 

oxidation factor (COF) of the fuel concerned. The CO2 emission factor (CEF) of each fuel is given by 

the quantity {CCFi × HEi × COFi × (44/12)}, where the number (44/12) represents the ratio of the 

molecular of CO2 and carbon.  

Table 1. CO2 emission factors by major carbonaceous fuel in China. 

Fuels Coal Petrol Kerosene Diesel Fuel oil Nature gas 

CCF a 27.28 18.9 19.6 20.17 21.09 15.32 
HE a 192.14 448 447.5 433.3 401.9 0.384 

COF (%) 92.3 98 98.6 98.2 98.5 99.0 
a CCF and HE are expressed in tons of carbon per trillion Joules, and trillion Joules per 104 tons (m3), 

respectively. Source: NDRC, 2007 [44]. 
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4. Results 

Table 2 shows the descriptive statistics for the input and output variables. The average investment 

in the Chinese provincial transportation sector between 2003 and 2012 was 51 billion yuan, and the 

sector employed 210,000 people, consumed 7 × 106 tons of standard coal equivalent of energy, 

produced 56 billion yuan in added value, and emitted 20 × 106 tons of CO2. The standard deviations 

shown in Table 2 show that the variations in the energy inputs and CO2 emissions were much greater 

than the variations in the labor used, the added value, and the capital invested.  

Table 2. Descriptive statistics of the input and output variables. 

Inputs and Outputs Variable Unit Mean Max Min Std. Dev. 

Non-energy input 
Labor 103 persons 210.24 618.48 28 116.88 

Capital 109 yuan 51.46 208.66 2.92 39.60 

Energy input Energy 103 TCEs 7332.58 30,239.77 270.54 5605.03 

Desirable output Added Value 109 yuan 56.91 251.62 2.78 46.99 

Undesirable output CO2 emissions 103 tons 20,050 89,159.66 638.03 16,027.66 

TCE = ton of standard coal equivalent. 

CO2 emissions. The CO2 emissions produced by the transportation sectors in the different 

provinces were calculated using Equation (3). The mean CO2 emissions produced by the Chinese 

transportation sector between 2003 and 2012 are shown in Figure 1. It can be seen from the figure that 

more CO2 emissions were produced in Guangdong and Shandong provinces (more than 50 × 106 tons 

in each) than in the other provinces, and that Qinghai province emitted the least CO2.  

 

Figure 1. Mean CO2 emissions from the transportation sectors in different Chinese 

provinces between 2003 and 2012. 
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Environmental efficiency in the transportation sector in the different provinces. Table A1 (see 

Appendix) and Figures 2 and 3 show the results of the environmental efficiency for the transportation 

sector, calculated using both the CCR model and the SBM model considering undesirable output. The 

average value produced by the CCR model for the 30 provinces between 2003 and 2012 was 0.64, 

while the average value from the SBM model considering undesirable output was only 0.45. As 

mentioned above, the SBM model considering undesirable output is better able to reflect the real level 

of environmental efficiency. The results show that environmental pollution has led to a greater loss of 

efficiency, which implies that any efficiency evaluation is meaningless if environmental factors are not 

considered. It furthermore proves that the efficiency evaluation using the SBM model considering 

undesirable outputs can avoid the angular and radial defects of the traditional DEA model and can 

improve the accuracy and reliability of the efficiency evaluation. The SBM model results show that the 

environmental efficiency of the Chinese transportation sector was poor between 2003 and 2012. The 

highest environmental efficiency for the transportation sector was in Hebei Province, which lay at the 

efficiency frontier during this period. Hebei Province has good environmental quality standards in its 

transportation sector, its emissions are controlled reasonably well, and its environmental policies are 

forcing continual improvement in this regard. 

 

Figure 2. Average environmental efficiency values for the transportation sector in 30 

Chinese provinces between 2003 and 2012. 
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Figure 3. Mean environmental efficiency values for the transportation sector in 30 Chinese 

provinces between 2003 and 2012. 

The average environmental efficiency values for the transportation sectors in Shandong, Jiangsu 

and Fujian provinces were 0.84, 0.73, and 0.7 respectively, and these were at the efficiency frontier in 

some years. However, the trends in environmental efficiency for these provinces differed somewhat. It 

is noteworthy that the environmental efficiency in Shandong Province began to decrease in 2010. The 

environmental efficiency of Jiangsu Province increased consistently throughout the study period, 

whereas the environmental efficiency of Fujian Province followed the opposite trend. Appropriate 

measures need to be taken to improve the environmental efficiency of the transportation sector in 

Fujian Province, and to restore the previously high levels of environmental efficiency seen in the 

transportation sector in this province. 

The average environmental efficiency value for the transportation sectors in Tianjin, Zhejiang, 

Anhui and Henan provinces lies between 0.5 and 0.7, which is in the middle of the range for all the 

Chinese provinces. The average environmental efficiency values for the transportation sectors of the 

other 22 provinces is below 0.5, with the lowest value (0.19) being found for Yunnan Province. This 

indicates that the transportation sectors in most Chinese provinces are very inefficient, and there is 

much scope for improving environmental controls, policies and energy utilization technologies in most 

parts of China.  

The above analysis shows that the transportation sectors in most Chinese provinces are not 

performing in environmentally efficient ways, because they require such massive increase in inputs of 

resources in order to increase their outputs. Environmental efficiency levels of less than 50% of the 
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ideal or target level were found for most provinces, leading us to conclude that the Chinese 

transportation sector as a whole is very inefficient in environmental terms. 

Changes in the environmental efficiency trends in the transportation sector. As shown in Figure 4, 

the environmental efficiency trends in the Chinese transportation sector generally followed three 

stages. The environmental efficiency value decreased from 2005, reaching a minimum in 2009, before 

increasing slightly after 2009. The highest average environmental efficiency value between 2003 and 

2012 was 0.57 and the lowest value was just 0.40. In addition, from Figure 5, it can be seen that CO2 

emissions increased in line with energy consumption, except in 2010, when CO2 emissions 

dramatically decreased. The environmental efficiency value therefore significantly increased in 2010.  

 

Figure 4. Regional differences in the transportation sector in terms of the environmental efficiency value. 

Regional differences in the environmental efficiency of the transportation sector. There were 

some obvious differences between the environmental efficiencies of the transportation sectors in the 

different Chinese provinces. To make the results relevant to the policymaking process, we refer to the 

“three belts” scheme of the Seventh Five-Year Plan (1986–1990) to classify the three areas in China, 

namely eastern, western, and central. The average GDPs of Inner Mongolia and Guizhou Province 

during the study period were both lower than the average GDP of the western area, so Inner Mongolia 

and Guizhou Province were classified as the Western area. The 30 provinces, municipalities, and 

autonomous regions were classified as follows. The eastern area included Beijing, Tianjin, Hebei, 

Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan. The central area 

included Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan. The western area 

included Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, 

Ningxia, and Xinjiang. In terms of their general characteristics (1) the eastern area has a higher 

economic growth rate and receives more direct foreign investment than most parts of the central and 

western areas; (2) the central area is largely agricultural and has a high population density; (3) the 

western area is the least developed area and has a comparatively low population density. 

Figure 4 also shows the trends in the environmental efficiencies of the transportation sectors in the 

three areas. The efficiency value was highest for the eastern and lowest for the western area. However, 

from Figure 5, it can be seen that although the western area produced higher CO2 emissions in more 

recent years, it also had higher fixed capital investments and added value thanks to the scale of the 

development that took place in the western area, together with the westward migration of eastern 

enterprises. The differences between the areas in all these indices have therefore gradually been reducing. 
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Figure 5. Index changes of inputs and outputs for the all regions, eastern area, central area, 

and western area. 

Sensitivity analysis. In order to study the influence of each input and output indicators on the 

efficiency value, we applied sensitivity analysis. By changing the number of input and output 

indicators, we could explain the degree to which environmental efficiency is affected by the input and 

output indicators in each case. The results are shown in Table 3. 

Table 3. The results of sensitivity analysis. 

Provinces 

CCR SBM 

No Labor No Capital No Energy No Labor No Capital No Energy No CO2 

Beijing 0.00 −0.34 −0.07 −0.10 −0.14 0.04 0.35 

Tianjin 0.00 −0.04 −0.05 0.00 −0.02 0.00 0.15 

Hebei 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Shanxi 0.00 −0.12 −0.04 0.00 −0.04 0.02 0.17 

Inner Mongolia −0.17 0.00 0.00 −0.06 −0.04 0.10 0.22 

Liaoning −0.01 −0.27 0.00 −0.03 −0.12 0.08 0.32 

Jilin 0.00 −0.16 −0.03 0.00 −0.06 0.02 0.20 

Heilongjiang 0.00 −0.38 −0.02 0.00 −0.13 0.06 0.33 

Shanghai 0.00 −0.74 0.00 0.00 −0.84 0.00 0.00 



Sustainability 2015, 7 9198 

 

 

Table 3. Cont. 

Provinces 

CCR SBM 

No Labor No Capital No Energy No Labor No Capital No Energy No CO2 

Jiangsu 0.00 −0.16 0.00 0.00 −0.39 0.00 0.00 

Zhejiang 0.00 −0.12 −0.03 0.00 −0.05 0.04 0.20 

Anhui 0.00 −0.21 0.00 −0.03 −0.10 0.07 0.26 

Fujian −0.09 0.00 0.00 −0.03 −0.02 0.01 0.18 

Jiangxi 0.00 −0.27 −0.03 −0.05 −0.10 0.05 0.28 

Shandong −0.04 −0.16 0.00 −0.02 −0.16 0.12 0.33 

Henan 0.00 −0.31 −0.01 0.00 −0.12 0.07 0.30 

Hubei −0.03 −0.05 0.00 −0.01 −0.04 0.05 0.18 

Hunan 0.00 −0.10 −0.02 0.00 −0.05 0.04 0.18 

Guangdong 0.00 −0.37 0.00 −0.06 −0.14 0.08 0.35 

Guangxi 0.00 −0.06 −0.01 0.00 −0.03 0.03 0.15 

Hainan −0.02 −0.21 0.00 −0.02 −0.09 0.07 0.27 

Chongqing 0.00 −0.04 0.00 0.00 −0.02 0.02 0.13 

Sichuan −0.09 0.00 0.00 −0.02 −0.01 0.01 0.14 

Guizhou −0.24 0.00 0.00 −0.07 −0.00 0.07 0.34 

Yunnan −0.02 −0.01 0.00 −0.01 −0.02 0.02 0.09 

Shaanxi 0.00 −0.08 0.00 0.00 −0.05 0.04 0.17 

Gansu 0.00 −0.26 −0.02 0.00 −0.10 0.05 0.26 

Qinghai 0.00 0.00 −0.01 0.00 −0.01 0.01 0.08 

Ningxia 0.00 −0.40 0.00 0.00 −0.56 0.00 0.00 

Xinjiang 0.00 −0.16 0.00 0.00 −0.07 0.05 0.20 

Due to the particular nature of the undesirable output, the sensitivity analysis was also divided into 

two parts in the calculation. Because there is only one desirable output in this study, the sensitivity 

analysis did not consider the sensitivity in respect to the desirable output. We only use the data for 

2012 as a representative sample of all years.  

If we do not consider the undesirable output, in general, three input indicators all have an influence 

on the environmental efficiency value. If the labor and energy indicators are removed, the efficiency 

value changes are somewhat lower; the labor indicator only has a notable impact in Inner Mongolia, 

Guizhou, Fujian, Sichuan, and the influence of energy indicator is only slight; the efficiency value of 

most provinces decreases, but the changes are less than 0.1. Capital has the greatest effect on the 

environmental efficiency value. There are in fact 24 provinces in which the efficiency values 

decreases, with the eastern provinces showing the most obvious change. The reason for the higher 

value of efficiency in the eastern provinces is related to the large capital investment there. 

If we do consider the undesirable output, the changes in the efficiency value are similar when 

removing the labor and energy indicators. However, the dependence of the energy indicator on the 

undesirable output indicator has an opposite trend, which is that the efficiency values increase rather 

than decrease, and this is due to the particularity of the indicators. Reducing the energy input and 

undesirable output can cause the efficiency value to increase, suggesting that the influence of the 

undesirable output is higher than that of the energy indicator. The provinces where the energy indicator 
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has a greater influence on the efficiency value are Inner Mongolia, Liaoning, Guangdong, Anhui, 

Hainan and Guizhou, indicating that the energy utilization of these provinces are unreasonable. The 

undesirable output has a notable influence on the efficiency values in all provinces, and the reductions 

in the efficiency value are greater than 0.3, indicating that these provinces need to reduce their 

undesirable outputs.  

Analysis of the potential for decreasing CO2 emissions. Table 4 shows the potential for 

decreasing CO2 emissions in the transportation sectors of the provinces between 2003 and 2012. Of the 

less efficient provinces, Guangdong had the greatest potential for decreasing its carbon emissions 

(393.78 × 106 tons less carbon could have been released than was released between 2003 and 2012), 

and Qinghai had the least potential for decreasing carbon emissions (11.84 × 106 tons less carbon 

could have been released than was released between 2003 and 2012). In addition, carbon emissions 

from the transportation sectors in China as a whole could have been reduced by 3291 × 106 tons 

between 2003 and 2012. This implies that there is a great deal of scope for decreasing the carbon 

emissions from the Chinese transportation sector, giving cause for some optimism for the Chinese 

government, which aspires to decrease its carbon emissions and to develop a more environmentally 

friendly society. 

Table 4. Potential decrease in carbon emissions from the transportation sector in each 

province (106 tons). 

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Beijing 8.08 9.59 3.56 8.60 11.64 15.25 16.82 20.67 14.24 19.08 
Tianjin 0.00 0.00 3.69 4.94 4.62 5.80 5.46 2.80 5.58 6.08 
Hebei 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Shanxi 4.62 4.83 1.02 2.11 2.09 14.34 15.33 8.18 12.28 12.86 

Inner Mongolia 1.72 5.13 8.25 12.33 14.97 17.57 20.60 14.80 24.93 27.58 
Liaoning 12.76 10.33 19.89 25.84 29.69 29.31 32.12 20.53 38.26 41.84 

Jilin 2.23 1.43 0.59 2.37 5.58 6.63 7.24 5.48 7.99 8.81 
Heilongjiang 7.06 6.05 3.08 7.63 8.04 5.93 8.77 5.17 15.28 17.70 

Shanghai 19.91 26.77 26.13 35.19 42.51 44.64 49.36 26.37 42.49 0.00 
Jiangsu 12.19 13.28 6.65 9.35 12.06 14.94 16.71 0.00 0.00 0.00 

Zhejiang 4.89 0.00 9.02 13.07 15.22 17.38 19.51 10.83 21.91 24.03 

Anhui 4.30 3.69 0.00 1.72 3.52 3.35 6.24 4.29 8.46 15.51 
Fujian 0.00 0.00 0.00 2.12 2.82 7.21 10.49 6.21 12.88 13.21 
Jiangxi 7.99 5.92 2.01 4.28 4.61 4.49 5.67 3.98 8.13 7.83 

Shandong 12.27 2.29 0.00 0.00 0.00 0.00 0.00 17.34 39.86 52.77 
Henan 1.54 6.63 0.00 2.09 4.56 2.46 12.30 8.27 18.26 20.28 
Hubei 15.23 13.84 17.29 20.22 22.85 27.14 25.96 16.65 28.81 29.58 
Hunan 9.90 10.13 7.85 10.52 12.41 9.06 12.86 8.90 16.48 13.15 

Guangdong 15.97 23.41 31.17 36.44 42.33 47.28 51.35 31.90 55.63 58.30 
Guangxi 5.88 8.08 7.80 10.83 12.36 12.33 15.34 9.03 16.93 19.05 
Hainan 2.94 2.84 1.65 3.20 3.53 5.76 7.09 4.38 7.84 7.89 

Chongqing 2.51 7.19 3.85 5.21 8.10 9.58 8.46 6.61 11.23 13.03 
Sichuan 9.25 8.25 6.23 10.34 14.08 18.07 24.85 15.83 26.95 26.49 
Guizhou 3.10 3.82 3.22 5.03 6.52 9.32 7.06 4.46 8.62 11.13 
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Table 4. Cont. 

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Yunnan 8.67 1.91 11.61 14.47 15.91 16.43 18.09 13.12 24.75 26.54 
Shaanxi 5.87 5.78 5.49 6.69 8.86 12.26 15.99 10.89 18.52 18.87 
Gansu 4.96 4.77 2.86 3.35 2.79 3.67 4.52 3.41 5.29 6.36 

Qinghai 0.42 0.18 0.00 0.21 1.18 1.65 2.01 1.44 2.34 2.41 
Ningxia 2.88 0.74 1.93 2.62 2.83 2.82 1.92 1.24 0.78 0.00 
Xinjiang 5.25 9.96 6.50 9.00 9.60 10.03 9.84 6.93 11.71 12.90 

Potential energy saving in the transportation sector in China. According to the DEA theory, 

overall, technically inefficient DMUs can become efficient and reach a required benchmark through 

slack and radial adjustment. Figure 6 show the potential energy saving in transportation sectors of the 

different regions. In four regions the potential energy saving was more than 60 Mtce during the period 

of interest. Guangdong had the greatest potential energy saving, followed by Shanghai, Liaoning, and 

Hubei, in that order. Qinghai had the lowest potential energy saving of all the energy-inefficient 

regions, while the potential energy saving of Hebei was zero. Although Yunnan had the lowest average 

environmental efficiency (0.19), it did not have the greatest potential energy saving. The average 

environmental efficiency of Shandong was 0.62, but there are six provinces (Guangdong, Shanghai, 

Liaoning, Hubei, Inner Mongolia and Sichuan) whose potential energy saving was larger than that of 

Yunnan. The reason for this finding is the energy consumption in these provinces. These six provinces 

consume a large amount of energy in their transportation sectors, at 195 Mtce, 214 Mtce, 165 Mtce, 

131 Mtce, 113 Mtce and 91, 86 Mtce, respectively, but Yunnan had a smaller energy consumption of 

64 Mtce over the period. 

 

Figure 6. Potential energy saving for the transportation sector in China by province. 
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5. Discussion and Policy Implications 

5.1. Discussion 

The increasing focus on sustainable development has led to “environmental efficiency” being 

advocated widely by those involved in environmental policy analysis and decision-making. In fact, 

improving environmental efficiency has been considered the most effective way of decreasing carbon 

dioxide emissions and increasing the potential benefits. The transportation sector has become a major 

energy consumer and producer of environmental pollution. From the above analysis, we know that the 

Hebei lies on the efficiency frontier and should therefore serve as a model for other regions, allowing 

them to improve their environmental efficiency in the transportation sector. Yunnan shows a low 

efficiency in the transportation sector, and measures must be taken to improve its efficiency as soon  

as possible.  

Different environmental efficiency values were found for different areas of China. In general, 

provinces located in the east show relatively high efficiency values because the eastern area is more 

developed than most of the central and western areas, and it also has a higher population density, better 

transport infrastructure, and is where more goods are transported. This implies that more economically 

active provinces have relatively high environmental efficiency values. Some of the provinces in the 

west of China show low environmental efficiency values, but so do some of the more developed 

provinces of the east (including Beijing and Shanghai). Beijing, the capital of China, is a huge city 

with an excellent road transport system. However, there were more than five million vehicles in 

Beijing in 2010, and it has been described as one of the most congested cities in the world. The 

transportation system in Beijing has a very clear influence on the environment, in that atmospheric 

haze caused by emissions from the transportation sector has become a matter of great concern. 

The trend in the environmental efficiency of the Chinese transportation sector is related to the 

effects of the 2008 financial crisis and policy guidance contained in the Eleventh Five-Year Plan 

(2006–2010). The policy is to reverse the increasing energy consumption of the Chinese transportation 

sector; efforts should increasingly be made to conserve energy and protect the environment. A series of 

new transportation policies has been implemented, and the environmental efficiency of the transportation 

sector has been increasing continually since 2009. Regarding the modes of transport used, rail 

transport is considered the most environmentally benign form of transportation because it consumes 

relatively little energy and produces relatively little environmental pollution per unit transported.  

5.2. Policy Implications 

Based on our findings, we propose some policies to improve the environmental efficiency of the 

Chinese transportation sector. Our results suggest that the government should implement different 

energy-saving policies depending on the area or region concerned. Overall, fixed capital investment 

has a larger influence on the Chinese transportation sector, especially in Shanghai and Jiangsu. These 

two provinces should increase their investment in the transportation sector, so as to encourage public 

transportation further and to the excessive use of private cars. Beijing has a greater potential energy 

saving, and its undesirable output CO2 also has a large influence on environmental efficiency, so 

Beijing should further promote its energy conservation and emissions reduction policy, impel 



Sustainability 2015, 7 9202 

 

 

technological innovations in transportation, and upgrade vehicle emission standards. As one of the 

most developed provinces in China, Guangdong should actively introduce advanced energy-saving 

technology from overseas to improve environmental efficiency in the transportation sector. For 

Yunnan province in the west of China, measures should be taken from a variety of aspects to improve 

its environmental efficiency of the transportation sector, such as strengthening transportation 

infrastructure construction (passenger rapid transit systems, city and rural transportation systems), and 

narrowing the regional imbalances in the transportation sector.  

The Twelfth Five-Year Plan (2011–2015) will soon be complete, the objective of which is an 

energy-efficient, environmentally friendly society. The Chinese government has made great efforts to 

encourage energy conservation and decrease emissions by formulating a series of goals, to which end a 

series of policies was launched. The Chinese government revised the “Ambient Air Quality Standard” 

in 2012 in order to strengthen vehicle pollution controls and improve fuel quality and emission 

standards. For heavy commercial vehicles, the “Fuel Consumption Limits for Heavy Commercial 

Vehicles” policy came into force on 1 July 2012, and this applies to buses (not including city buses), 

trucks (not including dump trucks), and semi-trailer towing vehicles designed to have a maximum total 

mass of more than 3500 kg, and a new standard will be brought into force soon. The “Limits of Fuel 

Consumption for Passenger Vehicles” and “Fuel Consumption Evaluation Method and Standards for 

Passenger Vehicles” (the fourth phase) policies were enacted in December 2014 and will be enforced 

from 1 January 2016. The aims of these policies are for the average fuel consumption of passenger 

vehicles to reach 5.0 L/100 km by around 2020, to save about 35 × 106 tons of fuel and to decrease 

CO2 emissions by about 113 × 106 tons. China and the USA issued a joint climate change statement at 

the APEC conference on 12 November 2014 in Beijing [45]. It was stated that a plan will be made to 

control Chinese CO2 emissions so that they reach a peak as soon as possible, or by about 2030. It was 

also stated that a plan will be made to increase the ratio of non-fossil fuel energy used for primary 

energy production in China to about 20% by 2030. 

6. Conclusions 

In this paper we used a non-radial DEA model based on an undesirable output perspective with the 

slacks-based measure to analyze the environmental efficiency of the transportation sectors of  

30 Chinese provinces (municipalities and autonomous regions) between 2003 and 2012. Adding 

undesirable outputs to the objective function meant that the SBM model considering undesirable 

output was more suitable for evaluating the energy consumption system. In terms of energy efficiency 

values, we found that these decreased from 2005 and reached a minimum in 2009, before eventually 

slightly recovering after that. The difference in efficiency values in Chinese provinces is considerable, 

with Hebei showing the highest average value and Yunnan showing the lowest average value during 

the study period. The eastern area generally performed better than the central and western areas. We 

also analyzed the potential decreases in carbon emissions and the potential energy saving in the 

transportation sectors of the Chinese provinces.  

The work presented here has some limitations. First, because the DEA model is used to measure the 

relative efficiency values, the maximum efficiency measured in this study is only valid relative to the 

values for other provinces. Environmental efficiency values for China and other countries will be 
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calculated in future work. Second, traffic pollutants such as SO2, NOx, CO, particulate matter (PM), 

and volatile organic compounds (VOC) have caused widespread concern recently, so whether these 

traffic pollutants should be taken into consideration when calculating the environmental efficiency of 

the transportation sector considering undesirable output will be a question for further research. The 

transportation sector includes rail transport, highways, waterways, aviation, and other forms of 

transport, but, in this study, we only calculated the environmental efficiency of the transportation 

sector as a whole. Calculating environmental efficiencies for the different forms of transport would 

make the results more meaningful. 

Acknowledgments  

This study was supported by the National Nature Science Foundation of China (No. 40976021) and 

the Research Project of the State Key Laboratory of Pollution Control and Resources Reuse. 

Author Contributions 

Xiaowei Song proposed the original method of the DEA and designed the main stages in the 

research. Xiaowei Song and Yongpei Hao designed the indicator system and conducted the empirical 

analysis by collecting the panel data; they also wrote the paper. The third author (corresponding 

author), Xiaodong Zhu, supervised the whole writing process.  

Conflicts of Interest 

The authors declare no conflict of interest. 

Appendix 

Table A1. Partial results of the constant return to scale (CCR) model and the slacks-based 

measure-data envelopment analysis (SBM-DEA) model. 

Province 
2003 2006 2008 2010 2012 Mean Value 

CCR SBM CCR SBM CCR SBM CCR SBM CCR SBM CCR SBM 

Beijing 0.63 0.32 0.61 0.38 0.39 0.24 0.67 0.35 0.68 0.33 0.65 0.35 

Tianjin 1.00 1.00 0.74 0.51 0.51 0.39 0.84 0.63 0.64 0.49 0.75 0.62 

Hebei 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Shanxi 0.46 0.29 0.94 0.67 0.66 0.38 0.54 0.38 0.54 0.37 0.65 0.45 

Inner Mongolia 0.51 0.37 0.71 0.45 0.68 0.46 0.77 0.45 0.77 0.45 0.69 0.43 

Liaoning 0.82 0.45 0.50 0.32 0.41 0.28 0.56 0.36 0.70 0.38 0.65 0.39 

Jilin 0.50 0.29 0.67 0.46 0.51 0.34 0.48 0.32 0.53 0.32 0.56 0.37 

Heilongjiang 0.78 0.38 0.64 0.38 0.48 0.33 0.49 0.32 0.66 0.33 0.63 0.37 

Shanghai 0.55 0.29 0.54 0.36 0.43 0.28 0.84 0.39 1.00 1.00 0.64 0.40 

Jiangsu 0.67 0.55 0.81 0.65 0.78 0.59 1.00 1.00 1.00 1.00 0.85 0.73 

Zhejiang 0.96 0.64 0.81 0.47 0.69 0.45 0.72 0.51 0.60 0.40 0.77 0.53 

Anhui 0.54 0.41 0.88 0.71 0.77 0.66 0.78 0.53 0.65 0.39 0.74 0.58 

Fujian 1.00 1.00 0.93 0.81 0.87 0.61 0.75 0.52 0.64 0.46 0.86 0.71 

Jiangxi 0.44 0.30 0.64 0.46 0.72 0.50 0.68 0.45 0.81 0.53 0.67 0.46 
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Table A1. Cont. 

Province 
2003 2006 2008 2010 2012 Mean Value 

CCR SBM CCR SBM CCR SBM CCR SBM CCR SBM CCR SBM 

Shandong 0.81 0.58 1.00 1.00 1.00 1.00 0.98 0.71 0.90 0.57 0.96 0.84 

Henan 0.82 0.64 0.88 0.68 0.99 0.82 0.74 0.49 0.72 0.42 0.83 0.60 

Hubei 0.44 0.24 0.49 0.31 0.47 0.28 0.53 0.34 0.47 0.29 0.49 0.30 

Hunan 0.78 0.44 0.76 0.48 0.49 0.37 0.59 0.42 0.61 0.43 0.66 0.44 

Guangdong 0.84 0.58 0.68 0.46 0.56 0.38 0.66 0.41 0.79 0.43 0.72 0.46 

Guangxi 0.61 0.37 0.57 0.34 0.40 0.29 0.43 0.30 0.43 0.28 0.50 0.33 

Hainan 0.64 0.33 0.50 0.34 0.40 0.25 0.41 0.25 0.54 0.27 0.55 0.32 

Chongqing 0.39 0.28 0.55 0.43 0.43 0.29 0.46 0.31 0.40 0.27 0.45 0.32 

Sichuan 0.59 0.41 0.64 0.44 0.46 0.32 0.36 0.22 0.33 0.19 0.51 0.34 
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