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Abstract: A high-quality carbon dioxide (CO2) inventory is the cornerstone of climate 

change mitigation. Most of the previously reported embodied CO2 inventories in China have 

no more than 42 sectors, and this limitation may introduce apparent inaccuracy into the 

analysis at the sector level. To improve the quality of input-output (IO)-based CO2 

inventories for China, we propose a practical energy allocation approach to link the energy 

statistics to the 135-sector IO tables for China and compiled a detailed embodied CO2 

intensity and inventory for 2007 using a single-region IO model. Interpretation of embodied 

CO2 intensities by fuel category, direct requirement, and total requirement in the sectors were 

conducted to identify, from different perspectives, the significant contributors. The total 

embodied CO2 emissions in 2007 was estimated to be 7.1 Gt and was separated into the 

industrial sector and final demand sector. Although the total CO2 estimations by the 42-sector 

and 135-sector analyses are equivalent, the allocations in certain groups of sectors differ 

significantly. Our compilation methodologies address indirect environmental impacts from 

industrial sectors, including the public utility and tertiary sectors. This method of interpretation 

could be utilized for better communication with stakeholders. 

Keywords: embodied CO2 intensity; energy allocation; indirect emission; environmental 

input-output analysis 
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1. Introduction 

Mitigation of climate change requires a comprehensive understanding of anthropogenic greenhouse 

gases (GHG) including carbon dioxide (CO2) emissions. A systematic framework to evaluate both direct 

and indirect environmental impacts of goods and services through the supply chain is very helpful for 

business partners and policy makers. Environmental input-output analysis (EIOA) is one of useful 

instruments for this purpose [1]. Embodied CO2 emissions and other environmental impacts from the 

total requirements of any production can be estimated by a single-region IO model or multi-region IO 

models [2–4]. Proper allocation of embodied CO2 emissions in industrial sectors to reveal hidden impacts 

through the supply chain can be compared to process-based life cycle assessment (LCA) or utilized in 

hybrid IO analysis [5,6]. 

China has been the largest emitter of energy-related CO2 since 2006 [7]. Compelling studies have 

attempted to address embodied GHG emissions in bilateral or global trade [8–10]. China’s economy has 

shown rapid but disproportionate growth. More sophisticated tools such as structural decomposition 

analysis or multiregional IO models were adopted in the analysis of temporal variations, spatial 

differences, and inter-regional carbon spillover within China [11–13]. One notable technical issue in 

studies of China’s EIOA relates to aggregation and disaggregation of sectors. China releases input-output 

tables (IOTs) every five years, but the sector classification in the IOTs is not stable across the years [12]. 

Another issue is that the number of sectors in the energy statistics of China is different from that in the 

IOTs. Different adjustment approaches lead to different aggregated sectors in the IOT, and evidence shows 

that different aggregation may distort the emissions at the sector level [14]. Although the information on 

China’s IOTs is insufficient [1,15], better aggregation or disaggregation in industrial sectors could 

provide more reliable EIOA results. 

In this study, we compiled an embodied CO2 inventory for 2007 (latest available data) with the 

majority of the sector information included. The data are useful to analyze indirect environmental 

impacts from entire life cycle of industrial sectors including public utility and tertiary industry sectors. 

Our concern in this study is not the embodied emissions in bilateral trade or virtual carbon flows in the 

world but focuses on sectoral direct and indirect CO2 emissions from China’s economy. To map on to 

fewer sectors in the energy statistics, we did not aggregate the sectors in the IOT but conducted a careful 

disaggregation process to allocate energy consumption into each IO sector. Interpretations of the 

embodied CO2 intensities were conducted for different aspects to investigate the significant sources. 

Comparisons between this study and previous results as well as future policy implications are addressed 

in this article. 

2. Material and Methods 

2.1. Data Preparation 

In this study, CO2 emissions from fuel combustion in all industries and the industrial process of 

cement production were taken into account. Direct energy consumption by households was also included 

owing to its significant contribution [16]. To compile the inventory of embodied CO2 emissions in China, 

we adopted energy statistics for 2007 from the energy balance sheet and table of final energy 

consumption in industrial sectors that are found in the China Energy Statistical Yearbook (CESY) [17] 
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and from the table of energy consumption in primary industry (farming, forestry, animal husbandry,  

and fishery), construction, tertiary industry, and household use that is in the China Statistical Yearbook 

(CSY) [18]. Besides electricity and heat consumption, direct final consumptions of 16 types of fuels are 

recorded in the CESY, whereas there are only eight types of fuels in the CSY. Details are listed in Table S1. 

The book of 2007 IOTs for China [19] released two IOTs calculated at producers’ prices in 2007. 

One is 42-commodity by 42-commodity (details listed in code I in Table S2), and the other is  

135-commodity by 135-commodity (details listed in code II in Table S2). The latter was utilized as the 

formal database for the calculations in this study. Based on the values of carbon content in fuels in the 

IPCC guidelines for GHG inventories [20], an assumption of 100% oxidation, and the corresponding 

heat values (given as the standard coal equivalent in CESY [17]), the IOT, energy consumption, and 

industrial emission in cement production were integrated to compile a database of the embodied CO2 

emission inventory for China in 2007. 

2.2. Direct CO2 Intensities by IO Sector 

CO2 emission factors (EF) for combustion were estimated by fuel as Equation (1): 

44/12 (1)

where Ck is the carbon content of fuel k on a basis of its lower heating value (LHV) (also known as net 

calorific value); k = 1, 2, …, 16 represents different types of fuels; Ok is the oxidation rate in combustion, 

where the default oxidation rate is 100% due to the prudence principle of carbon accounting; and LHVk 

is the LHV per unit of fuel k. 

Besides CO2 emissions of industrial processes, direct CO2 emission intensities by sector can be 

written as Equation (2): 

∑ , _
, ,  (2)

where EFk is the CO2 emission factor for combustion of a unit amount of fuel k; ,  is direct 

energy consumption of fuel k by sector j in IOT; _  is the CO2 emission of industrial 
processes in sector j;	  is the total output of sector j; ,  is the direct CO2 intensity of fuel k in sector 

j; ,  is the direct CO2 intensity of non-energy sources in sector j; The most significant non-energy 

emitter from industrial processes is cement production (coke as a reducing agent in the steel industry is 

reported in the category of energy use in this study). We adopted the industrial emissions of the cement 

industry in China from a recent detailed study [21]. 

To accurately determine the allocation of direct emitters in fuel combustion, not only the final use of 

energy in industrial sectors, but also energy inputs or losses during energy transformation processes, 

were included in the calculations of CO2 intensities. Energy inputs for the generation of electricity and 

heat were completely allocated to energy consumption in the sector production and supply of electric 

power and heat power (No. 92 in IOT), as the consumption of purchased electricity or heat in other 

sectors will not emit CO2 directly. Energy loss in coal washing was allocated to energy consumption in 

the sector mining and washing of coal (No. 2 in IOT). We also checked the energy and carbon balances 

in the coal, coke, and crude oil balance sheets in CESY to estimate the efficiency and loss rate of energy 

transformation in coking, petroleum refineries, and gas production. We allocated the energy losses in 
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these processes to energy consumption in sectors entitled coking (No. 38 in IOT), processing of 

petroleum and nuclear fuel (No. 37 in IOT), and production and distribution of gas (No. 93 in IOT), 

respectively. All these adjustments are fuel-specific. 

Since the sector resolution of energy statistics is less than the 135 sectors in the IOT, our original 

procedure was to allocate the various types of fuel consumption to different industrial sectors based on 

direct input coefficients from corresponding fuel processing sectors to other industrial sectors. Provided 

there is a sector j in the energy statistics that corresponds to the summation of sectors ja and jb in the 

IOT. The consumption of fuel k in sector ja can be estimated by Equations (3) and (4): 

, , , / , ,  (3)

, , , (4)

where sector p produces the fuel(s) k; zp,ja and zp,jb are direct inputs in monetary units from sector p to 

sectors ja and jb, respectively. All sectors related to energy processing are listed in Table 1. A similar 

allocation principal could be found in [22], though they directly allocate CO2 emissions to different sectors. 

Table 1. Fuel extraction and processing sectors in IOTs for China (2007). 

No. Sectors (p) in IOT Designated Fuels (k) in Energy Statistics 

006 Mining and Washing of Coal Raw coal, cleaned coal, and other washed coal 
007 Extraction of Petroleum and Natural Gas Crude oil and natural gas 
037 Processing of Petroleum and Nuclear Fuel All petroleum products such as gasoline, diesel, etc.
038 Coking Coke, coke oven gas, and other coking products 

2.3. Environmental IO Model 

We mainly followed the instructions for the embodied energy and emission intensity data (3EID) for 

Japan [23] to compile this embodied CO2 inventory for China (Figure 1). 

 

Figure 1. Framework for the compilation of an embodied CO2 inventory for China. 
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Following the basic framework of an environmental IOT [2], embodied CO2 emissions can be written 

as Equation (5): 

’  (5)

where xCO2’ is the vector of embodied CO2 emissions induced by final demand; dCO2 = [dj
CO2] is the 

vector of direct CO2 emission intensities in sector j, defined in Equation (2); I is the identity matrix;  

A is the matrix of direct input coefficients; A = [aij]; (I − A)−1 is the Leontief inverse matrix; and f is the 

vector of final demands with a breakdown of domestic final consumption (urban, rural, and 

governmental) fc, gross capital formation (fixed investment and storages) fk, and exports fx. 

In this study, we adopted the assumption of all competitive imports [24]. This assumption is not 

accurate [25], but we do not have sufficient details of the import structure in China or embodied 

intensities by sector for other trade partners. Moreover, our concern is sectoral allocation of CO2 

emissions in domestic production rather than emissions embodied in net import or export. The 

competitive import model requires estimation of import ratio by sector. Import ratios were estimated as 

Equation (6):  

 (6)

where  is the import value in sector i; and ∑  represents the total intermediate use of sector i. 

Exports are excluded in the final demands in the denominator, since imported goods could not be 

exported directly in the IO model [24]. 

The Equation (6) and underlying assumption of competitive imports may introduce two kinds of 

biases. First, the carbon intensities in imports may differ from the carbon intensities of domestic products 

in China, probably lower than China’s value if it is imported from developed countries [25]. The 

equivalent value (based on the same carbon intensity) of import goods for intermediate use may be 

smaller than the face value of imports. Second, there is only one value of import ratio in one sector, 

assuming that the intermediate use of imported goods and domestic goods of one sector by all industries 

share the same ratio, which is not always true. Both limitations can be overcome by separated 

information of domestic intermediate inputs and imported intermediate inputs by sector with 

corresponding emission intensities. This cannot be done in a single-region IO model but has been 

accomplished in some multi-region databases such as the OECD ICIO database, the World Input-Output 

Database (WIOD), and the Eora multi-region IO database (EORA) [26–28]. However, the treatments of 

sector aggregation in these models are not exactly the same as our framework, therefore competitive 

imports assumption was kept with limitations in this study. 

Providing Equations (5) and (6), embodied CO2 emissions induced by final demands of domestic 

products (excluding embodied emissions in imports) as a production-perspective inventory, can then be 

rewritten as [24] 

xCO2 = [dCO2 (I − (I −	 ) A)−1]×f* = [dCO2 B]×[(I − ) (fc + fk) + fx] (7)

and 

(8)
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where xCO2 is the vector of embodied CO2 emissions excluding imports; eCO2 = [ej
CO2] is the vector of 

embodied CO2 intensities;  is a diagonal matrix of import ratios [ ], given Ã = (I − )A = [ãij];  

B = (I − Ã)−1 = [bij]; and the final demand of domestic products is f* = (I −	 )(fc + fk) + fx. 

If we transform the vector of  into the diagonal matrix  = [dii
CO2] in Equation (8), we can 

perform a breakdown of embodied CO2 intensities in sector j by direct input from sector i ,  

as follows: 

 (9)

On the other hand, the indirect CO2 intensity in sector i is the embodied CO2 intensity subtracted from 

the direct CO2 intensity, and these three components have the relationship: 

 (10)

This breakdown of embodied intensities is useful to analyze the contributions of the supply chain 

because it interprets the indirect emissions of sector i as a summation of the indirect emissions of all sectors 

in the direct input to sector j. Detailed explanation can be found in a previous study of 3EID in Japan [23]. 

The embodied CO2 intensities could also be decomposed by fuel category (including non-energy 

sources) by combining Equations (2) and (8): 

,  (11)

,  (12)

3. Results and Discussion 

3.1. Embodied CO2 Emission Intensities 

The embodied CO2 intensity is the sum of the direct and indirect CO2 intensities. As shown in Figure 2, 

large differences exist between the embodied CO2 intensities of the 135 sectors in the Chinese IOT in 

2007 (Table S3). The production and supply of electrical power and heat power sector(No. 92) was 

estimated to have the highest intensity (16.2 t CO2/10,000 Yuan), followed by the manufacture of 

cement, lime, and plaster sector(No. 50) and the iron-smelting sector(No. 57) (14.7 t CO2/10,000 Yuan 

and 9.8 t CO2/10,000 Yuan, respectively). Besides these three sectors, direct contributions to the 

embodied intensity in the transportation services sectors (railway, road, urban public transit, water, air, 

and other cargo services) are larger than 50%. The embodied CO2 intensities in other sectors are 

dominated by indirect intensities from the supply chain. The indirect CO2 intensity of the production 

and distribution of water sector (No. 94) shows a very high contribution (98%), suggesting that the 

estimation of CO2 emissions in such sectors should take indirect emissions into account because the total 

CO2 emissions will consequently increase more than they would from direct emissions alone due to the 

growth of demand in such sectors. 
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Figure 2. Direct and indirect CO2 intensities by sector (sector groups include Ag: Agriculture, 

Mi: Mining, Manufacturing, Ut: Utilities, *: Construction, Tr: Transport services, C: Computer 

services, S: Sales & Hotel, Other services, and ^: Administration). 

 

Figure 3. Embodied CO2 intensities broken down by sector and fuel category (sector groups 

include Ag: Agriculture, Mi: Mining, Manufacturing, Ut: Utilities, *: Construction, Tr: Transport 

services, C: Computer services, S: Sales & Hotel, Other services, and ^: Administration). 
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Figure 3 shows the breakdown of embodied CO2 intensities by fuel category (Table S4). Combustion 

of coal dominates the embodied intensities in most sectors. The contributions of coke and other coking 

products are significant in the sectors related to smelting and rolling of metals, and the contribution of 

petroleum products is significant in the transport services sectors. 

Indirect emissions from electricity and heat in other industrial sectors are found to be the main 

contributors because the energy structure and electricity generation system in China are coal-dominated [12]. 

Previous studies have emphasized the interpretation of the total contributions of electricity and heat to 

embodied CO2 intensities, but there are at least three tiers (Tables S4–S6) to interpreting the indirect 

emissions from electricity and heat (subscript 92) to the designated sector j. The narrowest (tier 1) is the 
ratio of , ⁄ . This emission is directly generated in sector No. 92 (in the IOT) and contributes 

to the embodied intensity of sector j and is embodied in the direct requirement of electricity and heat by 
sector j. The second (tier 2) is the ratio of , ⁄ . This contribution is a direct and upstream 

emission contribution in sector No. 92 to the embodied intensity of sector j and is embodied in the direct 
requirement of electricity and heat by sector j. The broadest (tier 3) is the ratio of , ⁄ . This 

contribution is the direct and upstream emission contribution in sector No. 92 to the embodied intensity 

of sector j and is embodied in the total requirement of electricity and heat by sector j. As shown in Figure 4, 

the average tier 1 contribution (±its standard deviation) is 10% ± 8%, the average tier 2 contribution is 

18% ± 13%, and the average tier 3 contribution is 49% ± 13%. Therefore, generally speaking, half of 

the embodied CO2 intensity in a sector is ultimately impacted by CO2 emissions in the electricity and 

heat generation sector. 

 

Figure 4. Relative contributions from electricity and heat in different tiers to embodied CO2 

intensities of all sectors (sector groups include Ag: Agriculture, Mi: Mining, Manufacturing, 

Ut: Utilities, *: Construction, Tr: Transport services, C: Computer services, S: Sales & Hotel, 

Other services, and ^: Administration). 
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3.2. Composition of Embodied CO2 Emissions 

The composition of embodied CO2 emissions is summarized in Figure 5. In 2007, China emitted 2.1 

Gt of CO2 (30%) due to domestic consumption, 3.0 Gt (42%) due to capital formation, and 2.0 Gt (28%) 

due to exports. These results are very different from those in Japan where emissions induced by 

household consumption dominate [29]. However, previous studies in China also demonstrated that 

capital formation was responsible for half of the growth in CO2 emissions during 1992 and 2002 [12]. It 

is reasonable that the contribution of exports to the embodied CO2 emissions has increased since then 

because the amount of exports from China grew steadily during these years and the emission intensities 

from exports were found to be higher than those from imports [25]. Figure 5 shows the composition of 

our embodied CO2 inventory for the final demand categories (inner) and corresponding industrial sectors 

(outer). Emissions due to direct energy consumption in households were calculated using EFk in 

Equation (1) and were also taken into account as an additional sector belonging to the first inner sectorial 

area of emissions induced by domestic final consumption. These emissions were found to have a 

significant contribution (~3%) to the total CO2 emissions in China. The sectors regarding construction 

and manufacture of equipment dominate the embodied emissions induced by gross capital formation, and 

the manufacture of various industrial products dominates the embodied emissions induced by China’s 

exports. Detailed results of CO2 emissions by sector are shown in Tables S7 and S8. 

 

Figure 5. Composition of embodied CO2 emissions for China (2007). 

3.3. Comparison with CO2 Estimates in Previous Studies 

The estimation of direct CO2 emissions by sector in this study is compared with previous results in 

Table 2. The CO2 emissions only related to energy combustion in some databases are significantly lower 

than other estimations including emissions from industrial processes. Our estimation is close to the 

estimation by the Carbon Dioxide Information Analysis Center (CDIAC) [30], and lower than the total 

summation of provincial energy statistics but higher than other estimations based on national statistics [31]. 

There are also direct CO2 estimations in the environmental accounts in some multi-region IO databases, 
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e.g., the WIOD and the EORA database. CO2 estimation in WIOD only revealed the emission related to 

energy combustion [27], whereas the CO2 estimation in EORA covered energy combustion, industrial 

processes, and even other sources like change of land use and waste disposal [32]. Besides the apparent 

difference of system boundaries, the main reasons for the discrepancies between this study and other 

estimations are two-fold. One reason is the oxidation rate used; our study assumed a 100% maximum 

oxidation rate, but other studies [31,33,34] used 80%–95%, according to China’s local guidelines (with 

certain variability) [35]. The other reason is the deduction of the non-energy use of fuels, which was 

estimated at 216 Mt CO2 and all of which was considered as a CO2 source in this study. The significant 

contributors here are non-energy use of coal and “other petroleum products”. Some portion of the  

non-energy use in other petroleum products includes lubricants (which should be deducted), but the main 

component of the non-energy use of coal is the raw material used in the production of synthetic ammonia 

and other chemicals [36]. Coal acts as a reducing agent, rather than an energy source in this case, but the 

carbon will be oxidized and ultimately discharged as CO2. Even though we do not consider the details 

of the non-energy use of fuel, an additional difficulty is how to allocate this deduction of non-energy use 

into IO sectors. There are not sufficient data to support this allocation. Hence, we retained a component 

of total CO2 emissions to provide an upper limit reference. 

The total embodied CO2 emissions should theoretically equal the total direct CO2 emissions from 

industrial sectors because our estimation only considers the emissions induced by final demands of 

domestic products and does not include the emissions embodied in imports but does include the 

emissions embodied in exports. In other words, it is a production-perspective inventory. The estimated 

embodied CO2 emission for China in 2007 is 7.1 Gt, which is 0.3 Gt larger than the direct CO2 emissions. 

The main reason for this discrepancy is the distortion by the sector Others in final demands. The CO2 

induced by the final demand of Others was estimated at −0.3 Gt [33] and was thought to be an error with 

no meaning [12]. 

Table 2. Comparison of China’s direct CO2 emissions in 2007 from different sources. 

Sources CO2 Emissions (Mt) Note Reference

Chen and Zhang 6390 Local oxidation rate [33] 
CDIAC 6791 Including cement production [30] 
EORA 7382 Including all industrial processes [37] 

Guan et al. 
6359 Local oxidation rate 

[31] 
7334 Provincial summation 

IEA 6032 Only energy-related [38] 
Liu et al. 7204 Provincial summation [34] 
WIOD 5542 Only energy-related [27] 

This study 6810 Including cement production  

3.4. Comparison of Modeling Results for Different Sector Resolutions 

We used the same methodology to compile a 42-sector embodied CO2 intensity and inventory for 

China in 2007. The only difference is that some sectors in the energy statistics needed to be summed to 

correspond to the 42 sectors in the IOT. The differences between 135-sector resolution and 42-sector 

resolution in the embodied CO2 emissions by domestic final consumption, gross capital formation, and 
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exports were estimated at 4%, 6%, and 4%, respectively. However, the biases in embodied CO2 intensities 

and the emissions in the corresponding sectors are sometimes larger than these values. For instance, there 

is only one sector in the 42-sector IOT relating to iron and steel production, smelting and rolling of metals 

(No. 14 in code I system), which has an average embodied CO2 intensity of 4.8 t CO2/10,000 Yuan; 

however, there are five sectors (Nos. 57–61 in code II system) in the 135-sector IOT relating to such 

production, and the embodied CO2 intensities of these sectors range from 3.2 t CO2/10,000 Yuan to  

9.8 t CO2/10,000 Yuan. The embodied CO2 emissions for the smelting and rolling of metals in the  

42-sector resolution was estimated at 279 Mt CO2, while the summation of the embodied CO2 emissions 

from sector No. 57 to sector No. 62 in the 135-sector resolution yielded 292 Mt CO2 (1.05 times that of 

the 42-sector result; Figure 6, upper). On the other hand, the evaluation of embodied CO2 emissions in 

the manufacture of non-metallic mineral products sector (including manufacture of cement and cement 

products) in the 42-sector resolution, and the results of its subsectors in the 135-sector resolution, revealed 

significant overestimation by the 42-sector resolution; the embodied CO2 emissions in the manufacture 

of non-metallic mineral products sector were estimated at 129 Mt CO2, but the summation of emissions 

from its subsectors (sector No. 56 to sector No. 60) in the 135-sector resolution was determined to be  

84 Mt CO2, which is 65% of the previous estimation (Figure 6, lower). Therefore, the aggregation of 

sectors can clearly distort the allocation of the embodied emissions, especially in sectors with large 

emissions. Caution should be exercised in directly using embodied CO2 intensities derived with low 

sector resolution to link with other process-based data or to input into a hybrid-LCA model. 

 

Figure 6. Comparison of embodied CO2 emissions in sector(s) corresponding to smelting 

and rolling of metals (upper) and non-metallic production (lower) by 135-sector and  

42-sector resolution. 
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Similar evidence could be found in the comparison of this work with previous studies. The embodied 

CO2 intensities in 2007 in the manufacture of non-metallic mineral products sector and the smelting and 

pressing of metals and manufacture of metal products sector by 28-sector resolution were estimated at 

3.0 t CO2/10,000 Yuan and 4.0 t CO2/10,000 Yuan, respectively [8]. These values are almost 30% lower 

than our estimations, even when we exclude non-energy direct emissions from cement production. In 

another earlier study with fewer sectors, these embodied CO2 intensities, including non-energy emissions, 

were estimated at 8.5 t CO2/10,000 Yuan and 5.5 t CO2/10,000 Yuan [33], which are about 20% higher 

than our 42-sector resolution estimates of 7.1 t CO2/10,000 Yuan and 4.8 t CO2/10,000 Yuan. The 

differences are thought to be derived from the different direct emission factors and from the import 

deduction, in addition to the number of sectors. 

Su et al. [14] mentioned that if the variations of emission intensities within groups are not negligible, 

the distortion of emissions at sector level will be significant via theoretical derivation, but they found 

that the differences of allocated energy-related CO2 emissions between 42-sector and 122-sector 

resolutions were less than 10% in most groups based on the 2002 Chinese IOT. Based on the 2007 

Chinese IOT, this study supports their opinions from both sides. Overall, embodied CO2 emissions 

estimated by 42-sector and 135-sector resolutions were close to each other. However, the CO2 emissions 

from industrial process of cement production were also included in this study, so that the emission 

intensity of cement production is significantly larger than the emission intensities of other non-metallic 

production, leading to larger bias in this group between 42-sector and 135-sector resolutions. The 

evaluations of effects of aggregation/disaggregation based on the multiregional IO database were also 

reported in recent studies [39–41]. They emphasized that embodied CO2 intensities are sensitive to IO 

details and low sector resolution will likely result in inaccurate estimations for some sectors. Therefore, 

our work on the 135-sector IOT is a good practice in the case of China, though it could be further improved 

by introducing physical energy consumption data via hybrid IO model [1,14]. 

3.5. Policy Implications of an Embodied CO2 Emission Inventory for China 

Many studies have emphasized the territorial differences between the different systems’ boundaries 

and the importance to policy decisions of compiling an embodied CO2 emission inventory that covers a 

variety of countries and regions [4,10,25]. We consider that it is also very useful to discuss the linkage 

of embodied emissions (and other environmental burdens) among industrial sectors in the supply chain 

and to interpret the results of embodied emissions in different ways (since decision-makers on 

environmental policy could evaluate both direct and indirect effects from different aspects, e.g., fuel 

category or embodiment in direct requirement and total requirements). For example, if decision-makers 

want to impel cleaner production of iron and steel, the breakdown information of energy consumption 

in the supply chain is required to find significant contributors by energy carrier, say, reduction of CO2 

in coke and coking products is more pointed. If they want to evaluate indirect emissions in the supply 

chain of iron and steel production industry, emission intensity by direct input coefficient is useful to 

compare with process-based emission factors. If they want to find out crucial factors of CO2 induced by 

final use, emission intensity by total input coefficient is more relevant. Our compilation methods also 

have the advantage of revealing more environmental information in tertiary industry sectors. As China 

becomes a more developed country, the growth of household final consumption, including increasing 
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service requirements, will play a more important role in CO2 emissions in China. As presented in Figure 2, 

the contributions of direct emissions to embodied CO2 emissions are generally small in tertiary industry 

sectors (excluding transport services), which indicates that direct emissions in such sectors have little 

meaning for environmental decision-making. Tracing the embodied emissions in public and private 

services may be significant for the future mitigation of CO2 emissions in China. 

3.6. Study Limitations and Recommendation for Future Work 

There remain five limitations in this study. First, the non-energy use of fuels in the final consumption 

was not excluded in this inventory because some non-energy uses lock in the carbon, such as lubricants 

in the petroleum products sector (addressed in Section 3.3). Second, sector resolution, especially in 

construction, is very limited due to the IOT. Since a significant amount of China’s CO2 emissions are 

generated by capital formation (as shown in Figure 5), it is important to investigate potential methods of 

saving energy in construction activities and of suppressing unnecessary investment in some construction 

subsectors. The publication of more detailed information for specific sectors, such as construction sector 

IOTs, which are actually available in Japan, would be highly useful. Third, certain allocations of fuel 

consumption may introduce bias, for instance, all the petroleum products were allocated based on the 

direct input from sector No. 37 to other sectors in the IOT. This allocation method assumes that all the 

sectors consume petroleum products of the same composition; however, passenger transport services 

consume relatively more gasoline, whereas services that support agricultural industries consume 

relatively more diesel for off-road vehicles. To improve this kind of bias, more sectorial information, for 

example, detailed market surveys of energy consumption, is required. Fourth, proportionality 

assumption in IOT is not always true, for there are different prices of sold primary energy carriers and 

electricity between industries and end users [1]. Different levels of taxes or subsides can hamper the 

disaggregation of energy consumption by sector. However, the sufficient record of exact prices and 

quantities of energy trading among different users in China is not available. The fifth point is the 

weakness of import assumption in this study. It is not so critical when allocating CO2 emissions from a 

domestic production perspective. But it may be too weak when addressing embodied CO2 emissions in 

a global supply chain or constructing consumption-based inventory for China. Information about 

international imports of primary energy carriers by China or worldwide input-output database is needed 

to make more accurate estimations on such case. The limitations listed here from the second to the fifth 

point are the common problems in dealing with Chinese IOT. With respect to better quality of EIOA, 

we recommend the relevant authorities collect and release more information regularly, like the 

downstream of non-energy use of fossil fuel, physical inputs of energy or key materials, new IOT with 

separated domestic intermediate inputs and imported intermediate inputs. 

In this study, only CO2 inventory for China was compiled but compilation of non-CO2 (e.g., N2O and 

CH4) inventory for China is further recommended. CO2 from fossil fuel combustion and industrial 

processes dominated total GHG in China, and China’s voluntary abatement target is only to reduce 

carbon intensity per GDP by 40%–45% [42]. Hence this study itself could support the relevant policy 

analysis. Non-CO2 GHG emissions have more significance in industrial processes, waste treatment and 

other sources, which requires higher quality of data to reduce the uncertainty. The best way is to treat 
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CO2 and non-CO2 GHG emissions separately in a detailed assessment and then make an integrated 

comparison with time-series analysis. 

4. Conclusions 

In this study, a 135-sector embodied CO2 inventory for China in 2007 was constructed to reveal as 

much embodied information for industrial sectors as possible. Our disaggregation process to allocate 

energy input to each IO sector was proven reasonable by comparison with previous studies. The  

42-sector embodied CO2 inventory was equivalent to the 135-sector inventory only in terms of the total 

embodied emissions, but the allocation of CO2 emissions in some sectors was found to be distorted 

significantly. The embodied CO2 emissions induced by final demands of domestic products for China in 

2007 were estimated at 7.1 Gt CO2, whereas the contributions from gross capital formation, domestic 

consumption, and exports were estimated at 42%, 30%, and 28%, respectively. 

We interpreted the embodied CO2 intensities by fuel category, and by embodiment in direct and total 

requirements, and verified that China’s indirect CO2 intensities were still dominated by coal-based 

generation of electricity and heat power in 2007, especially in terms of embodiment in total requirements. 

Generally speaking, conversion of energy sources depends on social-economic realities and the 

limitations of resource availability [43,44]. It requires great efforts to lower dependence on coal in the 

energy consumption of China [45]. To further reduce CO2 emissions, improvement of end-use energy 

efficiency in electricity-intensive industries would be a significant benefit. 
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