
 

Sustainability 2015, 7, 7568-7580; doi:10.3390/su7067568 

 

sustainability 
ISSN 2071-1050 

www.mdpi.com/journal/sustainability 

Article 

Efficient Sustainable Operation Mechanism of Distributed 

Desktop Integration Storage Based on Virtualization with 

Ubiquitous Computing 

Hyun-Woo Kim 1, Jong Hyuk Park 2, Duinkhorjav Majigsuren 1 and Young-Sik Jeong 1,* 

1 Department of Multimedia Engineering, Dongguk University, Seoul 100-715, Korea;  

E-Mails: hwkim@dongguk.edu (H.-W.K.); majigaa200267@gmail.com (D.M.) 
2 Department of Computer Science and Engineering, Seoul National University of Science and 

Technology, Seoul 139-743, Korea; E-Mail: jhpark1@seoultech.ac.kr 

* Author to whom correspondence should be addressed; E-Mail: ysjeong@dongguk.edu;  

Tel.: +82-2-2260-3374; Fax: +82-2-2260-8898. 

Academic Editors: Jason C. Hung and Cho-Li Wang 

Received: 1 May 2015 / Accepted: 8 June 2015 / Published: 12 June 2015 

 

Abstract: Following the rapid growth of ubiquitous computing, many jobs that were 

previously manual have now been automated. This automation has increased the amount of 

time available for leisure; diverse services are now being developed for this leisure time. In 

addition, the development of small and portable devices like smartphones, diverse Internet 

services can be used regardless of time and place. Studies regarding diverse virtualization 

are currently in progress. These studies aim to determine ways to efficiently store and 

process the big data generated by the multitude of devices and services in use. One topic of 

such studies is desktop storage virtualization, which integrates distributed desktop resources 

and provides these resources to users to integrate into distributed legacy desktops via 

virtualization. In the case of desktop storage virtualization, high availability of virtualization 

is necessary and important for providing reliability to users. Studies regarding hierarchical 

structures and resource integration are currently in progress. These studies aim to create 

efficient data distribution and storage for distributed desktops based on resource integration 

environments. However, studies regarding efficient responses to server faults occurring in 

desktop-based resource integration environments have been insufficient. This paper 

proposes a mechanism for the sustainable operation of desktop storage (SODS) for high 

operational availability. It allows for the easy addition and removal of desktops in  

OPEN ACCESS 



Sustainability 2015, 7 7569 

 

desktop-based integration environments. It also activates alternative servers when a fault 

occurs within a system. 

Keywords: sustainable operation; virtualization; integration resource; distributed desktop; 

ubiquitous computing 

 

1. Introduction 

A diverse group of smart devices have been developed following the rapid growth of ubiquitous 

computing processing technologies. This diverse group of devices has created large increases in data 

usage by devices like digital cameras, smart televisions, smart phones, and tablet PC. Due to increases 

in atypical data, character data, image data, and position data, the era of big data has begun. To the 

enhanced performance, miniaturization, and convenient portability of these diverse smart devices, the 

leisure time of individuals and the work efficiency of businesses have increased [1–8]. The increase in 

the number of these devices has created a subsequent increase in data creation points. Data are now 

being rapidly created due to the numerous services provided by smart devices. There are currently 

many virtualization-based studies in progress regarding the efficient storage and management of big 

data. This virtualization comes in many forms, including application virtualization, hardware virtualization, 

desktop virtualization, network virtualization, server virtualization, and storage virtualization. Desktop 

storage virtualization (DSV) integrates the storage resources of distributed legacy desktops and 

provides resources in response to other users’ requests for storage [9–14]. 

The reliability of DSV is very important for storage users because this virtualization involves the 

connection of so many distributed desktops to each other. Therefore, DSV systems attempt to respond 

to the occurrence of desktop defects or faults in operating servers. These systems also attempt to 

identify servers that may be down due to incorrect operation by desktop users. Although previous 

studies of DSV have analyzed hierarchical structures and resource integration in desktop-based 

integration environments, studies regarding this aspect of efficient operation are currently insufficient. 

This research outlines a mechanism for the sustainable operation of desktop storage (SODS). This 

mechanism enables the use of active responses to desktop server faults occurring in desktop-based 

storage integration environments. The SODS mechanism allows a separate desktop to operate as an 

alternative server when the primary desktop server has failed. This mechanism also provides a high 

quality of service (QoS) to storage users, as it enables them to easily add or remove desktops from 

their networks. 

This paper is composed as follows: In Section 2, previous studies of resource integration schemes, 

management, and responses to desktop faults are examined. In Section 3, SODS mechanism is 

explained in depth. In Section 4, the design of SODS mechanism is explained, and in Section 5, the 

implementation of the SODS mechanism is covered. Section 6 covers evaluation of the maximum 

operation environment was performed by artificially creating a desktop server. Finally, Section 7 

contains a summary of the research’s overall conclusions as well as suggestions for future studies. 

  



Sustainability 2015, 7 7570 

 

2. Related Works 

Several resource integration schemes have been analyzed in previous studies, including the Google 

File System (GFS) [15], the desktop Resource Virtualization-Clustering Simulator (DRV-CS) [16], the 

Resource Integrated System for Big Data (RISBD) [17], the Desktop-Oriented Distributed Public 

Cloud Storage (CSTORE) [18], and the Hadoop Distributed File System (HDFS) [19]. 

GFS [15] is a file distribution system consisting of clients who can access control information 

stored in GFS and who can file and chunk position information appropriately. This system includes a 

GFS master who manages and names spaces. The GFS has a chunk server that manages chunks and 

inputs/outputs in response to client requests. Through the GFS master, this system creates chunk 

copies for data integrity, adjusts the number of chunk copies, and manages unused storage spaces. To 

prevent chunk server data loss in the event of a fault of the GFS master, this system copies the 

metadata received from chunk servers and the metadata regarding changes to other local and remote 

servers. However, when continuous GFS master faults occur, all chunk server data are lost. 

In the DRV-CS [16], a clustering scheme allows for efficient integration of distributed desktop 

resources. The DRV-CS externalizes the performances of distributed desktops and forms clusters of 

these performances to create efficient hierarchical structures. Although the DRV-CS allows for the 

selection of optimum desktops based on the required performance, it does have a shortcoming; that is 

the clustering stops when a server fault occurs. In contrast to this, the mechanism proposed in the 

present paper enables active responses to sporadic or continuous server faults. 

RISBD [17] is a scheme that was proposed as a method for analyzing unused desktop resources 

being used independently. The RISBD scheme aims to integrate these resources with one another to 

provide private cloud-based storage. A scheme was also proposed to respond to server faults that may 

occur due to the integration of too many distributed desktop resources. However, this scheme requires 

many unnecessary overheads due to its IP-based server selection, which ultimately lowers the 

performance level of the service. The mechanism proposed in the present paper selects servers more 

efficiently by considering the performances and locations of desktops and stored resources. 

CSTORE [18] is a scheme designed to guarantee independent spaces and data security for users in 

terms of the operation of distributed desktops. While this system shows better expandability and 

performance than general public storage systems, it does have one major problem, which is that users 

cannot access the system when the server has failed.  

HDFS [19] consists of DataNodes (a type of individually-distributed desktop resource) and a 

NameNode that manages the DataNodes. This configuration enables the integration of several 

thousand desktop resources. Although data integrity is secured by internally-copied data, data stored in 

the DataNodes will be lost if a NameNode fault occurs. Although a SecondaryNode is implemented if 

any NameNode fault occurs, data losses cannot be prevented when these faults occur continuously. To 

overcome this shortcoming, the mechanism proposed in the present paper periodically synchronizes 

the metadata from data storage locations on distributed desktops. 

  



Sustainability 2015, 7 7571 

 

3. SODS Scheme 

SODS scheme based on connected desktops proposed in the present paper has functions for both the 

server and the client. Desktops are divided into servers and clients according to the composition of 

operations that exist when the functions are initially implemented. The connected desktops comprise a 

desktop Master Node (DMN) that plays the role of a server and desktop Storage Nodes (DSN) that are 

responsible for storing user data. During operation, the DMN adds and deletes desktops and manages 

stored data and available storage spaces. The DSNs periodically send their state information to the 

DMN and check whether or not it is operating. The metadata used for selection of an alternative server 

when a DMN fault has occurred are defined in Table 1. 

Table 1. Metadata for the selection of an alternative server when a server fault has 

occurred in sustainable operation of desktop storage (SODS). 

Factor Description 

IP 

IP address system-based priorities are given. 

IP address system-based operation may cause unnecessary overheads because routing information is 

not included. 

Performance 

When the central processing unit (CPU) is assumed as α and the Memory is β, the importance of the 

CPU and the Memory should be set according to the user while ensuring that α + β is equal to 100%. 

Depending on user setting, the CPU can be defined as more important when the enhancement of 

processing speed is regarded as important, and the Memory can be defined as more important when 

the number of accommodation times for the connected desktops is regarded as more important. The 

relevant definition of importance facilitates the selection of the appropriate alternative servers when 

the number of desktops in the SODS environment is large or small.  

Stored Data 

Amount 

In operation-based DSV environments of the SODS, all connected desktops are normalized based on 

the desktop with the smallest amount of stored data. The stored data of a desktop can cause inefficient 

additional computing and network bandwidths when the desktop has been selected as an alternative 

server. For this reason, the SODS gives priority to desktops with small amounts of stored data. If the 

amount of stored data is not considered, large amounts of resources may be unnecessarily consumed 

due to overlapping of internal data. 

Distance 
In operation-based DSV environments of the SODS, response time is determined according to 

periodic heartbeats and normalization is conducted based on the minimum response time. 

The sustainable operation of the desktop implemented as the DMN in DSV environments applying 

the SODS mechanism is shown in Figure 1. After the initial server start, Accept mode is implemented; 

this mode makes the mechanism wait for access from the server's desktops. When the desktops have 

accessed the mechanism, their state information (CPU, Memory, Storage, IP, and Distance) is analyzed 

to create metadata, which are then reflected on the list. The metadata are then arranged according to 

the user settings and are transmitted to all connected desktops. This process is repeatedly implemented 

as desktops are added at the beginning of the configuration of the application of the SODS to the  

DSV environment. 

  



Sustainability 2015, 7 7572 

 

 

Figure 1. Desktop Master Node (DMN) flow for sustainable operation. 

In DSV environments applying the SODS, the desktops implemented as DSNs periodically check 

whether the server is operating (as shown in Figure 2). The DSNs access the DMN to receive its 

metadata. The DSNs then transmit heartbeats to check the state of the server and the state of the DMN 

acting as a server. The DSNs check the state of the server periodically for a predetermined number (N) 

of seconds set by the user. The operation of the server is usually checked every five seconds. When the 

server does not operate because a fault has occurred, the Count Value increases. “Count” refers to the 

number of times a fault occurs; if the count exceeds the number of times set by the user (M), a server 

failure is considered to have occurred. If a server failure has occurred, each DSN uses metadata to 

check whether it is supposed to act as the alternative server. The DSN that is supposed to function as 

the alternative server then performs the function of the DMN. The DSNs that are not the alternative 

servers will try to access the newly-implemented DMN. Since at least two desktops are required for 

this operation, continuous occurrences of faults can be responded to in the same manner. 



Sustainability 2015, 7 7573 

 

 

Figure 2. DSN flow for sustainable operation. 

4. Design of SOSIDR 

The application of an SODS mechanism to distributed desktop integration storage systems can be 

further defined as a Sustainable Operation System for Integrated desktop Resources (SOSIDR). The 

components of the SOSIDR are functionally divided into: (1) a User Interface for selecting the DMN 

and DSN modes, setting desktop information, and determining the number of overlapping storages;  

(2) an Interaction Broker for transmitting information inputted by the user to the desktop Manager and 

the Resource Manager to reflect the information; (3) a desktop Manager to analyze and manage 

connected desktops; (4) a Resource Manager to integrate resources and create and manage the 

metadata of integrated resources and connected desktops; (5) a Coordinate Converter to process 

system information for viewing information in the Viewer; and (6), a Viewer that visualizes the  

states of the desktops and resources. The DSNs are also configured to periodically check the status of 

the DMN. 



Sustainability 2015, 7 7574 

 

As shown in Figure 3, The User Interface is subdivided into six sections: Desktop Information, 

Duplication Count, Chunk Size, Mode, Connection Information, and Priority Information. Desktop 

Information is used for setting the allowed storage size of the desktop, Port Number, and data storage 

locations according to relevant storage provisions. Duplication Count is used for setting the number of 

times the data storage may overlap as determined in proportion to the number of connected desktops. 

Chunk Size is used for setting the unit of the size for the stored data (64 MB, 128 MB, 256 MB, or  

512 MB). Connection Information is used for setting the IP and Port Number needed by the initial 

DMN to access the DMN. These settings are applied after it has been determined whether or not the 

DMN is in operation. Priority Information is used for setting the priorities of the desktops selected as 

alternatives to the DMN when a DMN failure has occurred. These priorities are applied by taking IPs, 

Performance, Stored Data Amounts, and Distances into consideration. The IPs are set based on the 

Internet address system. The Performance is determined considering the CPU and Memory of each 

desktop. That is, the processing speed and the number of desktops accommodated are applied on the 

basis of 100%. For instance, if the importance of the CPU is 70% and the importance of the Memory is 

30%, the sum of these two is 100%. Stored Data Amount is used for selecting the desktop with the 

performance closest to the Performance standard set by the user from among the desktops with the 

smallest sizes of stored data available when storage services are in operation. One reason why a 

desktop may not be chosen for this purpose is that if the desktop selected as the DMN has a large 

amount of stored data, the computing and network bandwidth will have to be internally consumed to 

maintain the Duplication Count. Mode is used for setting each desktop to either operate in the DMN 

mode or the DSN mode according to the user’s setting. 

 

Figure 3. Sustainable Operation System for Integrated desktop Resources (SOSIDR) 

Architecture for Sustainable Operation. 



Sustainability 2015, 7 7575 

 

Interaction Broker delivers the basic desktop information received from the user through the User 

Interface. It is also responsible for the priority information set for responses to faults that may occur to 

the desktop Manager and the Resource Manager. 

Desktop Manager is subdivided into four stages: Desktop State Analysis, Intelligent Desktop 

Ordering, the Desktop List, and the Connection Monitor. The Desktop State Analysis analyzes the 

sizes of data stored in the desktops and the static and dynamic performances of the desktops. The 

analyzed desktop state information is sent to the Intelligent Desktop Ordering. The Intelligent Desktop 

Ordering selects the alternative DMN using the desktop state information it receives from the Desktop 

State Analysis. After this ordering, the list of alternative DMNs is sent to the Desktop List and stored 

there. Then, the Desktop List sends the list of alternative DMNs to the Resource Manager. 

Resource Manager is subdivided into Resource Analysis, Resource Integration, Create Desktop 

Metadata List (CDML), Desktop Metadata Update Notify (DMUN), Stored Data Metadata Update 

Notify (SDMUN), and Resource Audit. The Resource Analysis analyzes the storage information from 

the desktops. Through this analysis, the sizes of storage are determined according to the DMN’s 

storage and distribution. This stage also determines whether data have been properly stored in the 

relevant DSN and whether the permissible storage set for each DSN is available. The Resource 

Integration includes the DSN storages based on the Resource Analysis’ judgment of the available 

storage of the DSNs. The CDML creates DMN metadata to synchronize the DMN list sent from the 

Desktop List of the Desktop Manager to all desktops. The created DMN metadata are transmitted to 

the DMUN. The DMUN sends the DMN metadata to all connected desktops to conduct synchronization. 

The SDMUN sends metadata, including the storage locations of the data received from the user, to all 

desktops to conduct synchronization. Continuous operation can be enabled by selecting an optimum 

DSN in the case of DMN failure using the DMN metadata. 

Coordinate Converter processes information to visualize the desktop state information and resource 

states on the Viewer. The processed information is delivered to the Viewer. 

Viewer takes the desktop and resource information received from the Coordinate Converter and, 

along with the control views, delivers it to the user for controlling. 

DSN consists of a Task Worker (which responds to data storage requests from the DMN), a DMN 

Check Manager (which checks the operating state of the DMN), and a Desktop Metadata Manager 

(which manages the metadata received from the DMN). Sustained operation is possible in this system 

because the Desktop Metadata Manager selects an alternative server when the DMN Check Manager 

recognizes the DMN’s server fault, which initiates the operation of the alternative server. 

5. Implementation of SOSIDR 

The initial execution screen of SOSIDR is shown in Figure 4. Figure 4-① shows the mode 

selection from the initial execution. The selection at this time is between the DMN and the DSN. 

Figure 4-② shows the screen that is activated when the DMN has been selected. This screen displays 

the information from the current desktop; that is, it displays the desktop’s IP and Port Number. Figure 

4-② also shows the list of connected desktops and the user’s settings, which can be changed using the 

Set State. Figure 4-③ shows the Data List, which includes information about the data stored in the 

DSNs and information about the state of the DMN. Information regarding faults that have occurred in 



Sustainability 2015, 7 7576 

 

the DMN is checked in real time. The Candidate DMN List shows how the metadata is synchronized 

according to the priorities of the alternative servers set by the user in the DMN. Figure 4-③ also 

shows how the data is stored and which storage sizes are integrated through the Set. 

 

Figure 4. DMN and DSN executions according to SOSIDR Mode setting. 

Figure 5 shows the process through which the first DSN in the Candidate DMN List operates as the 

DMN following the occurrence of a DMN fault in an environment with 5 integrated desktops.  

Figure 5-① shows a case where the DMN operates normally. Figure 5-② shows disconnections of 

DSN1, DSN2, DSN3, and DSN4 from the DMN following the occurrence of the fault. Figure 5-③ 

shows the selection of the first priority through the metadata information in the DSN Candidate List. 

The first-priority DSN activates the server so that it can begin operating as the DMN. Figure 5-④ 

shows the DSNs that were not chosen to act as the DMN following a fault. After the new connection is 

made, the new DMN Candidate List is transmitted to all connected DSNs through the new DMN for 

synchronization. The DMN also compares the Duplication Count set by the user with the number of 

overlapping storages to judge whether the Duplication Count satisfies this condition. If the condition is 



Sustainability 2015, 7 7577 

 

not satisfied, the DMN calls the DSNs with the correct data and orders them to copy their data to other 

DSNs to satisfy the Duplication Count. Faults can be repeatedly responded to using this process. 

 

Figure 5. Response process for DMN faults in SOSIDR. 

6. Performance Evaluation 

Figure 6 shows the operation states that occur when a master fault has occurred in an SOSIDR with 

10 connected desktops and an HDFS with 10 connected desktops. In the case of the HDFS, when a 

NameNode fault has occurred, the SecondaryNode takes over the role of the NameNode and the eight 

DataNodes operate stable on their own. However, if faults occur continuously, no DataNode will be 

able to operate. In the case of the SOSIDR, the server operation can be maintained even when faults 

continuously occur because all the connected desktops have server functions and data storage 

information and the server priority lists are synchronized. This function can only operate when there 

are at least two desktops that can serve as DMNs and DSNs. This sustainable operation provides 

protection against server faults even in desktop environments with several thousand connected desktops. 



Sustainability 2015, 7 7578 

 

 

Figure 6. Comparison of the states of desktop operation that occur when a master node 

fault has occurred. 

7. Conclusions 

Due to ubiquitous computing, storage servers are now responsible for storing large amounts of 

diverse data. When continuous faults occur in these systems, huge data losses and costs can result. The 

present paper proposed an SODS mechanism to respond to conventional server faults. In the SODS, all 

desktops are connected to each other within the DSV environment. This system allows for the creation 

of alternative servers based on desktop performances, desktop distances, and the amounts of stored 

data in each desktop. This method reduces delay times for server re-operation by selecting optimized 

servers from the connected desktops of a network. 

In the future, algorithms should be studied regarding not only the high availability of servers, but 

also the efficient storage and extraction of data. In addition, studies for the application of these 

algorithms to network switch configurations should be conducted. 

Acknowledgments 

This work (Grants No. C0249205) was supported by Business for Cooperative R&D between 

Industry, Academy, and Research Institute funded Korea Small and Medium Business  

Administration in 2014. And also this research was supported by Basic Science Research Program 

through the National Research Foundation of Korea (NRF) funded by the Ministry of Education  

(NRF-2014R1A1A2053564). 

Author Contributions 

Hyun-Woo Kim and Jong Hyuk Park designed this research; Hyun-Woo Kim and  

Duinkhorjav Majigsuren retrieved and analyzed the data, and wrote the paper basically; Young-Sik Jeong 

reviewed the research and initiate the idea and totally process the idea, design and implementation.  

Jong Hyuk Park and Young-Sik Jeong revised the paper. All authors have read and approved the  

final manuscript. 



Sustainability 2015, 7 7579 

 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Jeong, Y.-S.; Kim, H.-W.; Jang, H.J. Adaptive resource management scheme for monitoring of 

CPS. J. Supercomput. 2013, 66, 57–69. 

2. Gil, J.-M.; Park, J.H.; Jeong, Y.-S. Data center selection based on neuro-fuzzy inference systems 

in cloud computing environments. J. Supercomput. 2013, 66, 1194–1214. 

3. Degefa, F.B.; Won, D. Extended Key Management Scheme for Dynamic Group in Multi-cast 

Communication. J. Converg. 2013, 4, 7–13. 

4. Malkawi, M.I. The art of software systems development: Reliability, Availability, Maintainability, 

Performance (RAMP). Hum.-Centr. Comput. Inf. Sci. 2013, 3, 1–17. 

5. Song, E.-H.; Kim, H.-W.; Jeong, Y.-S. Visual Monitoring System of Multi-Hosts Behavior for 

Trustworthiness with Mobile Cloud. J. Inf. Process. Syst. 2012, 8, 347–358. 

6. Lee, S.-H.; Lee, I.-Y. A Secure Index Management Scheme for Providing Data Sharing in Cloud 

Storage. J. Inf. Process. Syst. 2013, 9, 287–300. 

7. Shrivastava, N.; Kumar, G. A survey on cost effective multi-cloud storage in cloud computing. 

Int. J. Adv. Res. Comput. Eng. Technol. 2013, 2, 1291–1997. 

8. Kim, S.-Y.; Roh, H.-C.; Park, C.-H.; Park, S.-H. Analysis of Metadata Server on Clustered File 

Systems. In Proceedings of the Korea Computer Congress 2009 (KCC), Seoul, Korea, 1–3 July 

2009; Volume 36, pp. 64–69. 

9. Gaonkar, P.E.; Bojewar, S.; Das, J.A. A Survey: Data Storage Technologies. Int. J. Eng. Sci. 

Innov. Technol. 2013, 2, 547–554. 

10. Gibson, G.A.; van Meter, R. Network attached storage architecture. Commun. ACM 2000, 43,  

37–45. 

11. Dong, B.; Zheng, Q.; Tian, F.; Chao, K.; Ma, R.; Anane, R. An optimized approach for storing 

and accessing small files on cloud storage. J. Netw. Comput. Appl. 2012, 35, 1847–1862. 

12. Chattopadhyay, M.; Dan, P.K.; Mazumdar, S. Comparison of visualization of optimal clustering 

using self-organizing map and growing hierarchical self-organizing map in cellular manufacturing 

system. Appl. Soft Comput. 2014, 22, 528–543. 

13. Silva, J.L.; Campos, J.C.; Harrison, M.D. Prototyping and analysing ubiquitous computing 

environments using multiple layers. Int. J. Hum.-Comput. Stud. 2014, 72, 488–506. 

14. Mohammed, J. Evolution of the Next Generation of Technologies: Mobile and Ubiquitous 

Computing. Int. J. Adv. Res. Sci. Eng. Technol. 2014, 1, 247–253. 

15. Wang, M.; Li, B.; Zhao, Y.; Pu, G. Formalizing Google File System. In Proceedings of the 2014 

IEEE 20th Pacific Rim International Symposium on Dependable Computing, Singapore, 18–21 

November 2014; pp. 190–191. 

16. Park, J.H.; Kim, H.-W.; Jeong, Y.-S. Efficiency Sustainability Resource Visual Simulator for 

Clustered Desktop Virtualization Based on Cloud Infrastructure. Sustainability 2014, 6, 8079–8091. 



Sustainability 2015, 7 7580 

 

17. Kim, H.-W.; Park, J.H.; Jeong, Y.-S. Human-centric storage resource mechanism for big data on 

cloud service architecture. J. Supercomput. 2015, doi:10.1007/s11227-015-1390-3. 

18. Duan, H.; Yu, S.; Mei, M.; Zhan, W.; Li, L. CSTORE: A desktop-oriented distributed public 

cloud storage system. Comput. Electr. Eng. 2015, 42, 60–73. 

19. Shafer, J.; Rixner, S.; Cox, A.L. The Hadoop Distributed Filesystem: Balancing Portability and 

Performance. In Proceedings of the IEEE International Symposium on Performance Analysis of 

System and Software (ISPASS 2010), White Plains, NY, USA, 28–30 March 2010; pp. 122–133. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


