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Abstract: The purpose of this study was to create maps of potentially sustainable leopard 

cat (Prionailurus bengalensis) habitats for all of South Korea. The leopard cat, which is on 

the International Union for Conservation of Nature (IUCN) Red List, is the only member of 

the Felidae family in Korea. To create habitat potential maps, we selected various 

environmental factors potentially affecting the species’ distribution from a spatial database 

derived from geographic information system (GIS) data: elevation, slope, distance from a 

forest stand, road, or drainage, timber type, age, and land cover. We analyzed the spatial 

relationships between the distribution of the leopard cat and the environmental factors using 

a frequency ratio model and a logistic regression model. We then overlaid these relationships 

to produce a habitat potential map with a species potential index (SPI) value. Of the total 

number of known leopard cat locations, we used 50% for mapping and the remaining 50% 

for model validation. Our models were relatively successful and showed a high level of 

accuracy during model validation with existing locations (frequency ratio model 82.15%; 

logistic regression model 81.48%). The maps can be used to manage and monitor the habitat 

of mammal species and top predators. 
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1. Introduction 

Long-term persistence of biodiversity is the ultimate goal of most conservation plans (Minor [1]). 

Maintaining biodiversity is important because identifying the species critical to the maintenance of 

ecosystem stability or those that will be useful human resources in the future is not always easy  

(Burton [2]). The most effective way to conserve biodiversity globally is to focus on the protection of 

high biodiversity areas (Myers [3]). One method of identifying these areas is to model top predator 

habitats, which are often biodiversity hot spots (Schmitz [4], Sergio [5], Gavashelishvili [6]). 

Carnivores are major predators and scavengers in terrestrial ecosystems. Understanding their status 

is important for understanding ecosystem integrity in regions of high human disturbance. The leopard 

cat (Prionailurus bengalensis) is a small, wild cat native to North and East Asia. Since 2002, the 

International Union for Conservation of Nature (IUCN) has listed it as a species of least concern. 

Although it is widely distributed, it is also threatened by habitat loss and hunting in parts of its range. Of 

the 12 leopard cat subspecies, which differ widely in appearance (Sanderson [7]) only one exists in  

South Korea. 

GIS is a useful tool for determining the spatial relationships of an event and its controlling factors. 

GIS has been successfully used for habitat mapping of an event distribution based on probability and 

statistical models (Kim [8], Lee [9]), Analytic Hierarchy Process (AHP) decision models (Matsuura [10]), 

fuzzy relations (Choi [11]), and artificial neural networks (Song [12]). More recently, many studies have 

employed GIS to produce habitat maps for various species. Poplar‐Jeffers [13] and Ottaviani [14] used 

a GIS-based model to quantify and indicate the habitat of mammals. Newton‐Cross [15], Tien Bui [16], 

and Huck [17] mapped the distribution of badgers using a logistic regression model. In the case of bats, 

some studies have applied statistical models to analyze their habitat distributions Jaberg [18] and 

Greaves [19], Clement [20]. Northrup [21] used logistic regression models in a geographic information 

system to map the probability of bear-human conflict and the relative probability of grizzly bear habitat 

selection based on global positioning system radiotelemetry data. Kuemmerle [22] applied a probabilistic 

model to habitat mapping of the European bison (Bison bonasus), Speed [23] used remote sensing data 

for habitat mapping of deer, and Gavashelishvili [6] analyzed leopard habitat in central Asia using a 

logistic regression model. Studies of the spatial relationships between species habitats and various 

ecological environments have also been attempted (Kocev [24], Meixler [25], Walker [26], Walters [27]). 

However, none of these studies has analyzed the habitat of the leopard cat in South Korea. Therefore, 

the purpose of our study was to identify relationships between the distribution of the leopard cat and 

various environmental factors using probability and statistical models. Furthermore, we used the 

resulting leopard cat habitat range to map the species in South Korea. We used frequency ratios and 

logistic regressions as probabilistic and statistical models, respectively. 

South Korea is located in North Asia (37°16′32″N, 127°03′05″E), in the southern half of the Korean 

Peninsula (Figure 1). South Korea is geomorphologically stable and contains three major mountain 
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ranges: the Taebaek Mountains, the Sobaek ranges, and the Jiri Massif. Furthermore, no active volcanoes 

exist and no strong earthquakes have occurred. It has no extensive plains and its lowlands, which make 

up approximately 30% of its land area, are the product of mountain erosion. Uplands and mountains 

comprise the remaining area. 

 

Figure 1. Study area with leopard cat occurrences points. 
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2. Data 

2.1. Leopard Cat Survey 

From 1997 to 2005, field experts from the National Institute of Environmental Research, universities, 

and research institutes conducted surveys on species occurrences and spatial distributions of wildlife via 

direct observations, surveys of local residents, and field signs such as tracks, feces, and footprints. This 

study is part of the second national environment survey in South Korea. The leopard cat, or traces of the 

species, was found at 630 points in the study area. Some of the data were excluded because they 

identified the locations based on indirect research methods such as a local resident survey based on 

residents’ hearing the animals rather than a direct observation of the species. This resulted in the removal 

of 201 points, with a further 429 points utilized for modeling and validation. 

The leopard cat is one of the top predators in the mountainous regions of Korea, but few habitat 

models have been developed at the regional level for this animal. The species is designated as an 

Endangered Species Type II by the Wildlife Conservation Act of Korea. Recent habitat loss and 

fragmentation are critical factors threatening leopard cat populations in mountainous regions. Despite 

the leopard cat’s wide distribution, little is known about its ecology or behavior in the wild.  

Since 1986, Korea has undertaken national environmental research consisting of nine sectors:  

(1) geography; (2) vegetation; (3) flora; (4) mammals; (5) birds; (6) herptiles; (7) freshwater fishes;  

(8) land insects; and (9) benthic macroinvertebrates. Under the supervision of the National Institute of 

Environmental Research (NIER), the first and second national environmental research efforts occurred 

between 1986 and 1990 and between 1997 and 2005, respectively. Field experts from the National 

Institute of Environmental Research, universities, and research institutes have conducted surveys on 

species occurrence and the spatial distributions of wildlife. The third survey has been in progress since 

2006, and is expected to conclude in 2015. In the case of mammals, research has been conducted annually 

from February to October. Literature reviews, and geographical and vegetation statuses were used to 

determine the most appropriate locations for identifying local mammals. When species identification is 

difficult in the field, researchers resort to capturing the animals after obtaining necessary permissions. 

After the investigation, all captured mammals are released at the locations in which they were captured. 

Since direct observation of mammals is difficult, interviews have been used to complement fieldwork. 

Through interviews with local mammal experts, museum workers, hunting license issuers, and local 

residents, these efforts have identified apparent species locations, seasons, and population sizes.  

Since leopard cats are distributed throughout forested areas, research has focused not only on locations 

related to agricultural lands, but also on ridges, considering the total forested land. Since direct 

observation of leopard cats is difficult, trace investigations, including that of excrement, has been 

necessary. In addition, data have been acquired through interviewing local residents. Locations in which 

leopard cats have been observed or detected via traces were recorded by a global positioning system 

(GPS) or map, and used for constructing geographic information system (GIS) data. 

2.2. Controlling Factors 

The distribution of the leopard cat is the result of the interaction of complex factors. The selection of 

these factors and the preparation of corresponding thematic data layers are crucial components of any 
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model for leopard cat habitat potential mapping. The important factors for mammalian habitat include 

ground elevation, slope steepness, aspect, timber distribution, land cover, land use, and human activity 

(Table 1). These factors were collected from available maps and field investigations. A digital elevation 

model (DEM) was prepared through the digitization of contours at 5-m intervals from the topographical 

maps. Using the DEM, the slope gradient and slope aspect were calculated. The forest map is a series of 

polygons with a scale of 1:25,000 that is published by the Korea Forest Research Institute (KFRI). The 

land-cover types were identified from a panchromatic SPOT-5 (Système Probatoire d’Observation de la 

Terre 5) image taken in November 2007. 

The land-cover map was also a series of polygons with a scale of 1:5000 that was published by the 

Korea Ministry of Environment. The diameter, type, density, and age of the timber were obtained from 

the forest maps. The maps relevant to leopard cat occurrence were constructed in a vector format spatial 

database using the ArcGIS (ESRI) software package. To calculate the frequency ratio for the class or 

type of each factor, the scale factors were divided into 10 classes with equal area using ArcGIS. 

Therefore, the range of each class was automatically determined based on equal areas. Nine factors, both 

calculated and extracted (Table 1) from the maps, were converted to a 30 × 30-m grid format (ArcGIS 

GRID type). As a result, the dimensions of the study area grid were 7224 rows by 6792 columns, and 

the total number of cells was 12,307,439 (except those with no data). Then, the factors were converted 

to ASCII data for use with the statistics program. All of the factors were placed into one of the 10 classes. 

Each of the analyzed factors (Table 2) were made by utilizing the data of Table 1. 

Table 1. Data layer related to leopard cat of study area. 

Category Factors Data Type Scale 

Habitat Leopard cat Point - 

Forest map a 
Timber type  
Timber age 

Polygon 1:25,000 

Land Cover 

Distance from road (m)  
Distance from water (m)  
Distance from forest (m)  

Land cover 

Polygon 1:25,000 

Topographic map b 
Ground elevation (m)  

Slope gradient (°)  
Slope aspect 

GRID 1:5000 

a The forest map produced by Korea Forest Service (KFS; the http://www.forest.go.kr); b Topographical factors were 

extracted from digital topographic map by National Geographic Information Institute (NGII; http://www.ngii.go.kr). 

3. Methods 

The general progression of leopard cat potential habitat mapping is illustrated in Figure 2. The process 

of mapping the habitat potentials of two leopard cat communities in South Korea included six major 

steps: (1) a field survey to determine the occurrence of the leopard cat; (2) the determination and 

construction of a database of the controlling factors, in combination with a GIS analysis; (3) the 

construction of a spatial database based on the two leopard cat communities and nine factors influencing 

their distribution; (4) the division of leopard cat individuals into a training set (50%) to analyze habitat 
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potential using models and a test set (50%) to validate the predicted potential habitat map; (5) data 

processing using the frequency ratio and logistic regression models; and (6) validation of the leopard cat 

potential habitat maps using the known distributions of leopard cat that were not used in the analysis. 

 

Figure 2. Flowchart of study. 

For the application and validation of habitat potential models for the leopard cat, known locations 

were identified via interviews and field surveys in 2005 (Figure 1). We used these locations as the 

dependent variable, and nine factors believed to influence leopard cat habitat were set as independent 

variables: elevation, slope, aspect, timber distribution, land cover, land use, and human activity. Using 

known locations and calculated or database-extracted factors for model training, we conducted a habitat 

analysis using a frequency ratio model. A logistic regression model was also used for leopard cat habitat 

analysis. The frequency ratio model is a simple and basic technique that can be used to explain spatial 

relationships between known locations and potential habitat-influencing factors. For the application of 

these models, a statistical package was used in the GIS program. Finally, the resulting models were 

validated using known leopard cat locations that were not used to train the model.  

As stated earlier, the frequency ratio and logistic regression were used as a probabilistic and statistical 

model, respectively. The frequency ratio, as a probability model, can be easily represented as the 

frequency ratio of each factor. The frequency ratio is the probability of occurrence of a certain attribute 

(Bonham-Carter [28]). The frequency ratio is the ratio of the area in which an event in a class or type for 

a given factor occurs divided by the overall study area. In Equation (1), P(P) denotes the area ratio for 

the class or type for a given number of unit cells containing a percentage of the pixels in the domain for 

the class, and P(O) denotes the percentage of occurrence in the total event. The frequency ratio of each 

factors type or class, C, is then expressed by: 
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FRC= 
PC(O)

PC(P)
 (1)

Logistic regression enables investigation of multivariate regression relations between one dependent 

and several independent variables. Logistic regression is limited in that the calculation process cannot 

be traced because it repeats calculations to find the optimized regression equation for determining the 

possibility that the dependent variable will occur. However, logistic regression does have the following 

advantages: (1) the assumption of a normal distribution is not applied for independent variables because 

the relationship between the dependent variable and independent variables is identified as a non-linear 

relationship; (2) It is able to explain complex phenomena because a range of data types can be used for 

the independent variable, including discrete, gradational, nominal, and continuous types. Thus, the 

method is suitable for analyzing complex spatial relationships in a quantitative manner; (3) The result of 

a logistic regression analysis includes individual values for each factor related to the habitat. These factor 

values can be used in similar studies targeting other regions. 

By determining the frequency ratio, the area ratio for leopard cat habitat was calculated for the range 

or type of each factor, and the area ratio of the range or type of each factor to the total area was calculated. 

Finally, the frequency ratios for the range or type of each factor were calculated by dividing the 

distribution area ratio by the area ratio. The frequency ratio was assigned to each factor’s class. The 

frequency ratio of the habitat potential was created using the overlay functions in the GIS, which were 

used to merge different factors that were assigned the ratio. 

To apply the logistic regression model for analysis of leopard cat habitat potential mapping, the 

dependent variable was binary, representing the presence or absence of habitat. Quantitatively, the 

relationship between the occurrence and its dependency on several variables can be expressed as: 

PሺT ൌ 1|Xሻ ൌ ΛሺXሻ (2)

with the logistic function Λ, and introducing the actual logistic regression model explicitly as: 

logit൫PሺT ൌ 1|X଴ …X୬ሻ൯ ൌ z 

PሺT ൌ 1|X଴ …X୬ሻ ൌ Λሺzሻ 
(3)

where P is the probability of an event’s occurring, and e is the natural logarithm. In the present situation, 

P is the estimated probability of a habitat based on intrinsic properties only, which we term 

“susceptibility.” The probability varies from 0 to 1 on an S-shaped curve, and z is the linear combination. 

It follows that logistic regression involves fitting the data to an equation of the form: 

z = b0x0 + b1x1 + b2x2 + … + bnxn (4) 

where b0 is the intercept of the model, bi (i = 0, 1, 2, …, n) represents the slope coefficients of the logistic 

regression model, and xi (i = 0, 1, 2, …, n) are independent variables (Dai [29]). The linear model that 

is formed is then a logistic regression for the presence or absence of leopard cat habitat (present 

conditions) on the independent variables (pre-failure conditions). 

Using these formulae, a habitat potential map was constructed. The logistic regression analysis was 

performed by dividing the study area into grid squares of 30 × 30 m. Data for the 11 factors were 

converted to an ASCII format for use in the statistical package. 
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Although a “best-fit” equation is found in logistic regression using the same least-squares method as 

linear regression, the principles on which it does so are rather different. Instead of using least-square 

deviations criteria for the best fit, logistic regression employs a maximum likelihood method, which 

maximizes the probability of obtaining the observed results given the fitted regression coefficients.  

A consequence of this is that the goodness of fit and overall significance statistics used in logistic 

regression are different from those used in linear regression. Here, logistic regression was used to 

calculate and map the probability of habitat potential, and logistic regression values for the study area 

were applied. 

Log likelihood is a key concept for understanding the tests used in logistic regression. Normally, 

overall significance is determined by a chi-square test, which is derived from the likelihood of observing 

the actual data under the assumption that the model that has been fitted is accurate. Tables 2 and 3 contain 

the base model results for the frequency ratio and logistic regression analysis. 

4. Results 

4.1. Factors that Influence Leopard Cat Distributions 

We evaluated the spatial data using the frequency ratio model to reveal correlations between the 

distribution of the leopard cat and various environmental factors (Table 1) in the study area. A positive 

correlation designates higher habitat potential, while a negative correlation indicates lower habitat potential. 

Relationships between the distribution of the leopard cat and topography-related environmental factors 

derived from the digital elevation model (DEM; Table 2) are as follows. All of the topography-related 

factors (elevation, slope, and aspect) were positively correlated with the distribution of the leopard cat, 

indicating that at higher elevations and steeper slopes, habitat potential increases for this species. Higher 

elevations and steeper slopes may provide a safe habitat from competition, including that from humans. 

Accordingly, lower elevations and gentler slopes could produce the opposite result. The frequency ratio 

model results indicated that elevation, slope-related factors, and timber age were positively correlated 

with leopard cat locations. Areas closer to water and forest and farther from roads had higher habitat 

potential. With respect to timber type, oak forests showed the most positive correlation, and broad-leaved 

forest classes presented the most positive correlation among land cover types. In general, grasslands and 

edge areas formed adjacent to water and forests are known to be productive. These results indicate that 

the leopard cat uses habitats containing both safe topological features and rich food sources. 
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Table 2. Frequency ratio values between leopard cat and related factors. 

Factor Class 
No. of 

Leopard Cat 

% of 

Leopard Cat 

No. of 

Pixels in 

Domain 

% of 

Pixels in 

Domain 

Frequency 

Ratio 

Timber Type 

No data  

Farmland  

Larch  

Pinus rigida fores  

Non-stocked forest land  

Chestnut artificial forest  

Cut-over area  

Pinus densiflora Forests  

Pinus densiflora artificial forest  

Pinus koraiensis forest  

Left-over area  

Oak forest  

Oak artificial forest  

Grassland  

Conifer mixed forest  

Mixed forest of soft and hardwood 

Poplar forest  

Water  

Broadleaved forest  

Denuded land  

Bamboo stand  

Other 

13  

2  

7  

5  

0  

0  

0  

37  

0  

0  

3  

3  

0  

0  

0  

45  

7  

0  

93  

0  

0  

0 

6.05  

0.93  

3.26  

2.33  

0.00  

0.00  

0.00  

17.21  

0.00  

0.00  

1.40  

1.40  

0.00  

0.00  

0.00  

20.93  

3.26  

0.00  

43.26  

0.00  

0.00  

0.00 

4,804,101  

63,487  

583,520  

420,983  

17,862  

57,592  

44  

1,961,707  

17,996  

245,009  

75,377  

25,784  

35  

59,628  

928  

1,971,628  

154,432  

10  

1,838,135  

119  

8276  

786 

39.03  

0.52  

4.74  

3.42  

0.15  

0.47  

0.00  

15.94  

0.15  

1.99  

0.61  

0.21  

0.00  

0.48  

0.01  

16.02  

1.25  

0.00  

14.94  

0.00  

0.07  

0.01 

0.15  

1.80  

0.69  

0.68  

0.00  

0.00  

0.00  

1.08  

0.00  

0.00  

2.28  

6.66  

0.00  

0.00  

0.00  

1.31  

2.59  

0.00  

2.90  

0.00  

0.00  

0.00 

Timber age 

Non forest area  

1st age  

2nd age  

3rd age  

4th age  

5th age  

6th age 

20  

8  

11  

73  

60  

24  

19 

9.30  

3.72  

5.12  

33.95  

27.91  

11.16  

8.84 

4,807,568  

348,170  

1,119,393  

3,093,566  

2,229,052  

558,152  

151,538 

39.06  

2.83  

9.10  

25.14  

18.11  

4.54  

1.23 

0.24  

1.31  

0.56  

1.35  

1.54  

2.46  

7.18 
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Table 2. Cont. 

Factor Class 
No. of 

Leopard Cat 

% of 

Leopard Cat 

No. of Pixels 

in Domain 

% of Pixels 

in Domain 

Frequency 

Ratio 

Distance from 

forest (m) 

0  

0–376  

376–752  

752–1129  

1129–1505  

1505–1881  

1881–2633  

2633–5266  

5266–9780  

9780–96,299 

200  

15  

0  

0  

0  

0  

0  

0  

0  

0 

93.02  

6.98  

0.00  

0.00  

0.00  

0.00  

0.00  

0.00  

0.00  

0.00 

7,599,556  

3,758,175  

590,022  

173,595  

56,364  

47,662  

39,695  

17,803  

11,995  

12,572 

61.75  

30.54  

4.79  

1.41  

0.46  

0.39  

0.32  

0.14  

0.10  

0.10 

1.51  

0.23  

0.00  

0.00  

0.00  

0.00  

0.00  

0.00  

0.00  

0.00 

Distance from 

road (m) 

0  

0–892  

892–1783 

1783–2675  

2675–3566  

3566–5346  

5346–8024  

8024–12,481  

12,481–21,396  

21,396–228,225 

1  

42  

73  

56  

26  

12  

5  

0  

0  

0 

0.47  

19.53  

33.95  

26.05  

12.09  

5.58  

2.33  

0.00  

0.00  

0.00 

998,165  

7,167,235  

2,503,822  

878,584  

321,628  

204,622  

76,207  

62,533  

50,792  

43,851 

8.11  

58.23  

20.34  

7.14  

2.61  

1.66  

0.62  

0.51  

0.41  

0.36 

0.06  

0.34  

1.67  

3.65  

4.63  

3.36  

3.76  

0.00  

0.00  

0.00 

Distance from 

Water (m) 

0–300  

300–600  

600–900  

900–1200  

1200–1500  

1500–1800  

1800–2200  

2200–2900  

2900–4100  

4100–231,600 

49  

132  

33  

1  

0  

0  

0  

0  

0  

0 

22.79  

61.40  

15.35  

0.47  

0.00  

0.00  

0.00  

0.00  

0.00  

0.00 

6,341,839  

4,277,696  

1,307,761  

228,651  

75,739  

47,220  

7338  

3196  

9733  

8266 

51.53  

34.76  

10.63  

1.86  

0.62  

0.38  

0.06  

0.03  

0.08  

0.07 

0.44  

1.77  

1.44  

0.25  

0.00  

0.00  

0.00  

0.00  

0.00  

0.00 
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Table 2. Cont. 

Factor Class 
No. of 

Leopard Cat 

% of 

Leopard Cat 

No. of Pixels 

in Domain 

% of Pixels 

in Domain 

Frequency 

Ratio 

Land Cover 

No Data  

Other  

Residential Area  

Manufacturing Area  

Commercial Area  

Recreational Area  

Trafficker Area  

Public Area  

Agricultural Area  

Paddy  

Field  

Growing in Plastic Greenhouse  

Orchard  

Other Plantations  

Broadleaved Forest  

Coniferous Forest  

Mixed Forest  

Forest Area  

Natural Grassland  

Artificial Pasture  

Other Grassland  

Wetland  

Inland Wetland  

Coastal Wetland  

Bare Land  

Natural Bare Land  

Other Bare Land  

Beach  

Inland Water  

Marine Water 

0  

0  

1  

0  

0  

0  

1  

0  

0  

4  

7  

0  

0  

0  

87  

56  

57  

0  

0  

0  

1  

0  

1  

0  

0  

0  

0  

0  

0  

0 

0.00  

0.00  

0.47  

0.00  

0.00  

0.00  

0.47  

0.00  

0.00  

1.86  

3.26  

0.00  

0.00  

0.00  

40.47 

26.05 

26.51  

0.00  

0.00  

0.00  

0.47  

0.00  

0.47  

0.00  

0.00  

0.00  

0.00  

0.00  

0.00  

0.00 

25,366  

6  

368,259  

87,177  

51,080  

7266  

150,279  

63,623  

30  

1,673,342  

1,086,507  

55,590  

166,213  

44,730  

2,121,556  

3,398,502  

2,038,541  

12  

64,109  

14,778  

201,126  

4  

84,990  

43,714  

20  

10,630  

207,758  

1  

271,565  

70,665 

0.21  

0.00  

2.99  

0.71  

0.42  

0.06  

1.22  

0.52  

0.00  

13.60 

8.83  

0.45  

1.35  

0.36  

17.24  

27.61  

16.56  

0.00  

0.52  

0.12  

1.63  

0.00  

0.69  

0.36  

0.00  

0.09  

1.69  

0.00  

2.21  

0.57 

0.00  

0.00  

0.16  

0.00  

0.00  

0.00  

0.38  

0.00  

0.00  

0.14  

0.37  

0.00  

0.00  

0.00  

2.35  

0.94  

1.60  

0.00  

0.00  

0.00  

0.29  

0.00  

0.68  

0.00  

0.00  

0.00  

0.00  

0.00  

0.00  

0.00 

Ground 

Elevation (m) 

1–20  

20–60  

60–100  

100–149  

149–200  

200–264  

264–342  

342–456  

456–640  

640–1940 

1  

3  

6  

10  

15  

9  

15  

42  

41  

73 

0.47  

1.40  

2.79  

4.65  

6.98  

4.19  

6.98  

19.53  

19.07  

33.95 

1,477,428  

1,528,017  

1,252,322  

1,162,504  

1,215,807  

1,145,797  

1,133,705  

1,135,628  

1,135,580  

1,120,651 

12.00  

12.42  

10.18  

9.45  

9.88  

9.31  

9.21  

9.23  

9.23  

9.11 

0.04  

0.11  

0.27  

0.49  

0.71  

0.45  

0.76  

2.12  

2.07  

3.73 
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Table 2. Cont. 

Factor Class 
No. of 

Leopard Cat 

% of 

Leopard Cat 

No. of Pixels 

in Domain 

% of Pixels 

in Domain 

Frequency 

Ratio 

Slope gradient 

(°) 

0  

0–2.7  

2.7–5.3  

5.3–8.0  

8.0–11.0  

11.0–13.8  

13.8–17.0  

17.0–20.0  

20.0–24.5  

24.5–56.6 

0  

6  

12  

16  

26  

28  

38  

20  

30  

39 

0.00  

2.79  

5.58  

7.44  

12.09  

13.02  

17.67  

9.30  

13.95  

18.14 

1,598,779  

1,221,822  

1,227,435  

1,187,745  

1,175,879  

1,166,970  

1,227,353  

1,188,780  

1,167,277  

1,145,399 

12.99  

9.93  

9.97  

9.65  

9.55  

9.48  

9.97  

9.66  

9.48  

9.31 

0.00  

0.28  

0.56  

0.77  

1.27  

1.37  

1.77  

0.96  

1.47  

1.95 

Slope aspect 

Flat  

N  

NE  

E  

SE  

S  

SW  

W  

NW 

0  

21  

36  

29  

31  

16  

24  

27  

31 

0.00  

9.77  

16.74  

13.49  

14.42  

7.44  

11.16  

12.56  

14.42 

1,598,779  

1,212,664  

1,358,789  

1,395,191  

1,367,292  

1,235,557  

1,389,112  

1,396,318  

1,353,737 

12.99  

9.85  

11.04  

11.34  

11.11  

10.04  

11.29  

11.35  

11.00 

0.00  

0.99  

1.52  

1.19  

1.30  

0.74  

0.99  

1.11  

1.31 

4.2. Habitat Potential Mapping 

The frequency model was used to derive and calculate correlation ratings between the leopard cat 

distribution and each factor influencing habitat. Each factor’s rating was assigned as the relationship 

between leopard cat distribution and each factor’s type or range (Table 2). The ratio of the number of 

cells where the leopard cat was not founded to the number of cells where the leopard cat was founded is 

shown in Table 2. The habitat potential index (HPIFR), Equation (5), was calculated by a summation of 

each factor ratio value, as shown in Table 2 (Lee [30]): 

HPIFR = FR (5) 

where FR is the rating of each factor type or range. A FR of 1 indicates that the class has a density of 

habitat area proportional to the size of the class in the map. If the value is greater than 1, then there is a 

high correlation, and a value of less than 1 means a lower correlation. 
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Table 3. Logistic regression coefficient between leopard cat and related factors. 

Factor Class 
Logistic Regression 

Coefficient 
Significance Level 

Timber Type 

No data  

Farmland  

Larch  

Pinus rigida fores  

Non-stocked forest land  

Chestnut artificial forest  

Cut-over area  

Pinus densiflora forest  

Pinus densiflora artificial forest  

Pinus koraiensis forest  

Left-over area  

Oak forest  

Oak artificial forest  

Grassland  

Conifer mixed forest  

Mixed forest of soft and hardwood  

Poplar forest  

Water  

Broadleaved forest  

Denuded land  

Bamboo stand  

Other 

0.000000  

2.147514  

2.502028  

0.948505  

2.462551  

4.025706  

1.895348  

−18.043562  

3.942215  

−16.933439  

0.000000  

2.252224  

2.532997  

−22.151046  

2.291914  

0.000000  

0.000000  

0.000000  

0.000000  

0.000000  

0.000000  

0.000000 

0.000 

Timber age 

Non forest area  

1st age  

2nd age  

3rd age  

4th age  

5th age  

6th age 

−0.305775  

0.874957  

−0.260902  

−0.081416  

0.087840  

−0.655312  

0.000000 

0.002 

Distance from forest (m) - 0.00442 0.935 

Distance from road (m) - −0.00026 0.480 

Distance from Water (m) - −0.000133 0.001 
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Table 3. Cont. 

Factor Class 
Logistic Regression 

Coefficient 
Significance Level 

Land Cover 

No Data  

Other  

Residential Area  

Manufacturing Area  

Commercial Area  

Recreational Area  

Trafficker Area  

Public Area  

Agricultural Area  

Paddy  

Field  

Growing in Plastic Greenhouse  

Orchard  

Other Plantations  

Broadleaved Forest  

Coniferous Forest  

Mixed Forest  

Forest Area  

Natural Grassland  

Artificial Pasture  

Other Grassland  

Wetland  

Inland Wetland  

Coastal Wetland  

Bare Land  

Natural Bare Land  

Other Bare Land  

Beach  

Inland Water  

Marine Water 

0.000000  

0.000000  

1.252586  

2.305031  

2.030913  

2.078151  

19.626055  

20.999587  

0.000000  

18.571218  

18.817534  

0.000000  

1.801892  

3.061980  

18.682290  

19.251522  

19.127733  

0.000000  

17.532816  

−0.795913  

17.843009  

0.000000  

21.357972  

0.000000  

0.000000  

0.442838  

18.492102  

0.000000  

19.498249  

0.000000 

0.722 

Ground Elevation (m) - 0.003815 0.000 

Slope gradient (°) - −0.013209 0.130 

Slope aspect - −0.001690 0.004 

The spatial databases of each variable were converted to ASCII files using ArcGIS for use in the 

statistical package SPSS 20. Using this approach, logistic multiple regression coefficients (B), standard 

errors of slope coefficients (S.E), the Wals tests (Wals), the significance levels (Sig.), and the 

exponentiated slope coefficients (Exp(B)) of the related variables were calculated (Table 3). The 

coefficients were estimated using the maximum-likelihood model. Because the relationship between the 

independent variables and the probability was nonlinear in the logistic multiple regression model, an 

iterative algorithm was necessary for parameter estimation (Oh [31]). Coefficients denote the meaning 

of the influences of related factors or classes to habitat potential. A negative value means that the factor 
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or class has a negative effect on the occupancy of the leopard cat at the study site, such as slope gradient, 

timber type (Pinus densiflora and Pinus koraiensis forest, and grassland), road distance, and distance 

from water.  

Z = TIMBER_TYPE + TIMBER_AGE + (−0.0003 × DIST_ROAD) + (−0.0001 × 

DIST_WATER) + (0.004 × DIST_FOREST) + LAND_COVER + (0.004 × DEM) + 

(−0.013 × SLOPE) + (−0.002 × ASPECT) − 21.853 

(6) 

Here, DEM is the intertidal ground elevation value, SLOPE is the slope gradient value, ASPECT is 

the slope aspect value, DIST_ROAD is the distance from a road, DIST_WATER is the distance from 

water, and DIST_FOREST is the distance from forest area. TIMBER_TYPE, TIMBER_AGE, and 

LAND_COVER are the values of each categorical factor in Table 3, and Z is a prediction parameter. 

Using the logistic regression coefficient (Table 3), the probability of a species was computed and mapped 

as the habitat potential index (HPI). 

Leopard cat habitat potential maps were quantitatively developed using the HPI values. These were 

calculated using the logistic regression and frequency ratio models for the interpretation (Figure 3). 

Figure 3a is result of applying frequency ratio (Table 2) and Figure 3b is result of applying logistic 

regression (Table 3). The index was composed of five classes based on area for easy visual interpretation. 

Index ranges of very high, high, moderate, low, and very low in 5%, 10%, 15%, 20%, and 50% of the 

study area, respectively, were used. The classification was useful to visually delineate the predicted 

habitat potential areas.  

 
(a) 

Figure 3. Cont. 
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(b) 

Figure 3. Leopard cat habitat potential map (a) Frequency Ratio; (b) Logistic Regression. 

4.3. Validation 

A leopard cat habitat potential map should effectively predict future leopard cat potential habitat 

areas. This could be validated using new potential locations as the cats become distributed. In the study, 

many locations of leopard cats were detected from survey data. These locations were divided into a 

training set to analyze the habitat potential using the frequency ratio and logistic regression models, and 

a validation set to validate the predicted habitat potential map. The leopard cat habitat potential analysis 

result was validated using a validation set that was not used for training the model. Validation was 

performed by comparing the known leopard cat distribution locations with the habitat potential maps. 

A rate curve was created, and the area under the curve was calculated. The rate explains how well the 

model and factors predict leopard cat distribution. The area under the curve qualitatively assesses the 

accuracy of the prediction. To obtain the relative ranks for each prediction pattern, the calculated index 

values of all cells in the study area were sorted in descending order. The ordered cell values were then 

divided into 100 classes with accumulated 1% intervals. The rate validation result appears as a line in 

Figure 4. For example, in the case of the logistic regression model, an index rank above 10% of the HPI 

could explain 33% of all the leopard locations. To obtain quantitative results, the areas under the curve 

were recalculated as if the total area were 1.0, which would mean perfect prediction accuracy. Using this 

method, the area under a curve can be used to assess the prediction accuracy qualitatively. In the case of 

the frequency ratio, the area under the curve was 0.821, and the prediction accuracy was 82.15%. In the 
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case of the logistic regression, the area under the curve was 0.8148, and the prediction accuracy was 

81.48%, as shown in Figure 4. 

 

Figure 4. Success rate curves showing the cumulative percentage of each species occurrence 

(y-axis) for the descending ordered species potential index (SPI) rank (x-axis). 

5. Conclusions and Discussion 

In this study, we applied the frequency ratio and logistic regression models to habitat potential 

mapping for the leopard cat. The first step was to select the nine most important variables potentially 

affecting leopard cat habitat. We then mapped habitat potential using frequency ratio and logistic 

regression models representing the relationships between leopard cat distribution and environmental 

variables. We assembled factors associated with habitat potential in a spatial database and created habitat 

potential maps for the leopard cat. Finally, we validated the maps using location data that had not been 

used for model training. We arrived at the following conclusions: 

(1) The results of the frequency ratio model indicated that elevation, slope-related factors, and timber 

age had a positive correlation with locations used by the leopard cat. Areas closer to water and 

forest and farther from roads, oak forests, and broad-leaved forest classes showed the most positive 

correlations. 

(2) According to the logistic regression coefficients, the factors of slope gradient, timber type (Pinus 

densiflora and Pinus koraiensis forests, and Grassland), the distance from roads and distance 

from water were negatively correlated with the locations used by the leopard cat. In contrast, the 

factors of ground elevation and distance from a forest had a positive effect on leopard cat habitat 

potential. Some factors contrasted with the results of the frequency ratio, i.e., slope gradient and 

distance from water. 
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(3) Generally, the maps resulting from the frequency ratio and logistic regression models had similar 

spatial distribution patterns. The central south and northeastern parts of the inland area of South 

Korea and the central part of Jeju Island were expected to have high and very high potential. The 

results of this study can be used in future studies of predator reintroduction on Jeju Island. In 

particular, the reintroduction of the leopard cat is being considered because it can play the role 

of top predator on Jeju Island. This study indicated high availability of potential habitat. These 

areas have high elevation, steep slopes, and forest, and they are hilly or mountainous. Such areas 

of high and very high potential should be given priority during land-use or wildlife management 

planning. The western and eastern coastal parts of the site were shown to have low and very low 

potential in all of the habitat potential maps. Almost all areas in this region are low-lying, with 

coastal and non-forest habitat. 

(4) Using the frequency ratio and logistic regression models, we created leopard cat habitat potential 

maps. Half of known leopard cat locations were used as training data and the remaining half was 

used to validate the maps. The resulting frequency ratio and logistic regression models were 

82.15 and 81.48% accurate, respectively. Therefore, the results had an overall agreement of more 

than 80%, which we regarded as satisfactory. 

Some limitations exist to detecting exact leopard cat locations, and the locations used in this study 

were based on surveys, not exact figures. Inaccurate location data can lead to difficulties in spatial analysis. 

The frequency ratio model is somewhat simplistic, but the process of input, calculation, and output 

can be easily understood. Moreover, large amounts of data can be quickly and easily processed in the 

GIS environment. The spatial database can be used in other studies. The logistic regression model 

requires the conversion of the data to ASCII or other formats for use in the statistical package and 

subsequent re-conversion to incorporate them into the GIS database. It is hard to process the large 

amounts of data in the statistical package. However, the correlations of leopard cat locations with other 

factors can be analyzed qualitatively in the statistical package. The frequency ratio model had better 

accuracy than the logistic regression model used in this study, and the use of all factors produced better 

results. In the case of a similar statistical model (discriminant analysis), the factors must have a normal 

distribution, and in the case of multi-regression analysis, the factors must be numerical. However, for 

logistical regression, the dependent variable must be input as 0 or 1; therefore, the model applies well to 

habitat potential analysis. 

Remote sensing technology and GIS provide ways to introduce information from various data sources 

into the decision-making process and aid in the handling and manipulation of classified remote sensing 

data (Adinarayana [32]). Using GIS enables quantitative assessment of the consequences of 

heterogeneity in ecological systems over a broad range of spatial and temporal scales. The integration 

of several surface features that indicate mammal habitat potential is an important aspect of ecological 

management studies. 

This study identified factors that may be associated with leopard cat habitat, and our methods and 

results can also be applied to habitat potential mapping of other mammalian species. Moreover, the 

resulting habitat potential map can be used as basic data for establishing plans to manage mammalian 

species, such as locating monitoring sites. However, more case studies and models are needed to 

generalize factors associated with mammalian habitats. 
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