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Abstract: Applying fuel reduction treatments (FRTs) to forested landscapes can alleviate 

undesirable changes in wildfire benefits and costs due to climate change. A conceptual 

framework was developed for determining the preferred FRTs across planning periods, 

adapting FRTs to future climate change, assessing the sustainability of adaptive responses 

to climate change, and evaluating the validity of the two premises motivating this issue of 

Sustainability. The conceptual framework: (1) accounts for uncertainty about future climate 

change and its effects on management objectives for FRTs; (2) employs biophysical 

simulation and mental models to estimate the management objectives for FRTs; (3) uses 

fuzzy TOPSIS to determine the preferred FRTs for climate futures; (4) employs the minimax 

regret criterion to identify the preferred FRT for each planning period; (5) determines the 

best strategy for adapting FRTs to future climate change; and (6) assesses landscape 

sustainability when using the preferred FRTs. The framework is demonstrated with constructed 

examples for adapting FRTs to climate change for privately- and publicly-owned forested 

landscapes. Based on the conceptual framework, current knowledge does not allow 

determining with certainty whether managers’ adaptations of FRTs to future climate change 

are sustainable or unsustainable due to type I and II decision errors. 

Keywords: conceptual framework; sustainability; fuel reduction treatments; adaptation; 

climate change 
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1. Introduction 

This special issue of Sustainability addresses two issues: (1) current knowledge does not allow us to 

determine with certainty whether adaptive responses to climate change are sustainable; and (2) some 

adaptation strategies can undermine long term principles of sustainable development while others can 

surely contribute to social and environmental sustainability. The veracity of both statements depends on 

the biophysical and socioeconomic attributes of the coupled natural–human system (system for short) 

under consideration and whether the system manager is certain or uncertain about future climate change 

and its effects on the system. This paper presents a conceptual framework (i.e., abstract representations 

designed to guide empirical research on an issue) that managers can use to determine the preferred 

management alternatives for a system and adapt the system to future climate change, and which a second 

party can use to assess the sustainability of the system. The conceptual framework is used to evaluate 

the veracity of the two statements for adaptation of fuel reduction treatments (FRTs) to climate change 

in forested landscapes. The integrative, quantitative framework presented here differs from evaluation 

frameworks, such as the one developed by Jabareen [1], that apply various concepts of sustainability to 

a plan in a qualitative manner without integrating those concepts in a manner that allows identification 

of the most preferred plan. 

Constructed examples are used to demonstrate how the conceptual framework can be used: (1) by a 

manager of a forested landscape (manager for short) to determine the preferred FRTs over time and 

adapt FRTs to future climate change; and (2) by a second party to assess the sustainability of preferred 

FRTs and adaptive responses. The constructed examples pertain to a privately-owned and managed  

(case 1) and publicly-owned and managed (case 2) forested landscape. Both cases assume managers are 

uncertain about the magnitude of future climate change and its effects on management objectives for 

FRTs. Although the conceptual framework is applied to fuel reduction decisions for forested landscapes, 

it can be used to determine the preferred FRTs within planning periods, identify the best way to adapt 

FRTs to climate change, and assess the sustainability of adaptive responses to climate change for  

other systems. 

1.1. Potential Benefits of Fuel Reduction Treatments in Forested Landscapes 

During the past few decades, managing forested landscapes in the United States has become more 

challenging due to dramatic increases in private property damages from wildfire and wildfire 

suppression costs, particularly in the wildland-urban interface. According to the National Interagency 

Fire Center [2], an average of 1711 residences, 1199 outbuildings, and 45 businesses are destroyed 

annually by wildfire. Gude et al. [3] report that wildfire destroyed 10,000 residences during the period 

2000–2006 with more than 5400 structures destroyed by wildfire in 2007 alone. Average federal wildfire 

protection and suppression costs have risen from less than $1 billion annually in the 1990s to $1.6 billion 

during the period 2006‒2014 [4]. 

Excluding fire from American forests for 70+ years and the slowdown in timber harvesting on western 

federal lands have contributed to a buildup of forest fuels resulting in larger and more intense fires than 

historically occurred in most forested landscapes [5,6]. Fuel reduction treatments, such as light thinning, 

heavy thinning, and prescribed burning, can reduce extreme wildfire behavior and wildfire damages [7]. 
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Safford et al. [8] assessed the effectiveness of mechanical and prescribed fire/pile burn prescriptions in 

reducing fire severity and tree mortality in 12 forest fires in eastern and southern California. They 

concluded that with few exceptions, fire severity measures, such as bole char height, scorch and torch 

height, scorch and torch percentage, and tree mortality were much lower in forest stands treated for fuels 

than in neighboring untreated stands. Martinson et al. [9] developed a meta-analytic model to synthesize 

results from 19 publications that reported observed fire responses from 62 treated versus untreated 

contrasts in confer forests. Their final model was highly significant (p < 0.001) and explained 78% of the 

variability in reported observations of fuel treatment effectiveness, indicating that the overall mean effect 

of fuel treatments on fire intensity and severity is large and significant. Other researchers contend, 

however, that reducing the frequency of catastrophic fire with mechanical thinning alone or in 

combination with prescribed burning should be considered a working hypothesis [10]. Overall, FRTs 

appear to be an effective measure for reducing wildfire damages in the wildland-urban interface. 

Climate change is expected to lengthen the wildfire season and increase the amplitude and duration 

of weather conditions that promote larger and more intense wildfires [11]. For example, future climate 

change in the western US is expected to result in more heat, less snowpack, earlier snowmelt and runoff, 

and more variable weather patterns than in past centuries [2,12]. 

2. Materials and Methods 

2.1. Overview of Methods 

This section describes three components of the conceptual framework: (1) the decision model used 

to determine the preferred FRTs over time (Section 2.1.1) and adapt FRTs to future climate change 

(Section 2.1.2); (2) estimation of management objectives for FRTs (Section 2.2); and (3) assessment of 

the sustainability of the preferred FRTs selected by managers (Section 2.3). In addition, the validity of 

the two statements is discussed in the context of the conceptual framework (Section 2.4). 

2.1.1. Decision Model for Determining Preferred FRTs 

The decision model determines the preferred FRTs over multiple, equal-length planning periods. The 

decision processes included in the model are as follows. First, the manager identifies the maximum 

hectares that can be treated with each FRT in each planning period. Maximum hectares treated are 

constrained by the fuel treatment budget for each planning period. 

Second, for case 1, at the beginning of each planning period, the private manager selects and 

implements the preferred FRT, which is the FRT that maximizes expected net return for fuel treatment 

(ENRT) for that planning period. Because ENRT measures the profit earned from FRTs, if any,  

the management objective for FRTs for case 1 is to maximize the profit earned from fuel treatment in 

each planning period. For case 2, at the beginning of each planning period, the public manager selects 

and implements the most preferred FRT for that planning period with respect to three management 

objectives: maximizing ENRT; minimizing expected residential property losses from wildfire (ERLW); 

and maximizing expected ecological benefits of fuel treatment (EEBT). The preferred FRTs for planning 

periods in case 2 are determined using a multiple-objective decision-making procedure. The decision 

model is general enough to handle other management objectives besides the ones mentioned above. 
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Third, for both cases, managers select preferred FRTs for planning periods taking into account 

uncertainty about future climate change and its effects on management objectives for FRTs. Uncertainty 

about future climate change occurs because scientists that develop climate futures, such as the 

representative concentration pathways (RCPs) specified in the IPCC’s fifth assessment report [13],  

are unwilling or unable to assign probabilities to those futures. In addition, managers are typically 

uncertain about how climate futures are likely to influence management objectives. Due to both sources 

of uncertainty, the preferred FRT for a planning period cannot be determined using stochastic  

decision-making rules that require probabilities for climate futures and the effects of climate futures on 

FRTs. Examples of such rules include the expected value criterion and Bayesian networks. 

Fourth, the best adaptive management strategy for both cases is determined based on the preferred 

FRTs across planning periods. 

Selecting the preferred FRT for a planning period involves two separate but related decisions:  

(1) determining the preferred FRT for each climate future in each planning period (first decision);  

and (2) identifying the best FRT across climate futures for each planning period (second decision). 

For case 1, the preferred FRT for each climate future within a planning period is selected based on 

ENRT, which is stochastic because its determinants, such as wood prices and harvest costs, are stochastic. 

Therefore, the first decision for case 1 is to select the preferred FRT for each climate future at the 

beginning of the planning period based on the distributions of the estimated values of ENRT for that 

period. That decision can be made by applying the stochastic efficiency with respect to a function (SERF) 

criterion [13] to the distributions of the estimated values of ENRT. The dominant or preferred FRT for 

each climate future with the SERF criterion is the one with the highest certainty equivalent [14], which is 

the payoff amount a manager is willing to receive in exchange for accepting the variability in ENRT for 

a particular FRT. For example, the SERF criterion has been applied assuming: (1) the manager’s risk 

aversion coefficient (RAC) is in the range (0, 0.03), where 0 implies the manager is risk-neutral and RAC 

>0 implies the manager is risk-averse [15]; (2) constant absolute risk aversion (i.e., the risk premium  

a manager is willing to pay to reduce ENRT risk does not vary with the level of ENRT); and (3) the  

manager’s utility function is exponential in ENRT (i.e., u[ENRT·I] = exp[−RAC × ENRT]) [16].  

The SERF criterion has the drawback that it requires specifying the manager’s risk preferences and the 

form of the manager’s utility function. Such specifications are usually arbitrary, which is undesirable. 

Alternatively, the first decision for case 1 can be made using the minimax regret criterion (MRC). 

With the MRC, the preferred FRT for each climate future is the one that minimizes the average maximum 

loss in ENRT across those futures. The average maximum loss in ENRT with a particular FRT and 

climate future can be estimated by taking the difference between the expected value of the distribution 

of the estimated values of ENRT for that FRT with no future climate change minus the expected value 

of the distribution of the estimated values of ENRT for that FRT and climate future. 

The second decision for case 1 involves choosing the preferred FRT across climate futures for each 

planning period. That decision is made by applying the MRC to the preferred FRTs for climate futures 

in each planning period. 

The first decision for case 2 is to determine the preferred FRT for each climate future within a 

planning period based on three management objectives: maximizing ENRT; minimizing ERLW;  

and maximizing EEBT. A fuzzy logic decision model is used to make the first decision for case 2. That 

model uses a f, multiple-objective, decision-making rule that accounts for uncertainty. Fuzzy logic has 
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been used to evaluate agricultural sustainability [17,18], ecological impacts [19,20], the behavior of 

environmental systems [21,22], suitability of sites as scientific natural reserves [23], the efficacy of 

protected areas in nature conservation [24], sustainable development [25], and ecosystem  

management [26,27]. 

Several fuzzy logic procedures can be used to make the first decision for case 2. The decision model 

uses the fuzzy Technique for Order Preference by Similarity of Ideal Solution, or fuzzy TOPSIS. Fuzzy 

TOPSIS evaluates and ranks decision alternatives based on how close (or how far away) the management 

objectives achieved by those alternatives are to the most (or least) desirable values of the positive (or 

negative) objectives [28–33]. A positive objective is one for which more of the objective is preferred and 

a negative objective is one for which less of the objective is preferred by the decision-maker. 

General steps in the fuzzy TOPSIS procedure are as follows: 

(1) Managers assign narrative descriptions known as linguistic variables to the estimated values of 

the objectives of FRTs under each climate future and the relative importance of the objectives. 

Linguistic variables can be assigned independently or collectively by managers. 

(2) Fuzzy numbers are assigned to linguistic variables. For example, Chen [30] and Prato [33] 

assigned triangular fuzzy numbers to linguistic variables. If managers collectively assign 

linguistic variables, then the fuzzy numbers corresponding to the collective linguistic variables 

are used. If managers independently assign linguistic variables, then the fuzzy numbers 

corresponding to the linguistic variables chosen by individual managers are averaged to obtain 

collective fuzzy numbers. 

(3) Fuzzy TOPSIS is used to rank FRTs for each climate future within a planning period. The preferred 

FRT for a climate future is the top-ranked FRT for that future. 

The second decision for case 2 is to choose the preferred FRT across climate futures for each planning 

period using the MRC. This decision is more complicated than the second decision for case 1 because 

case 2 selects the preferred FRTs based on three objectives, whereas case 1 selects the preferred FRTs 

based on only one objective. In order to apply the MRC to the second decision for case 2, a maximum 

loss index (MLI) is calculated for the preferred FRT for each climate future. The MLI is an index of the 

expected maximum losses in the three objectives for a particular climate future. Expected maximum loss 

for an objective with a particular climate future is the average estimated value of the objective without 

future climate change minus the average estimated value of the objective with that climate future. 

Calculation of the MLI requires managers to assign weights to the objectives, such that the sum of the 

weights equals one. With the MRC, the preferred FRT for a planning period is the one that minimizes 

the MLI across climate futures. 

2.1.2. Decision Model for Adapting FRTs to Climate Change 

The decision model in the conceptual framework determines a manager’s best strategy for adapting 

FRTs to climate change over planning periods by applying adaptive management (AM) [34–36] to the 

preferred FRTs for planning periods. AM is a form of integrated learning that acknowledges and 

accounts for the surprising and unpredictable nature of the outcomes of management alternatives  

due to uncertainty about future changes in system drivers and the effects of those drivers on management 
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outcomes. Kohm and Franklin [37] state that “adaptive management is the only logical approach under 

the circumstances of uncertainty.” The National Research Council (2004) [38] states that “adaptive 

management [is a decision process that] promotes flexible decision making that can be adjusted in the 

face of uncertainties as outcomes from management actions and other events become better understood.” 

Adaptive management can be either active or passive. Williams [39] defines active AM as an 

approach that evaluates management alternatives for reducing uncertainty about ecological processes 

and how management decisions influence those processes, and passive AM as an approach that focuses 

on resource management objectives with less emphasis on learning about the effects of management 

alternatives on ecological processes. Nyberg [40] and Prato [41] define active AM as a management 

approach that designs and conducts experiments to test hypotheses about the efficacy of management 

alternatives and adapts management alternatives over time when warranted based on test results, and 

passive AM as a management approach that does not involve experiments and hypothesis testing. For 

the test results from active AM to be statistically reliable, the experiments must incorporate replicated, 

randomized, and independent treatments and controls. 

Although active AM can provide statistically reliable information about the impacts of system drivers 

on management alternatives, it has three limitations. First, conducting experiments on management 

alternatives requires major investments in research, monitoring, and modeling, which can be expensive. 

Second, active AM cannot be used when the impacts of management alternatives or experimental 

treatments cannot be evaluated independently of one another; lack of independence among treatments 

violates one of the prerequisites of experimental design. Third, several of the prerequisites of active AM 

are difficult to satisfy [41]. Passive AM does not involve experimental controls and replication or 

randomization of management alternatives, and, as a result, does not provide statistically reliable 

information about how management alternatives influence objectives. Nevertheless, passive AM is 

generally less expensive and easier to apply than active AM. 

The decision model utilizes passive AM. Specifically, the best AM strategy for both cases is 

determined based on the preferred FRTs across planning periods. For example, if there are four FRTs, 

four planning periods, and the preferred FRTs are FRT3 for the first and second planning periods, FRT4 

for the third planning period, and FRT1 for the fourth planning period, then the best passive AM strategy 

is to switch from FRT3 to FRT4 at the beginning of the third planning period, and switch from FRT4 to 

FRT1 at the beginning of the fourth planning period. 

2.2. Estimating Management Objectives 

In order for managers to determine the preferred FRTs for future planning periods, they need to 

estimate how various FRTs and climate futures are likely to influence ENRT, ERLW, and EEBT.  

The effects of FRTs on harvested timber volume under different climate futures can be simulated by 

inputting temperature and precipitation projections for those futures and other information into the Fire 

BioGeoChemical (FireBGC) model [42]. FireBGCv2 is a mechanistic, individual tree succession model 

that includes a spatially explicit model for fire ignition and spread, and their effects on ecosystem 

components [42]. The FireBGCv2 model can be used to simulate fire behavior in any forested area. 

Simulated harvested timber volumes for FRTs can be combined with harvest costs estimated using the 
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Harvest Cost Model [43] and forecasted timber prices to estimate one or more values of ENRT for each 

FRT, climate future, and planning period. 

Burn probabilities for residential parcels in the forested landscape for each FRT and climate future 

are needed to estimate ERLW. Such probabilities can be estimated by inputting changes in vegetation 

simulated using the FireBGC model into the FSim model [44]. Simulated burn probabilities are then 

combined with other information (e.g., the location of residential parcels whose burn probabilities are 

affected by FRTs, fuel reduction treatments used in residential parcels, real estate values, etc.) to estimate 

ERLW for FRTs, climate futures, and planning periods [45]. 

Potential increases in EEBT for various FRTs can be estimated by the extent to which FRTs reduce 

the departure of ecological conditions in a landscape from their historic range and variability (HRV) [46]. 

HRV specifies an historical envelope of possible ecological conditions that can be used as reference 

conditions for evaluating the ecological benefits of management prescriptions [47]. For example,  

if heavy thinning reduces the departure of ecological conditions in a forested landscape from its HRV 

more than light thinning, then EEBT is higher with heavy thinning than light thinning. The ecological 

variables used to measure HRV need to be specified by the manager and are likely to vary with the type 

of landscape being evaluated. 

2.3. Assessing Sustainability of Preferred FRTs 

While a lot has been written about sustainability and sustainable resource management, there is no 

consensus about how to assess the sustainability of a system. The approach used in the conceptual 

framework assumes that a second party (i.e., someone other than the manager of the private or public 

forested landscape), evaluates the sustainability of the system based on a set of sustainability conditions 

selected by the second party. Sustainability conditions are statements about the acceptability of the 

values of the criteria used to evaluate sustainability. A major difference between the manager’s selection 

of preferred FRTs and a second party’s sustainability assessment is that the manager uses estimated 

values of the objectives as of the beginning of the planning period whereas the second party uses 

observations on the values of the criteria for the planning period. 

2.3.1. Evaluating Sustainability for Single-Valued Criteria 

The form of the sustainability conditions varies depending on whether there are single- or  

multiple-valued criteria. This section describes sustainability conditions for single-valued criteria and 

the next section describes sustainability conditions for multi-valued criteria. A sustainability condition 

for a single-valued, positive criterion (e.g., maximizing ENRT or EEBT) is that the system is sustainable 

with respect to that criterion when the observed value of the criterion exceeds some minimum acceptable 

level. For example, suppose there is only one observation for EEBT for each FRT, planning period, and 

climate scenario, and EEBTmin is the minimum acceptable level chosen by the second party. The system 

is sustainable with respect to EEBT for all FRTs that satisfy the condition EEBT > EEBTmin and 

unsustainable if that condition is violated (i.e., EEBT ≤ EEBTmin). 
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2.3.2. Evaluating Sustainability for Multi-Valued Criteria 

If the second party assesses sustainability using multivalued criteria, then multivalued sustainability 

conditions are used. For example, if there are multiple observations on ERLW for each planning period, 

then the system is sustainable with respect to ERLW for all FRTs that satisfy the condition  

Pr{ERLW ≤ ERLWmax} ≥ 1 − φ, where ERLWmax is the maximum acceptable level of ERLW,  

0 ≤ φ ≤ 1, and 1 − φ is the reliability level for the probability statement. The system is unsustainable for 

all FRTs that violate the condition (i.e., Pr{ERLW ≤ ERLWmax} < 1 − φ). The sustainability condition 

for ERLW incorporates a maximum acceptable value because ERLW is a negative criterion. Probability 

statements can be evaluated using the best-fitting probability distribution for the observed values of ERLW. 

Although the single-valued sustainability condition is easier to apply than the multivalued 

sustainability condition, the latter accounts for variability in the values of the objectives within planning 

periods and affords greater flexibility in satisfying the sustainability conditions than the single-valued 

sustainability condition. The multivalued sustainability condition can only be used when there are 

multiple observations for a criterion within a planning period. 

2.3.3. Weak vs. Strong Sustainability 

The third party can assess the weak or strong sustainability of a system. A system is weakly 

sustainable when some, but not all, of the criteria satisfy their respective sustainability conditions. 

Unfortunately, there is no generally accepted rule for how many criteria need to satisfy their respective 

sustainability conditions before a system is declared weakly sustainable. The manager would have to 

establish such a rule. For example, the system is weakly sustainable if at least two-thirds of the objectives 

satisfy their respective sustainability conditions. 

An alternative way to determine whether a system is weakly sustainable when there are multiple 

criteria and a single observation for each criterion is to use a composite index for the criteria and 

determine whether the value of the index equals or exceeds some minimum acceptable value.  

Weak sustainability of a system with respect to multiple criteria for which there are multiple observations 

can be assessed by determining whether the probability that the composite index equals or exceeds some 

minimum acceptable value is greater than or equal to 1 − φ [48]. Use of a composite index requires that 

all the criteria be either positive or negative. For example, a composite index can be constructed for 

ENRT, ERLW, and EEBT by converting ERLW from a negative criterion to a positive criterion (ENRT 

and EEBT are already positive criteria) by changing the objective with respect to ERLW from 

minimizing ERLW to maximizing the reduction in ERLW relative to some baseline value. After this 

conversion, it is possible to construct a composite index for the three positive criteria (i.e., maximizing 

ENRT, maximizing the reduction in ERLW, and maximizing EEBT). 

A system is strongly sustainable when each and every criterion satisfies its respective  

sustainability condition. 

2.3.4. Implications of Single- vs. Multiple-Valued Objectives 

One source of uncertainty addressed in the conceptual framework is uncertainty about the effects of 

climate futures on management objectives. A limitation of single-valued objectives for each planning 
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period is that they do not reflect such uncertainty; a single-valued objective for a climate future implies 

that climate future has a deterministic or unerringly effect on the objective (i.e., the objective is not a 

random variable). In contrast, using a multivalued objective for a climate future implies that climate 

future has a random effect on the objective (i.e., the objective is a random variable). 

2.4. Assessing Validity of Statements about Adaptive Responses 

This section assesses the validity of the statements about adaptive responses to climate change. 

Because the statements are closely related in the context of the conceptual framework, they are combined 

into one question: Does current knowledge allow the second party to determine with certainty whether 

managers’ adaptations of FRTs to future climate change are sustainable? The general answer to that 

question is no. The reason is that the second party can commit decision errors when assessing the 

sustainability of individual FRTs within planning periods that can lead to decision errors in assessing 

the sustainability of a manager’s adaptations of FRTs to climate change over planning periods. This 

section discusses the implications of such decision errors for sustainability assessments. 

Based on a sustainability condition for a single-valued, positive criterion, such as ENRT or EEBT, 

the second party would consider the landscape to be sustainable with respect to that criterion when the 

observed value of the criterion exceeds some minimum acceptable level. Similarly, based on the 

sustainability condition for a multivalued negative criterion, such as ERLW, the second party would 

consider the landscape to be sustainable with respect to that criterion when Pr{ERLW ≤ ERLWmax} ≥ 1 − φ. 

It is possible for the second party to conclude the landscape is sustainable with respect to a criterion 

when, in reality, it is not sustainable. This is called a type I error. Conversely, it is possible for the third 

party to conclude that the landscape is not sustainable with respect to a criterion when, in reality, it is 

sustainable. This is called a type II error. 

Probabilities of type I and II errors can be calculated for multivalued objectives. Suppose the second 

party assesses the sustainability of a forested landscape with respect to EEBT by testing the null hypothesis 

Ho: µEEBT = EEBTmin against the alternative hypothesis Ha: µEEBT > EEBTmin. The null hypothesis states 

that the system is not sustainable and the alternative hypothesis states that the system is sustainable with 

respect to EEBT. These hypotheses can be tested using the sample mean and variance of EEBT for each 

planning period in a one-tailed t-test. In order to calculate the sample mean and variance of EEBT, there 

needs to be multiple values for EEBT in each planning period. 

The probability of a type I error is the probability that the sample mean of EEBT is greater than the 

critical value for the t-test when the population mean is EEBTmin (i.e., the probability of rejecting  

the null hypothesis when it is true). That probability is the area under the distribution of EEBT when 

µEEBT = EEBTmin to the right of the critical value of the sample mean for the t-test. 

The probability of a type II error or β is the probability that the sample mean of EEBT is less than the 

critical sample mean for the test when the population mean exceeds EEBTmin (i.e., the probability of not 

rejecting the null hypothesis when it is false). Beta equals the area under the distribution of the sample 

mean when µEEBT > EEBTmin to the right of the critical value of the sample mean for the t-test. The 

probability of rejecting the null hypothesis when it is false (i.e., the power of the test) equals 1 − β. For 

a true population mean greater than EEBTmin, the type II error decreases (or increases) and the power of 

the test increases (or decreases) as the type I error increases (or decreases). 
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If the second party believes that a type II error is more serious than a type I error, then a lower level 

of significance or α-value should be selected for the t-test (e.g., α = 0.10 instead of α = 0.05). Conversely, 

if the second party believes that a type I error is more serious than a type II error, then a higher level of 

significance should be selected for the t-test (e.g., α = 0.05 instead of α = 0.10). 

Type I and II errors have implications for second-party assessments of the sustainability of a 

manager’s adaptive responses to climate change. The second party commits a type I error when a 

manager’s adaptations of FRTs to climate change over planning periods are declared to be sustainable 

when, in reality, they are unsustainable. Conversely, the second party commits a type II error when a 

manager’s adaptations of FRTs to climate change over planning periods are declared to be unsustainable 

when, in reality, they are sustainable. 

Consider the implications for sustainability assessments of having the second party commit a type II 

error in assessing a manager’s adaptations of FRTs to climate change over planning periods. For example, 

suppose the manager determines the preferred FRTs for four planning periods are FRT3 in periods 1 and 

2, FRT4 in period 3, and FRT1 in period 4. The best passive AM strategy for the manager is to  

switch from FRT3 to FRT4 at the beginning of the third planning period, and switch from FRT4 to FRT1 

at the beginning of the fourth planning period. Suppose the second party commits a type II error by 

deciding that FRT3 is not sustainable in the second planning period when it is sustainable, and FRT1 is 

not sustainable in the fourth planning period when it is sustainable (i.e., two type II errors are made). 

Then, the second party would conclude that the manager’s adaptive responses to climate change in the 

second and fourth planning periods are not sustainable when, in reality, they are. 

In general, because the second party can commit type I and type II errors in assessing the sustainability of 

a manager’s responses to climate change, it cannot be determined with certainty whether the way 

managers adapt FRTs to climate change is or is not sustainable. If the probability of a type I error is 

relatively low, then there is a relatively low likelihood that the second party will decide that a manager’s 

adaptations of FRTs to climate change are sustainable when they are unsustainable. Conversely, if the 

probability of a type II error is relatively high, then there is a relatively high likelihood that the second 

party will decide that a manager’s adaptations of FRTs to climate change are unsustainable when they 

are sustainable. 

3. Constructed Examples 

This section uses constructed examples to demonstrate how to apply the conceptual framework to 

cases 1 and 2. A constructed example uses hypothetical values for the parameters influencing the 

selection of preferred FRTs for planning periods and, hence, a manager’s best adaptive management 

strategy for FRTs. Because the constructed examples use hypothetical parameter values, the results are 

not definitive in terms of any differences in the preferred FRTs across planning periods, adaptive 

responses to climate change, and the sustainability of FRTs between cases 1 and 2. 
   



Sustainability 2015, 7 3581 

 

 

3.1. Assumptions and Procedures for Constructed Examples 

The constructed examples are based on the following assumptions and procedures:  

(1) Managers of the private and public forested landscapes select one of three FRTs for the landscape 

at the beginning of each of five planning periods. The three FRTs are light thinning (FRT1), 

heavy thinning (FRT2), and prescribed burning (FRT3). For simplicity, only one FRT is selected 

per planning period. 

(2) The maximum amount of land that can be treated per planning period and the biophysical 

attributes of the landscape are the same for the private and public landscapes. This assumption is 

made to avoid differences, if any, in the preferred FRTs and best adaptation strategy for the two 

landscapes caused by differences in the maximum amount of land that can be treated in each 

planning period and the biophysical attributes of the landscapes. 

(3) The preferred FRT for each climate future within a planning period and the best adaptation 

strategy for FRTs across planning periods are determined based on the following management 

objectives for FRTs: (a) maximizing ENRT for the private landscape; and (b) maximizing ENRT, 

minimizing ERLW, and maximizing EEBT for the public landscape subject to the maximum 

amount of land that can be treated per planning period. 

(4) ENRT, ERLW, and EEBT are random variables. At the beginning of each planning period, 

managers use biophysical and mental models to estimate multiple values for the management 

objective(s) for each FRT and climate future. 

(5) Future climate change is represented by four climate futures: C1; C2; C3; and C4. Average annual 

temperature increases and annual average precipitation decreases between C1 and C2, C2 and C3, 

and C3 and C4. 

(6) Managers monitor the management objectives achieved by the preferred FRTs for each  

planning period. 

(7) The private manager’s preferred FRT for a climate future and planning period is the one that 

maximizes ENRH. 

(8) The public manager’s preferred FRT for a climate future and planning period is determined by 

ranking the three FRTs for that climate future and planning period using fuzzy TOPSIS.  

The preferred FRT for a climate future and planning period is the top-ranked FRT. Application 

of fuzzy TOPSIS requires managers to rate the estimated values of the objectives for each FRT, 

climate future, and planning period and the relative importance of the objectives. Ratings are 

done using the linguistic variables listed in the first column of Table 1. Linguistic variables are 

assigned to the triangular fuzzy numbers listed in the second and third columns of Table 1. 

(9) Managers determine the preferred FRT for each planning period by applying the MRC to the 

preferred FRTs for the four climate futures. 

(10) For simplicity, the criteria used by the second party to assess the sustainability of the landscape 

are the same as the objectives used by managers to determine the preferred FRTs. Specifically, 

at the end of each planning period, a second party evaluates whether the landscape is strongly 

sustainable with respect to ENRT, ERLW, and EEBT using monitoring data on these criteria, 

minimum or maximum acceptable values of criteria, and other information and procedures. 

Minimum acceptable values are $800 for ENRT and 0.7 for EEBT for all planning periods. 
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Maximum acceptable value of ERLW is $3000 for all planning periods. Reliability levels  

(i.e., 1 − φ) for the sustainability conditions are 0.90 for ENRT, and 0.95 for ERLW and EEBT. 

(11) Managers determine the best passive strategy for adapting FRTs to climate change over planning 

periods based on the preferred FRTs for planning periods. 

The constructed examples are described in Section 3.2 for the private landscape and Section 3.3 for 

the public landscape. 

Table 1. Linguistic variables for rating the estimated values of multiple management 

objectives for fuel reduction treatments (FRTs) and the relative importance of objectives, 

and corresponding triangular fuzzy numbers, constructed example. 

Linguistic Triangular Fuzzy Number a for Rating 

Variable a Estimated Values of Objectives Relative Importance of Objectives 

Very low (VL) (0.05, 0.05, 1) (0.05, 0.05, 0.1) 
Low (L) (0.05, 1, 3) (0.05, 0.1, 0.3) 

Moderate (M) (3, 5, 7) (0.3, 0.5, 0.7) 
High (H) (7, 9, 10) (0.7, 0.8, 0.9) 

Very high (VH) (9, 10, 10) (0.9, 1, 1) 
a Adapted from Chen (2000) and Prato (2012). The first number in parentheses is the minimum value,  

the second number is the maximum value, and the third number is the mode of a triangular probability 

distribution. Triangular fuzzy numbers for the relative importance of objectives have been normalized to  

the interval [0, 1]. 

3.2. Constructed Example for Private Landscape (Case 1) 

The constructed example for the private landscape illustrates how the private manager determines the 

preferred FRT for each climate future in the first planning period and the preferred FRTs across planning 

periods. Table 2 shows how the average loss in ENRT for each FRT and climate future is calculated for 

the first planning period. Average loss in ENRT for FRTj and Ci is the average estimated value of ENRT 

without future climate change when using FRTj (i.e., ENRTj,w/oc) minus the average estimated value of 

ENRT with FRTj and Ci (i.e., ENRTj,Ci). ENRTj,w/oc and ENRTj,Ci (j = 1, 2, 3; i = 1 ,…, 4) are estimated 

using the procedures described in Section 2.2. The maximum loss in ENRT for Ci is the maximum of 

the average losses across FRTs for Ci. The maximum loss increases between C1 and C2, C2 and C3, and 

C3 and C4 because the constructed example assumes a progressively hotter and drier climate between C1 

and C2, C2 and C3, and C3 and C4. 

The preferred FRT for a planning period with the MRC is the one that minimizes the maximum loss 

in ENRT across the four climate futures. Based on Table 2, the minimum of the maximum losses is 

$1300 with FRT1. Therefore, FRT1 is the preferred FRT for the private landscape in the first planning 

period. The preferred FRTs for planning periods 2 through 5 are determined in a similar manner. 
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Table 2. Estimated average values of expected net return for fuel treatment (ENRT) without 

future climate change and with three climate futures and maximum average losses in ENRT 

for the private landscape, in dollars, first planning period, constructed example a. 

 FRT1 FRT2 FRT3 Maximum Average Loss 

ENRTw/oc 2200 2500 2800  
ENRTC1 900 1400 1750  

Average LossC1 1300 1100 1050 1300 with FRT1 
ENRTC2 825 1500 1450  

Average LossC2 1375 1000 1350 1350 with FRT3 
ENRTC3 2100 1650 1375  

Average LossC3 100 850 1425 1425 with FRT3 
ENRTC4 1200 1800 950  

Average LossC4 1000 700 1850 1850 with FRT3 
a ENRTw/oc is ENRT without future climate change and ENRTCi is ENRT for a particular FRT with climate 

future Ci (i = 1,…,4). 

As explained in Section 2.1.2, the conceptual framework, the best passive AM strategy for FRTs 

across planning periods is determined by the preferred FRTs for individual planning periods. Suppose 

application of the MRC indicates that the preferred FRTs for the five planning periods are FRT1 in the 

first and second periods, FRT2 in the third and fourth periods, and FRT3 in the fifth period. Therefore, 

the best passive AM strategy for the private manager is to switch from FRT1 to FRT2 at the beginning 

of the third planning period, and switch from FRT2 to FRT3 at the beginning of the fifth planning period. 

3.3. Constructed Example for Public Landscape (Case 2) 

The constructed example for the public landscape is more complicated because FRTs are selected 

based on three management objectives instead of one. The preferred FRT for each planning period for 

the public landscape is determined using the following steps. In the first step, the public manager 

estimates the values of the objectives for each FRT and climate future at the beginning of the planning 

period using the procedures described in Section 2.2. 

In the second step, the public manager rates the estimated values of the objectives for each FRT  

and climate future and the relative importance of the objectives using the linguistic variables given in 

Table 1. Hypothetical manager’s linguistic ratings of the estimated values of the objectives for the three 

FRTs and four climate futures in the first planning period and the relative importance of the  

three objectives for the constructed example are given in Table 3. 

In the third step, the linguistic variables in Table 3 are assigned triangular fuzzy numbers based on 

the scheme shown in the second and third columns of Table 1. A triangular fuzzy number is designated 

by T(a, b, c), or simply (a, b, c), where a is the minimum value, b is the mode, and c is the maximum 

value for a triangular probability distribution. The triangular fuzzy numbers resulting from the third step 

are given in Table 4. 
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Table 3. Public manager’s linguistic ratings of the estimated values of the management objectives for three FRTs under four climate futures, and 

the relative importance of objectives, first planning period, constructed example a. 

Fuel Reduction Treatment 
ENRT b ERLW c EEBT d 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

FRT1 (light thinning) VL VL L VH M H H H M M L M 
FRT2 (heavy thinning) M M H H M M H H M M M L 

FRT3 (prescribed burning) M H L M M M H M M H H M 

Relative importance of objective M VH H 
a VL = very low, L = low, M = moderate, H = high, and VH = very high. b Expected net returns from fuel treatment. c Expected residential property losses from wildfire.  
d Expected ecological benefits of fuel treatment. 

Table 4. Triangular fuzzy numbers assigned to linguistic variables for the public manager’s ratings of the estimated values of the objectives for 

three FRTs and four climate futures, and the relative importance of objectives, first planning period, constructed example. 

Fuel reduction 
treatment  

ENRT ERLW EEBT 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

F1 (light thinning) 
(.05, .05, 

1) 
(.05, .05, 

1) 
(.05, .05, 

1) 
(.05, .05, 

1) 
(3, 5, 

7) 
(7, 9, 
10) 

(7, 9, 
10) 

(9, 10, 
10) 

(3, 5, 7) 
(3, 5, 

7) 
(.05, 1, 

3) 
(.05, .05, 

1) 

F2 (heavy thinning) (3, 5, 7) (3, 5, 7) (7, 9, 10) (7, 9, 10) 
(3, 5, 

7) 
(3, 5, 7) 

(7, 9, 
10) 

(9, 10, 
10) 

(3, 5, 7) 
(3, 5, 

7) 
(.05, 1, 

3) 
(.05, 1, 3) 

F3 (prescribed 
burning) 

(7, 9, 10) (7, 9, 10) (7, 9, 10) (7, 9, 10) 
(3, 5, 

7) 
(3, 5, 7) 

(.05, 1, 
3) 

(.05, 
.05, 1) 

(3, 5, 7) 
(7, 9, 
10) 

(7, 9, 
10) 

(9, 10, 10) 

Importance or 
objective 

(3, 5, 7) (9, 10, 10) (7, 9, 10) 
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In the fourth step, fuzzy TOPSIS is applied to the triangular fuzzy numbers in Table 4 to rank the 

three FRTs for each climate future. The ranking for the constructed example is shown in Table 5.  

The top-ranked or preferred FRT for each climate future in the first planning period is FRT3 for the C1 

and C2, FRT2 for C3, and FRT1 for C4. 

Table 5. Ranking of three FRTs and preferred FRT for each climate future based on fuzzy 

TOPSIS, first planning period, constructed example. 

Climate Ranking of FRTs 
Preferred FRT 

Future First Second Third 

C1 FRT3 FRT2 FRT1 FRT3 
C2 FRT3 FRT2 FRT1 FRT3 
C3 FRT2 FRT3 FRT1 FRT2 
C4 FRT1 FRT3 FRT2 FRT1 

In the fifth step, the preferred FRT for the first planning period is determined by applying the MRC 

to the maximum average losses in the three objectives with the preferred FRTs for each climate future. 

Because FRTs for the public landscape are evaluated using three objectives, the maximum average  

loss for the preferred FRT for each climate future is estimated using a MLI. The latter is a weighted 

average of the maximum average losses in the three objectives with the preferred FRT for each climate 

future. Maximum loss for each objective is determined using the procedure described in Section 3.2  

for estimating the maximum loss in ENRT for the private landscape. Weights for the objectives are 

specified by the manager and must sum to one. Values of the MLI fall in the interval [0, 1]. The preferred 

FRT for a planning period is the one that minimizes the MLI across the four climate futures. 

Suppose the MLIs for the preferred FRTs for the four climate futures in the first planning period  

are as shown in Table 6. Applying the MRC to the MLIs in Table 6 indicates that FRT1 minimizes the 

MLI across the four climate futures in the first planning period. Therefore, FRT1 is the preferred  

FRT for the first planning period. A similar procedure is used to determine the preferred FRTs for the 

four remaining planning periods. Suppose the preferred FRTs for those four remaining periods are FRT1 

in the second planning period, FRT3 in the third and fourth planning periods, and FRT2 in the fifth 

planning period. Based on the preferred FRTs for planning periods, the best passive AM strategy for the 

public landscape is to switch from FRT1 to FRT3 at the beginning of the third planning period, then 

switch from FRT3 to FRT2 at the beginning of the fifth planning period. 

Table 6. Maximum loss indices for preferred FRTs for four climate futures, first planning 

period, constructed example. 

Climate Future C1 C2 C3 C4 

Preferred FRT FRT3 FRT3 FRT2 FRT1 
Maximum loss index 48 52 65 45 

The constructed examples show that the preferred FRTs for planning periods and best passive AM 

strategy for the private and public landscapes are different. Specifically, the preferred FRTs are FRT1 in 

the first and second periods, FRT2 in the third and fourth periods, FRT3 in the fifth period for the private 
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landscape, and FRT1 in the first and second periods, FRT3 in the third and fourth planning period, and 

FRT2 in the fifth planning period for the public landscape. In general, the preferred FRTs for the two 

landscapes are likely to be different because they are determined using different objectives.  

However, the differences in the preferred FRTs for the private and public landscape for the constructed 

examples are not managerially significant because the constructed examples use hypothetical data  

and information. 

3.4. Assessing Sustainability for the Constructed Examples 

Based on the seventh item listed in Section 3.1, strong sustainability with respect to the three criteria 

requires concurrent satisfaction of the following sustainability conditions:  

p{ENRT ≥ $800} ≥ 0.90; 

p{ERLW ≤ $3000} ≥ 0.95; and 

p{EEBT ≥ 0.7} ≥ 0.95. 

In the conceptual framework, the second party uses the following three-step procedure to determine 

whether or not the above sustainability conditions are satisfied in each planning period. First,  

the maximum likelihood estimation method in the Simulation and Econometrics to Analyze Risk 

(Simetar) program [49] is used to fit several probability distributions to the observed values of each 

objective for a planning period. Second, the CDFDEV function in Simetar is used to determine the  

best-fitting probability distribution for each objective. Third, the best-fitting probability distribution for 

an objective is used to determine whether or not the sustainability condition for that objective is satisfied 

or violated for each planning period. 

For each planning period, there are four mutually exclusive outcomes for the strong sustainability 

assessment: (1) the preferred FRTs for the private and public landscapes are not strongly sustainable; 

(2) the preferred FRT for the private landscape is strongly sustainable, but the preferred FRT for the 

public landscape is not strongly sustainable; (3) the preferred FRT for the private landscape is not 

strongly sustainable, but the preferred FRT for the public landscape is strongly sustainable; or (4) the 

preferred FRTs for the private and public landscapes are strongly sustainable. If the preferred FRTs for 

all planning periods are strongly sustainable, then the best passive adaptive management strategy is 

likewise strongly sustainable provided the probability of type II decision errors is relatively small. 

4. Discussion 

The conceptual framework described here can be used by managers of privately- and publicly-owned 

forested landscapes to determine the preferred FRT for each planning period and the best strategy for 

passively adapting FRTs to future climate change across planning periods. In addition, a second party 

(i.e., someone other than the private or public manager) can use the framework to assess the sustainability of 

a forested landscape with respect to a set of criteria. The conceptual framework is general enough to be 

applied to other landscape management decisions besides the selection and adaptive management of 

FRTs for forested landscapes. 
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The conceptual framework is admittedly complex, especially when FRTs are evaluated using multiple 

objectives, those objectives are multivalued in each planning period, and biophysical simulation models 

are used to estimate the values of the objectives. Most forest managers do not have the skills required to 

apply the framework in the manner described here. Managers have several options for alleviating this 

limitation of the framework. Two options are described below. 

First, managers can select fewer management objectives and/or management objectives that are easier 

to estimate. For example, instead of selecting FRTs based on maximizing ENRT, minimizing ERLW, 

and maximizing EBBF, public forest managers can select FRTs based on minimizing the cost of 

achieving target levels of fuel reduction in each planning period (minimum cost target objective for 

short), and maximizing EEBF. The values of the minimum cost target objective are easier to estimate 

than the values of ENRT and ERLW because it is not necessary to apply complex fire behavior models 

such as FireBGC and FSim. Even for this option, future climate change needs to be considered in 

determining the preferred FRTs for planning periods because future climate change is expected to 

increase the incidence of large and intense wildfires and hence the target levels of fuel reduction needed 

to reduce the likelihood and consequences of future wildfires. 

It is relatively easy for the manager to apply fuzzy TOPSIS to the minimum cost target and EEBF 

objectives, or, for that matter, the original three objectives, using a fuzzy TOPSIS spreadsheet developed 

by the author. The spreadsheet requires the user to enter the raw values of the estimated values of the 

objectives for each FRT and climate future, and specify the linguistic variables assigned to specific 

ranges of the raw values of the estimated objectives (e.g., the estimated normalized value of EEBT is 

considered very low if it falls in the range (0, 0.2), etc.). The spreadsheet automatically assigns linguistic 

variables to the raw values of the objectives based on the linguistic variables assigned to different value 

ranges of the objectives, assigns triangular fuzzy numbers to the linguistic ratings of the values of the 

objectives and the relative importance of the objectives, ranks the preferred FRTs for each climate future 

within a planning period, and applies the MRC to determine the preferred FRT across climate futures 

within each planning period. In order to apply the MRC to the preferred FRTs for climate futures within 

a planning period, it is necessary to construct a MLI for the two objectives. This is relatively simple once 

the values of the two objectives for FRTs without future climate change and with each climate future 

have been estimated. 

The second option is relevant for a public forest manager who wants to determine preferred FRTs 

across planning periods based on maximizing ENRT and EEBT, and minimizing ERLW, or another 

complex set of objectives. Estimating these three objectives for each FRT, climate future, and planning 

period requires running the FireBGC and FSim models, or similar fire behavior models. Due to the 

complexity of these models, a manager that chooses this option would most likely have to receive 

assistance from a scientist experienced in running fire behavior models. 

5. Conclusions 

Future climate change is expected to increase the size and intensity of wildfires. Forest managers may 

be able to alleviate the growth in expected residential damages from wildfire and/or increase expected net 

returns and ecological benefits by applying FRTs. To achieve this goal, managers require a conceptual 

framework that allows them to select FRTs and adaptively manage them for climate change when there 
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is uncertainty about the extent of future climate change and its effects on management objectives for 

FRTs. Until now, there has not been a conceptual framework that managers can use for this purpose. 

This paper presents such a framework and uses it to evaluate the validity of the statements regarding the 

sustainability of adaptive responses to climate change addressed in this special issue of Sustainability. 

The conceptual framework: (1) incorporates procedures for selecting FRTs and adapting FRTs to 

future climate change for privately- and publicly-owned forested landscapes when there is uncertainty 

about future climate change and its effects on management objectives for FRTs; (2) allows management 

objectives for FRTs to have single or multiple values; (3) employs biophysical simulation and mental 

models to estimate the values of the management objectives for FRTs for different climate futures and 

planning periods; (4) uses fuzzy TOPSIS to determine the preferred FRT for each climate future within 

planning periods when there are multiple management objectives for FRTs; (5) determines the preferred 

FRT for each planning period by applying the MRC to the preferred FRTs for each climate future;  

(6) identifies the best strategy for passively adapting FRTs to future climate change based on the 

preferred FRTs for planning periods; and (7) allows a second party to assess whether a forested landscape 

is weakly or strongly sustainable using sustainability conditions for either single- or multiple-valued 

criteria. Application of the conceptual framework is illustrated using constructed examples. 

This special issue of Sustainability is motivated by two statements: (1) current knowledge does not 

allow us to determine with certainty whether adaptive responses to climate change are sustainable; and 

(2) some adaptation strategies can undermine long term principles of sustainable development while 

others can surely contribute to social and environmental sustainability. The veracity of these statements 

for forested landscapes was evaluated using the conceptual framework by combining the two statements 

into a single question: Does current knowledge allow the second party to determine with certainty 

whether managers’ adaptations of FRTs to future climate change are sustainable? The answer to that 

question is no. The reason for a negative answer is that the way the conceptual framework handles 

uncertainty about future climate change and its effects on management objectives for FRTs makes it 

possible for the second party to commit a type I or type II error when assessing the sustainability of a 

manager’s selection of FRTs within planning periods and adaptations of FRTs to climate change over 

planning periods. A type I error (or type II error) occurs when the second party decides a forested 

landscape is sustainable (or not sustainable) with respect to one or more criteria, either within or across 

planning periods, when, in fact, the landscape is not sustainable (or is sustainable). Because probabilities 

of type I and type II errors are likely to exceed zero, the conceptual framework suggests it is not possible 

for the second party to determine with certainty whether or not a manager’s selection of FRTs within 

planning periods and adaptations of FRTs to climate change over planning periods are sustainable. 
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