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Abstract: In Zambia, every year some parts of the maize fields are abandoned post-planting. 

Reasons for this are not clearly known. In this paper, we examine the influence of soil and 

climatic factors on crop abandonment using a six-year (2007–2012) panel data by modeling 

the planted-to-harvested ratio (a good indicator of crop abandonment) using a fractional and 

linear approach. Therefore, for the first time, our study appropriately (as supported by the 

model specification tests that favour fractional probit over linear) models the fractional nature 

of crop abandonment. Regression results, which are not very different between the two 

specifications, indicate that, more than anything, high rainfall immediately after planting and 

inadequate fertilizer are the leading determinants of crop abandonment. In the agro-ecological 

region where dry planting takes place, low temperature during planting months negatively 

affects the harvested area. The results have implications on the sustainability of farming 

systems in the face of a changing climate. 
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1. Introduction 

Zambia has seen a steady increase in both agricultural production and productivity over the last six years. 

However, Crop Forecast Surveys (CFSs) conducted by the Central Statistical Office (CSO) and the 

Ministry of Agriculture have consistently revealed that smallholder farmers do not harvest all of their 
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maize. Some of the maize fields are abandoned post-planting—a phenomenon we are calling crop 

abandonment in this study. The ratio of harvested-to-planted area—which best measures crop 

abandonment—has ranged between 0.52 and 0.97 in the last decade when aggregated by province [1]. 

Given that smallholder farmers spend about 50% of their family labor on land preparation and planting 

activities, addressing this problem does not only lead to production efficiency, but also to saving labor 

that is otherwise wasted in the initial activities. The cost of initial labor and inputs like seed that are wasted 

in the area that is never harvested make the enterprise look very unprofitable. 

It is generally recognized that climate change has an impact on agriculture [2,3]. Most studies in 

developing countries have focused on measuring economic impacts of climate change [4,5] and much 

less on evaluating the impact on the production of specific crops, yet scientific evidence suggests that 

climate change is a reality [6,7]. Sub-Saharan Africa is often cited as one of the most vulnerable regions 

as it maintains the highest proportion of malnourished people with a large proportion of its population 

depending on agriculture for livelihoods [8]. Challinor et al. [9] have found increasing incidences of 

crop failures due to climate change. This is likely to worsen as the effects of global warming take root 

in the next half century, during which specifically maize yields have been projected to reduce by as much 

as 22 percent [8]. This will pose a serious threat to regions that are already food insecure [3]. As climate 

continues to vary annually, it has an impact on crop performance and ultimately on the decision that 

farmers make whether to abandon or not. 

Crop failure and crop abandonment are differentiated in this paper. Crop failure, which is defined as 

the complete loss of crops on a farm [10] has received more attention from researchers. Crop failure 

happens more in catastrophic weather conditions in which the crops are wiped out by pests, floods or 

droughts, whereas abandonment is at a marginal level and is a decision made by the farmer to stop 

cultivation of the field or some part of the field post-planting even when it is still viable due to some 

poor performance of the crop and committing to other crops the limited labor and other inputs where the 

prospects of better yields are higher [11]. Crop failure can be part of crop abandonment in measurement 

sense, since the crop that failed could still be captured as an unharvested area, but crop abandonment 

does not always imply crop failure. If the weather is good enough to allow a farmer or an area to have 

good yields, then most likely the unharvested crop area is a result of crop abandonment and not failure. 

This difference is very important in our context as we use data for years in which Zambia received 

normal rainfall and there were no other catastrophes to wipe out crops. 

Empirical evidence is scanty on the causes of crop abandonment and the role played by climate. 

Shipekesa and Jayne [12], in their descriptive study based on data from a 2008 Zambia smallholder farm 

household survey identify wilting due to drought, lack of fertilizer, flooding and a combination of these 

factors as some of the causes of abandonment. The ratio of harvested-to-planted area for one crop is 

influenced also by the total area that is allocated to other crops. Mendelson [10] estimates the influence 

of weather on crop failure rates, which is different from abandonment. Furthermore, the use of ordinary 

least squares (OLS) in his paper, as will be explained in Section 2, fails to handle the fractional nature 

of the response variable which was defined as proportion of failed crop. 

This paper seeks methods to determine the influence of climatic and economic variables (temperature, 

rainfall and area not catered-for for fertilizer respectively) on the ratio of harvested-to-planted area in 

Zambia. It contributes to the literature on the interaction between climate variability and crop abandonment 

by determining the effect of rainfall, temperature and lack of fertilizer on proportion of crop area 
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abandoned. It is also the first attempt, to the best of our literature search, to correctly model the fractional 

nature of crop abandonment. We also understand any differences in the effects, qualitatively, across the 

different agro-ecological regions by estimating fractional probit at sub-national level (agro-ecologcal level). 

The new knowledge generated through this study will help in designing better adaptation strategies that 

are agro-ecological region specific. The results are useful in sustainable land-use management and for 

environmental sustainability. Results indicate that rainfall in the early stages of maize crop development 

and proportion of the area that is catered-for for fertilizer are the main factors influencing the proportion 

abandoned. There are differences in the magnitude and variables affecting the harvested-to-planted ratio 

across the agro-ecological regions. 

2. Methods 

2.1. Theory 

Conceptually, there are many factors that lead to crop abandonment. Weather is one aspect that may 

lead to a crop being abandoned as the farmer may see no hope and concentrate on another field. Changes 

in rainfall and temperature that adversely affect the crop may be another reason for abandonment.  

We hypothesize that abandonment happens during the early stages of the crop’s development compared 

to mature crops when the cost of abandonment may be considered too high, and generally there may be 

more conviction of goods yields. Labor inadequacy could also lead to abandonment of crop areas as the 

household concentrates on certain fields or crops. However, our data does not allow us to include labor 

availability. Pest outbreaks are also often blamed for crop failure and abandonment. These are influenced 

by climate as well [9], and indirectly captured in the influence of weather variables. 

Soils also have an influence on abandonment [10]. Poor soils may lead to more crop area being 

abandoned [13], especially in cases where fertilizer is not acquired. Fertilizer in Zambia is a major factor 

explaining yields of maize, especially in poor-soil regions. Because it is among the main inputs, farmers 

are more likely to abandon the area that is not catered-for for fertilizer and mainly concentrate on where 

they have applied. 

The farmer’s objective is to maximize the profit from different fields and hence allocate the available 

labor in a Pareto efficient manner among the fields and crops. The farmer abandons the crop and allocates 

his labor where he thinks there will be better returns. In short, the farmer’s objective is to maximize the 

profit given the labor constraint that has to be allocated efficiently among the competing fields. 

2.2. Analytical Framework 

We measure crop abandonment using a proportion which is taken as the total planted area less  

the harvested area divided by the total planted area (harvested-to-planted area ratio). This transforms  

the response variable into a fractional one, and we devote the rest of this section to explaining the 

appropriateness of a model that takes into account the nature of this variable. 

With a fractional (a fraction) dependent variable, OLS is inconsistent and biased while using the log-odds 

ratio approach does not help if the bounds (0 and 1) are part or can be part of the data. Moreover, our 

interest is in the partial effects of the expected value of the untransformed fractional responses, that is 

the ratio of the harvested-to-planted area, which are difficult to recover with transformed variables without 
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strong independence assumptions under the log-odds ratio approach. Papke and Wooldridge [14] 

developed a model that was later named fractional logit that uses quasi-maximum likelihood estimation 

to obtain robust estimates of the conditional mean parameters with satisfactory efficiency properties that 

counter the problems faced with using OLS for fractional dependent variables. Wagner [15] uses the 

Papke and Wooldridge [16] approach of fractional probit model on panel data and allows for time 

constant unobserved effects to be correlated with the explanatory variables. This solves the problem that 

is faced by models like unconditional fixed-effects fractional logit that need all panels (i.e., districts) in 

a population (i.e., country) to be represented in the data. 

Fractional probit is used in this study as it is better for panel data [16,17]. Strictly exogenous 
covariates ( ix ) are assumed in the case of balanced panel data, but for unbalanced (which is our case) 

the assumption can easily be stated as: observing a data point in any time period cannot be systematically 

related to the idiosyncratic errors—which is a version of strict exogeneity of selection. With this version 

of strict exogeneity, the model is specified as; 

( | , , ) ( | , ), 1,...it i i i it i iE y x c s E y x c t T   (1)

where 10  ity  is the harvested-to-planted ratio, is  is selection for observing unit i in time t and ( ic ) 

is the unobserved effects. In this specification, serial correlation and heteroscedasticity is not modeled 
but rather the inferences are made robust. Let iw  be a vector of functions that we know; 

},...,1:),{( Ttxss ititit   that act as sufficient statistics for the model we specify (D) such that

( |{( , ) : ,..., }) ( | )i it it it i iD c s s x t T D c w . The simplest specification for )|( ii wcD  is the time average on 

the selected periods, ix  The time averages are constructed on the independent variables though not 

reported in the results tables. At minimum, the variance of the unobserved effects ci can be allowed to 
change with Ti. If the assumption that )|( ii wcD  is normal is maintained, then the following is obtained: 
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r  is the coefficient on the time averages; r  is the deviation from the base group (Ti = T) where 

observations are made for the whole range of the series. 

The correlated random effects (CRE) approach is used mainly because, firstly, it is able take care of 

the unbalanced nature of the panel data we use; secondly, the CRE estimator provides an approach to 

allow for correlation between the unobserved (which may arise from unobserved soil characteristics 

within a broad soil group and institutional and managerial factors) individual omitted variable (ci) and 

included explanatory variables provided the unobserved effect is time-invariant. This model includes, 

apart from the weather variables, an economic variable; the ratio of the unfertilized area, which was 

calculated as the area that is “unaccounted-for” for fertilizer divided by the total area planted. The total 

fertilizer applied to maize per district was divided by 400 kg (the recommended application rate per 

hectare (ha) in Zambia) and the area where fertilizer was applied was derived from this result as: 

area fertilizer applied = total fertilizer applied/400 kg (3)

The area applied was subtracted from the total planted area to get the unfertilized area (area 

unaccounted-for), and the result divided by the total planted area to get the ratio of unfertilized area as below. 
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Ratio unfertilized = (area planted − area applied with fertilizer)/total area planted (4)

A ratio is more helpful compared to using absolute values of the area unfertilized. Take, for example, 

a small district that has planted a total of 50 ha and has not fertilized 25 ha, representing 50 percent  

(0.5 in ratio), and a big district that has a total area planted of 100 ha and has not applied fertilizer to 

about 40 ha, thereby representing 40 percent (0.4 in ratio). Using absolute values of area unfertilized, it 

will show that the small district had less area where fertilizer was not applied than the big district, but in 

ratio terms, a higher proportion of the planted area did not receive fertilizer application in the small 

rather than the big district. This distinction is very important especially since abandoning a section of 

the field or some field by the household incorporates in the decision-making process the total area  

under cultivation. 

2.3. Data and Study Area 

Climate data used was obtained from the Meteorological Department and the crop data from the Central 

Statistical Office and Ministry of Agriculture and Livestock. The climate data on rainfall and temperature 

is collected from 31 district weather stations across the country. However, some districts did not report 

in this period and hence were dropped from the data, leaving us only with a total of 17 districts. Though 

a longer panel could have been obtained, 2007–2012 is the period in which fertilizer use data, which is 

hypothesized to play a major role in crop area abandonment, was consistently collected. Districts with 

weather stations that reported rainfall and temperature in this period were matched to the district level 

yield, area planted, and area harvested variables. This brings all the data to district level. The observations, 

which are aggregated at the district, are made every year in a nationally representative sample and each 

farmer is asked questions pertaining to the area planted, area harvested, fertilizer use and other aspects 

of the farm. This covers all the three main agro-ecological regions (AERs). The agro-ecological regions 

are described in the Table 1. 

Table 1. Agro-ecological regions of Zambia. 

Agro-Ecoligcal 

Region 

Average Rainfall 

(mm/year) 

Elevation (Meters 

Above Sea Level) 

Growing 

Season (Days) 

Soil 

Productivity 

Temperature 

Range (°C)  

(Min–Max) 

I <800 300–1200 80–129 Highly erodible 10.3–36.5 

IIa 800–1000 900–1300 100–140 More fertile 6.3–33.6 

IIb 800–1000 900–1200 100–140 
Infertile coarse 

sands 
17–18 

III >1000 
1100–1700  

(<1000 in Luapula) 
120–150 

Highly leached 

and acidic 
5.7–32.1 

Sources: [18,19]. 

2.4. Description of Variables 

A description of the variables that were used in the estimation appears in Table 2. The average ratio 

of harvested-to-planted area is about 0.69 in AER I, 0.73 in AER II and 0.87 in AER III. More area is 

abandoned in AER I, while in AER III only about 13 percent of the planted area was not harvested on 
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average in this six-year period. Region II has about a fourth (26 percent) of the total area that is planted 

not being harvested, or being abandoned along the way before harvest. For the ratio of the unfertilized 

area, the story is different. Region II has the highest area not accounted for in terms of fertilizer, with 

about 70 percent of the area planted not receiving fertilizer application, while region III has the lowest 

ratio with roughly about half receiving fertilizer and half not receiving. 

October and November total rainfall was highest in AER II with about 183 mm received in two months 

on average and lowest in AER I, which recorded only about 108 mm for the two-month average. 

December and January as well as February and March rainfall also followed the same pattern as per  

the standard categorization of the agro-ecological regions. 

Maturing months’ temperature was lowest in AER III and highest in AER I and the planting 

months/early maturity was the same. The trend was the same for October and November’s average 

temperature, where it is highest in AER I and average in AER II, while at its lowest in AER III. This is the 

reverse order of the rainfall trend for the same months. 

Table 2. Descriptive statistics of the variables. 

Variable Mean Std Dev. Min Max 

Agro-Ecological Region I (n = 10)     

Ratio of unfertilized to total planted area 0.576 0.258 0.182 0.882 
Harvested-to-planted ratio 0.692 0.230 0.250 0.925 

October−November rainfall (mm) 108 36 70 182 
December−January rainfall (mm) 486 244 184 947 

February−March rainfall (mm) 280 116 180 494 
October−November temperature (°C) 28 2 26 30 
December−January temperature (°C) 26 2 23 29 
February−March temperature (°C) 25 2 23 28 

Agro-Ecological Region II (n = 34)     

Ratio of unfertilized to total planted area 0.693 0.230 0.035 0.999 
Harvested-to-planted ratio 0.738 0.187 0.299 0.956 

October−November rainfall (mm) 125 56 25 245 
December−January rainfall (mm) 542 179 211 1,038 

February−March rainfall (mm) 362 149 136 730 
October−November temperature (°C) 25 1 23 27 
December−January temperature (°C) 23 1 22 25 
February−March temperature (°C) 23 1 21 24 

Agro-Ecological Region III (n = 43)     

Ratio of unfertilized to total planted area 0.501 0.212 0.147 0.926 
Harvested-to-planted ratio 0.872 0.123 0.276 0.998 

October−November rainfall (mm) 183 87 24 425 
December−January rainfall (mm) 510 148 268 875 

February−March rainfall (mm) 370 144 111 657 
October−November temperature (°C) 24 1 22 26 
December−January temperature (°C) 22 1 21 24 
February−March temperature (°C) 22 1 21 23 

Author’s own data from the Meteorological Department (2007–2012). 
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3. Results and Discussion 

Results for the two estimations, one at the national level and another at the sub-national level, are 

presented and discussed. Two approaches—fractional probit and OLS—are presented in the national 

level estimations, whereas the sub-national uses only fractional probit which is favored by the model 

test statistics. 

3.1. Regression Results at National Level 

Fractional probit was fitted using a Stata programming approach. Ordinary least squares (OLS) was 

also used to fit the same model; given that the data in this case do not include the bounds, the estimation 

is relatively appropriate. The signs of the coefficients are consistent across the two models and so are 

the significance levels. The generalized linear model (GLM) (fractional probit) approach seems to have 

slightly higher estimates in absolute terms. 

The estimates from the two models are consistent. The signs of the coefficients are the same across 

models, and the same variables are statistically significant in each model. When compared with the scaled 

fractional probit coefficients, OLS estimates seem to be somehow lower. This is in tandem with what 

others have found using this approach. For example, Papke and Wooldridge [14] also found lower 

estimates for the OLS model compared to their fractional logit results estimated using the same approach. 

Because of the nature of the response variable, fractional-heteroscedasticity is expected in this equation 

and robust standard errors are reported in both the fractional probit and OLS. 

For both models, R-squared is reported to measure the goodness of fit. The R-squared is calculated 
as )/(1 SSTSSR  where SSR (residual sum of squares) is from the unweighted residuals, ii yyu ˆˆ   

and SST is the total sum of squares for the yi. For OLS, R-squared is reported in the results while for 

fractional probit has to be calculated manually. As indicated by this measure, the fractional probit model 

fits better as it has a 9 percent higher R-squared (0.72) than for OLS (0.63): “Since only the conditional 

expectation is being modelled, with other features of the conditional distribution left unspecified, the  
R-squared is the most appropriate goodness-of-fit measure” [14]. Given that in the OLS ˆ

s  are chosen to 

maximize R-squared while the Quasi-Maximum Likelihood Estimation (QMLE) approach of fractional 

probit does not, a higher R-squared in the fractional probit is even more telling of how well fitting the 

model is. Weather and soil types explain only about 72 percent of the variation harvested-to-planted 

ratio or crop abandoned. 

Ramsey’s regression specification-error test (RESET) further adds support to the fact that fractional probit 
has a better fit than OLS. By its definition, OLS has a zero sample covariance between û  and ŷ  [20]. 

Ramsey’s RESET tests whether there is a correlation between and the low-order-polynomials in ŷ  

like the ones raised to the power of 2, 3 and 4 in this case. 

The RESET statistic (0.23) shows that there is no misspecification in the fractional probit approach 

as indicated by the p-value (0.9731), unlike in the linear approach. With the p-value of 0.0301 in the linear, 

this means that the null hypothesis that there is no misspecification in the model is rejected at α = 0.01 

while in the fractional probit model, there is failure to reject the null hypothesis that there is no 

misspecification. This indicates that the fractional probit captures well the nonlinear relationship between 

the included independent variables and the harvested-to-planted ratio compared to the linear model. 

û
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Because the fractional probit has a better fit, the results from this model are the ones that were 

interpreted below. The marginal effects were computed and are shown in column four of Table 3.  

The marginal effects, considering it is a conditional expectation that was being modeled, are close to the 

coefficients of the OLS model. 

Table 3. Estimates of the effects of weather on crop abandonment. 

Variable FP Coefficient Marginal Effect OLS Coefficients 

Ratio of unfertilized to total area planted −0.988 *** −0.241 *** −0.226 ** 

 (0.332) (0.0804) (0.0994) 

Log of October−November rainfall 0.0356 0.00869 0.0106 

 (0.0741) (0.0180) (0.0250) 

Log December−January rainfall −0.594 ** −0.145 ** −0.162 ** 

 (0.268) (0.0659) (0.0734) 

Log February−March rainfall 0.0246 0.00600 0.00839 

 (0.132) (0.0321) (0.0306) 

Log October−November temperature 1.603 0.391 0.625 

 (1.688) (0.404) (0.546) 

Log December−January temperature 2.529 0.617 0.976 

 (2.561) (0.621) (0.710) 

Log February−March temperature −2.053 −0.501 −0.500 

 (2.945) (0.715) (0.906) 

Agro-ecological Region I −0.542 −0.131 −0.171 

 (0.492) (0.134) (0.158) 

Agro-ecological Region IIa −0.577 *** −0.142 *** −0.133 *** 

 (0.164) (0.0431) (0.0455) 

Agro-ecological Region IIb −0.942 ** −0.263 ** −0.314 ** 

 (0.415) (0.132) (0.131) 

Constant −2.537  −1.332 

 (4.828)  (1.511) 

Observations 93 93 

R-squared 0.72 0.63 

RESET 
0.23  

(0.97131) 

3.85  

(0.0301) 

**, *** indicate significance at α= 0.05 and 0.01 respectively. Numbers in parenthesis for the variables are robust standard 

errors and for the RESET statistic; numbers in parenthesis are the p-values. The model included time-averages that are not 

shown here. FP = Fractional probit. 

Only two variables are significant across various specifications: the ratio of the unfertilized area to 

the planted area and the rainfall for December and January, and the dummies for agro-ecological regions. 

Because the classification into four agro-ecological regions is manly based on soil type, the AER 

dummies are proxies for soil type. All variables were converted to their natural logarithm. 

The ratio of unfertilized area to total planted area has a negative marginal effect. For every 10 percent 

increase in this ratio, the ratio of the harvested to planted area decreases by 2.4 percent. This means that 

the area harvested decreases by 2.4 percent, or in opposite terms, the abandoned area increases by 2.4 percent, 

holding the planted area constant (henceforth, this interpretation will be followed). This relationship is 
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significant at 95 percent confidence level. In the linear model, this is still the same when rounded to  

two decimal places. If rounded to three, the fractional approach shows that it is marginally higher by 

0.004 percent compared to the linear model effect. Fertilizer application has been found to be a major 

factor in crop production in Zambia [1] and its lack thereof contributing to more area being neglected 

by the farmers, especially as most soils in Zambia are poor, is not surprising. 

Total rainfall for December and January has a negative relationship with the ratio of harvested-to-planted 

area. This relationship is evaluated at the mean of 513 mm for the two months. The relationship indicates 

that high rainfall is not very beneficial to maize in its early maturity stage as this may lead to water 

logging and consequently a stunted crop that is abandoned by the farmers [21]. Once a field is abandoned 

in December and January, there is no opportunity for replanting as there remains only about two months 

in the growing season, which does not leave enough time for maize to be replanted and mature. 

Moderate rainfall agro-ecological region II (AER IIa and IIb), despite having the most fertile soils, 

has a smaller ratio of hartested-to-planted compared to the high rainfall agro-ecological region III was 

used as a reference. More area is abandoned in all the three AERs compared to AER III, but more 

significantly for AER IIa and IIb. This indicates the importance of weather in crop abandoning compared 

to the soil type and fertilizer availability as AER IIb is more fertile but still has more area being 

abandoned than in III which has more stable weather but with acidic and highly leachable soils. Soil 

type differences generally explain only a small percentage of the variation in abandonment rates [10]. 

October and November rainfall did not significantly influence the area harvested. If the climatic 

conditions are not good in the early months of October and November, the farmers still have a chance 

of replanting in case the crop does not do well after planting; hence, any abandoned area can be corrected 

within the season. Replanting usually takes place in the months of December and early January [22]. 

The maturing months’ rainfall (February and March) is not expected to have a major effect because, in 

this period, the crop will have matured to levels where abandonement is less likely, and as the results 

show, is not significant. However, the sign of the coefficient is positive, indicating that more rainfall is 

good during late maturity of maize crop. 

3.2. Regression Results at the Sub-National Level 

Fractional probit regression was further estimated by agro-ecological regions (AERs).  

Agro-ecological region IIa and IIb, where this further categorization is based on soil types, were grouped 

together and estimated as just AER II. In addition to helping understand if there are differences in the 

effect of climate on crop abandonment in the three agro-ecological regions, the result also helps to 

understand the magnitude of the effects when evaluated at different levels since the three agro-ecological 

regions had different means for rainfall and temperature. Only fractional probit was estimated, as it was 

the better model compared to OLS. The results of this regression are shown in Table 4 with coefficients 

(Coeff) and marginal effects (M.E) reported. Weather and proportion of unfertilized area explain about  

90 percent of the variation in abandoned proportion in AER I, and about 84 percent in AER II, as 

compared to about 73 percent in AER II. 
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Table 4. Effect of climatic variables on area abandoned-by AERs. 

Variable AER I AER II AER III 

 Coeff M.E Coeff M.E Coeff M.E 

Ratio of unfertilized to total 

area planted 

−2.358 ** −0.698 ** −1.417 * −0.408 * −1.225 * −0.227 * 

(0.567) (0.153) (0.647) (0.181) (0.489) (0.091) 

Log of October– 

November rainfall 

−0.025 −0.007 0.037 0.011 0.303 * 0.057 * 

(0.455) (0.134) (0.082) (0.024) (0.150) (0.028) 

Log December– 

January rainfall 

0.881 0.261 −0.949 ** −0.273 ** −1.006 ** −0.186 ** 

(0.982) (0.285) (0.263) (0.073) (0.285) (0.052) 

Log February– 

March rainfall 

0.769 0.228 0.029 0.008 -0.265 −0.049 

(0.908) (0.264) (0.201) (0.058) (0.222) (0.041) 

Log October– 

November temperature 

58.440 ** 17.30 ** 1.090 0.314 3.954 0.732 

(4.732) (1.026) (1.799) (0.519) (2.547) (0.471) 

Log December– 

January temperature 

9.423 2.789 2.931 0.843 0.418 0.077 

(15.43) (4.506) (4.114) (1.185) (3.242) (0.600) 

Log February– 

March temperature 

14.08 4.169 −1.630 −0.469 −0.838 −0.155 

(13.83) (4.183) (4.284) (1.235) (3.028) (0.561) 

R-squared 0.90 0.73 0.84 

Observations 10 35 48 

*, ** indicate indicate significance at α= 0.1 and 0.05 respectively. Numbers in parentheses are robust standard errors. The 

model included time averages that are not shown. 

The results indicate that for a 10 percent increase in ratio of the area unaccounted for in terms of 

fertilizer, the ratio of the harvested to planted reduces by about 24 percent in AER I, while it reduces by 

14 percent in AER II (evaluated at 0.7) and about 12 percent in AER III (evaluated at 0.5). There is no 

perfect trend in terms of diminishing or increasing marginal effect that can be deduced from this. AER I 

seems to be more affected because of the poor soils in this region and the poor weather experienced in 

the period under review. Almost all major droughts and floods have been experienced in this region, 

implying it is more vulnerable to weather extremes. Region III may be able to buffer the effects of lack 

of fertilizer because of the good weather for crop production (high rainfall and average temperature) 

received in this region, while region II could be due to the fertile soils that characterize this region. 

Rainfall for December and January, otherwise operationalized as early maturity rainfall, has no 

significant effect on ratio of harvested-to-planted area in region I, despite having a significant one in  

the overall model and the other two regions. Though not significant, the relationship is nevertheless 

positive. As indicated previously, it is the heavy rains that are not beneficial to crop growth at this stage, 

and given that this is the only region where this value is evaluated at the mean of less than 500 mm of 

rainfall, it means marginal increases from 500 mm are beneficial to the crop. Region II, which is 

evaluated at the mean of 541 mm of rainfall for December and January, has a marginal effect of −0.9, 

whereas region III, which is evaluated at the mean rainfall of 510 mm, has a marginal effect of −1.  

At higher rainfall, the marginal effect on the ratio of harvested-to-planted area is bigger in absolute 

terms. The ratio harvested-to-planted area is perfectly elastic in region II, as a percent increase in rainfall 

will result in a percent reduction in harvested to planted ratio. 



Sustainability 2015, 7 2868 

 

 

The other variable that is significant is the temperature for October and November in AER I. There 

is a significant relationship between the ratio of area harvested to area planted and average temperature 

for the two months at 99 percent confidence level. This relationship is positive, thereby indicating that in 

AER I, increases in the planting and land preparation months are beneficial to the crop, and hence lead 

to less area being abandoned. In other words, reduction in temperature is not good for crop development 

at this stage. More farmers who have adopted conservation agriculture are found in this region than any 

other, and thus early/dry planting is expected to be high, meaning temperatures for October and 

November will play a key role in germination. 

4. Conclusions 

The objective of the study was to determine the influence of climatic and economic factors on the 

harvested-to-planted ratio (a measure of crop abandonment) using a 6-year panel data and evaluate which 

approach is better able to handle the fractional nature of the response variable. Model test statistics 

indicate that fractional probit is more appropriate than OLS. We estimated the model at national level 

using the whole sample and by each agro-ecological region to qualitatively determine if there are any 

differences in the effect of these variables on the planted-to-harvested ratio across regions. Results 

indicate that rainfall and fertilizer, or lack of, are the major factors explaining crop abandonment. 

The study revealed that high rainfall in the months after planting is detrimental to the crop and leads 

to abandonment. Harmful rainfall during these months means there is no chance of replanting, unlike in 

the early months of October and November when the farmer can still replant in early December. Increase 

in rainfall in December and January leads to water logging and stunted crop that is abandoned by the 

farmers. Fertilizer, being a key input in maize production was also found to negatively affect the ratio 

of harvested-to-planted area. Farmers almost always abandoned a certain share of the area that was not 

fertilized. No major differences in terms of the effect of these on area abandoned was found between 

region II and III as shown by the coefficients that have almost the same magnitude and signs. Region I 

which is a low-rainfall region is affected differently from the two medium to and high rainfall regions. 

Agricultural planners and policy makers need to fully understand the importance of certain months’ 

rainfall on crop production to project better the expected yields. Farming systems that do not adapt to 

changing climate will see more abandonment and pose a risk to the sustainability of agriculture and 

sustainable land use. Climate modelers may also consider monthly variables instead of the annual 

variables to understand the effects of climatic variables on crop production as the monthly variables’ 

effects differ depending on the stage of crop development. 
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