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Abstract: To consistently produce high quality products, a quality management system, 

such as the ISO9001, 2000 or TS 16949 must be practically implemented. One core 

instrument of the TS16949 MSA (Measurement System Analysis) is to rank the capability 

of a measurement system and ensure the quality characteristics of the product would likely 

be transformed through the whole manufacturing process. It is important to reduce the risk 

of Type I errors (acceptable goods are misjudged as defective parts) and Type II errors 

(defective parts are misjudged as good parts). An ideal measuring system would have the 

statistical characteristic of zero error, but such a system could hardly exist. Hence, to 

maintain better control of the variance that might occur in the manufacturing process, MSA 

is necessary for better quality control. Ball screws, which are a key component in precision 

machines, have significant attributes with respect to positioning and transmitting. Failures 

of lead accuracy and axial-gap of a ball screw can cause negative and expensive effects in 

machine positioning accuracy. Consequently, a functional measurement system can incur 

great savings by detecting Type I and Type II errors. If the measurement system fails with 

respect to specification of the product, it will likely misjudge Type I and Type II errors. 

Inspectors normally follow the MSA regulations for accuracy measurement, but the choice 

of measuring system does not merely depend on some simple indices. In this paper, we 

examine the stability of a measuring system by using a Monte Carlo simulation to establish 

bias, linearity variance of the normal distribution, and the probability density function. 

Further, we forecast the possible area distribution in the real case. After the simulation, the 
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measurement capability will be improved, which helps the user classify the measurement 

system and establish measurement regulations for better performance and monitoring of 

the precision of the ball screw. 

Keywords: measurement system analysis; Monte Carlo simulation; bias; linearity; stability 

 

1. Introduction 

The ISO/TS 16949 core tool measurement system analysis (MSA) manual focuses on the evaluation 

of statistical analyses of the measurement system. Daniels and Burdick [1] noted that a measurement 

system must be properly applied to a process to ensure product quality is within acceptable standards. 

Product and measurement variation affect process variation, and measurement system analysis and 

sampling techniques are important keys to improving measurement capability [2]. To improve the 

accuracy required for various types of measuring instruments, companies have developed various  

quality measurement techniques. The ultimate goal of different measurement analysis determination 

methods is to find the total measurement variation, known as the uncertainty of measurement [3].  

Data on processes are mostly obtained through measuring instruments, and the instruments themselves 

contain uncertainties. Through the use of MSA, the reliability of measurement results can be ensured, 

and this can contribute to the implementation of quality improvement plans [4]. Thus, an accurate and 

reliable measurement system analysis (MSA) not only ensures accurate process capability, but also 

aids scientific and industrial development [5]. Measurement system quality and product quality are 

clearly interconnected. In particular, effective control of the measurement system is crucial to ensure 

the quality. 

Ball screws are indispensable key components for precision machinery in terms of accurate 

positioning and transmission. With the higher and more advanced demand for precision machine tools, 

the precision requirements for ball screws have also increased [6]. Factors affecting ball screw  

positioning accuracy include lead accuracy, axial clearance and axial rigidity of the feed screw system. 

Lead accuracy and axial clearance are two most importance factors for ball screw quality in practice. 

Therefore, in this study, external diameters or length of ball screw parts are measured to determine ball 

screw quality. 

In addition to technology breakthroughs in design and technical aspects, effective management and 

control of the measurement system is also a fundamental requirement to ensure the reduction of errors. 

The objective for taking measurements is to ensure that products meet the specification requirements.  

If a measurement system itself has measurement errors, then the results will be misjudged [7]. In order 

for companies to maintain the production of high-quality products, they must have the right concepts 

for MSA. In addition, these concepts should be used in the precision measurement equipment, to 

ensure excellent product quality and the competitive position of the company [8]. The measurement 

purpose is to determine whether the products meet the specifications and safety requirements, while 

monitoring product quality properties to avoid type I errors (an acceptable product judged as defective) 

and type II errors (a defective product judged as acceptable). In particular, we focus on type II errors 

because the risk goes directly to the clients, causing serious customer complaints and costs due to 
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quality failure. Montgomery and Runger [9] stated that a measurement system should play an active 

key role in helping companies to improve their quality. It has become a top priority to effectively 

manage measurement systems. In our study, we hope to effectively control the accuracy variation for 

measurement systems, to ensure the precision of ball screws, and to optimize measuring systems. 

2. Literature Review 

2.1. ISO/TS 16949 

Although automotive suppliers may obtain their certifications for QS 9000 or VDA 6.1 quality 

systems, these certifications are not recognized in all countries. Different countries and regions have 

their own set of quality management system standards for their automobile industry. To become a part 

of the global automotive supply chain, a large amount of money is required to obtain various quality 

management system certifications targeting different countries and regions [10]. Lupo [11] referred to 

these different quality management standards. With the assistance of the 176 Technical Committee in 

the International Standards Organization (ISO), the International Automotive Task Force (IATF) and 

the Japan Automobile Manufacturers Association (JAMA), ISO/TS 16949 was formed to provide the 

automotive industry suppliers a set of system quality management standards throughout the entire 

process including design, development, production and service. This has established a unified global 

standard for assessing quality management systems in the automotive industry. The current quality 

systems globally used in automotive industry comply with the ISO/TS 16949 Automotive Quality 

Management System. Therefore, by being compliant with the ISO/TS 16949 technical specification 

requirements, companies can avoid having multiple certification audits. ISO/TS 16949 certification 

represents the essence of automotive quality system standards in all countries. Through certification, 

products are considered to have high quality and value. By strengthening their quality management 

system, companies in the relevant industry also position themselves as different to others, thus 

developing the best way to enter the global market [12] and increasing a company’s competitive 

advantage. In addition to the automotive industry, other industries are also keen to promote such 

implementation, which revolutionizes global changes in quality control systems [13]. ISO/TS 16949 

contains the following five core tools, which make the requirements for quality management systems 

even more rigorous: (1) Advanced Product Quality Planning (APQP); (2) Production Parts Approval 

Process (PPAP); (3) Measurement System Analysis (MSA); (4) Failure Mode and Effects Analysis 

(FMEA); and (5) Statistical Process Control (SPC). 

2.2. Measurement System Analysis (MSA) 

Levinson [14] notes that measurement variability affects the performance of the process capability 

index and product quality, reducing the monitoring capability of statistical process control charts. If the 

measurement system is not sufficiently precise, the true value of the product is distorted. This is an 

impetus to improve the measurement system. In an ideal measurement system, the correct 

measurement results would be produced during each use [15]. In other words, the ideal measurement 

system should have the property of zero statistical error in terms of the products being tested [3]. 

However, such ideal measurement does not exist, and so we need to rely on measurement systems for 
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analysis and manage the variability in measurement systems to keep them within a reasonable range. 

Measurement System Analysis is a core tool in the ISO/TS 16949 quality management system. It uses 

mathematical statistics and graphical methods to perform experimental design and statistical analysis 

on the measurement system error in order to assess the variability of the measurement system. From 

this, we can identify variations in measuring instruments and field measurement staff [16]. However, 

ISO/TS 16949 placed instrument calibration and MSA specification under the same clause  

(Clause 7.6) and the main targets for MSA are instruments; hence, companies are likely to be confused 

and equate MSA and calibration, incorrectly, considering that MSA means calibration plus statistics [17]. 

Measurement system analysis, instrument correlation and calibration are all evaluation methods for 

measurement system, and regardless of which method is used, they are all used to evaluate the 

reliability of the measurement system and to ensure the process is stable [18]. 

2.3. Position Variability in Measurement Systems 

Measurement system accuracy causes position variation in measurement systems. When the same 

person is using the same measuring tools to perform the same repeated measurement on the same 

object, accuracy is the bias between the gauge reading and the reference value of the object [15]. The 

measurement reading can be the average value of a single reading or multiple readings. The reference 

value is obtained by using the most accurate measuring device. Juran [19] defined measurement 

accuracy as the error in terms of difference between the observed value and the true value after 

performing long-term repeated tests multiple times on certain quality properties of a single product. 

The measurement error may be positive or negative. Reilly [20] defined accuracy as using the 

instrument to confirm samples and how close the measured value of the sample is to the true value. 

Grubbs [21] stated that position variation in measurement systems is actually the accuracy variation. 

Errors affecting the accuracy of the measurement system are bias, linearity and stability [22]. The MSA 

Guidebook [15] defines them as follows: (1) Bias: The difference between the average value obtained 

when the same person is using the same measuring instrument to measure the same property of the 

same part multiple times, and the true value or reference value obtained by measuring the same 

property of the same part using laboratory instrument. (2) Linearity: The bias within the operation 

scope of the measuring tools; in other words, the difference between the measured value and the 

standard value for different ranges. (3) Stability: At different times, the same person uses the same 

measuring tool to perform multiple measurements on the same quality properties of the same object, 

and then calculates the average measured value for each time period. Then, stability refers to the 

changes in measurement tools as time changes. If, for each time period, the average measured readings 

are similar, the measurement system has good stability. 

Carman [23] first discussed the impact of linearity on the accuracy of the measurement system, and 

confirmed the quality of measuring techniques. In that study, the assumed linearity and additive 

property required by the internal measurement was relaxed, and the MANOVA (Multivariate Analysis 

of Variance) method was used to compare the measurement techniques. Snow et al. [24] calculated the 

acceptance or rejection probability caused by errors while the measurement system error is under 

uniform distribution and normal distribution. The research implies that the average value during the 

process, the accuracy in relation to the specification and the probability distribution of the measuring 
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system error can affect the risks of error acceptance or rejection. Senol [25] considered the risk 

involved for the manufacturers and the consumers and, while minimizing the number of samples 

required, applied experimental designs to find the optimal configuration for influencing factors for 

measurement system analysis, in order to improve measurement accuracy. Aguilar et al. [26] believed 

that the most important statistical property for 3D measurement devices was the fact that small bias 

and variation can produce measurement results that are close to traceable standard values. Other 

factors of a measurement system can generate additional sources of variation. Using optical 3D 

measurement devices for lots of the design change can improve the accuracy of the automobile body 

assembly quality. Yu et al. [27] proposed an assessment method for the capability of such 3D 

measurement devices using experiments involving partial fraction design, and standard gauge block 

with contact measurement methods to assess the efficacy of the measurement. In addition to inspecting 

gauge repeatability and reproducibility (GR&R), this study covered bias, linearity and stability for 

common measurement systems to ensure the precision and accuracy of the measurement system. 

2.4. Monte Carlo Simulation Method 

The Monte Carlo method is a computer simulation method. If, during the research process, random 

numbers are used to simulate tests or used directly as the test results, it is considered an application of 

the Monte Carlo method [28]. The Monte Carlo method originated in statistical sampling, and is also 

known as a statistical simulation method or random sampling technique [18]. Robert and Casella [29] 

stated that Monte Carlo simulation components must include the following: (1) The probability density 

function (pdf): a necessary function for physical (or mathematical) systems. (2) A random number 

generator: a source that can provide random numbers. (3) Sampling rules: take samples from designated 

pdf, with unit intervals are available to separate random numbers. (4) Calculation: output results must 

be accumulated to a total value, (5) Error estimation: estimated number of statistical errors or 

variations and the relationship with other numbers of function must be determined. (6) Change 

reduction technology: a method to reduce the number variation to reduce the computing time for 

Monte Carlo simulation. (7) Parallel and vertical integration: effectively implementing the application 

of Monte Carlo method in advanced computer system architecture. 

Monte Carlo simulation is applied to various fields. For example, Estecahandy et al. [30] and 

Khazen and Dubi [31] employed Monte Carlo simulation to do reliability analysis of instrumented 

safety systems; Arnold and Yildiz [32] introduced Monte Carlo simulation to risk analysis of 

renewable energy; Gurgur and Jones [33] applied Monte Carlo simulation to predict capacity factor 

and power plan in the wind power generation industry; Gatti [34] used Monte Carlo simulation to 

design, structuring and financing private and public projects; and Amigun et al. [35] assess the risk of 

advanced process technologies for bioethanol production by Monte Carlo analysis. Because Monte 

Carlo simulation is a relevant option to obtain numerical results, in this study, Monte Carlo simulation 

method is chosen to analyze the accuracy of bias, linearity and stability of measurement system. 
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3. Research Methods 

3.1. Research Steps 

First, we confirm the stability of the key measurement system; in other words, after performing a 

statistical evaluation of the measurement system for a certain period, we use MSA accuracy analysis to 

assess the bias and linear relationship. Then, we apply the MSA bias and linear analysis method to a 

Monte Carlo simulation set up and configured in the computer software Crystal Ball (CB). This gives 

the estimated measurement system bias and linearity variation. Finally, the estimated results from the 

Monte Carlo simulation and the general MSA analysis results are compared. 

Two different measuring tools are analyzed in separate case studies. Prior to MSA, accuracy  

analysis confirmed that the measuring system in this study does not have any reproducibility issues. 

Thus, during the course of the study, only one evaluator is required. Analysis measuring tools must be 

long-term and stable. That is, they should be under statistical process control, and variation should 

only occur by chance [36]. 

Therefore, in this study, we first ensure the stability of the measuring system before performing 

analysis on the bias and linearity. The research steps are as follows: 

Step1: First, ensure the stability of the measuring system. For stability analysis, we use a graphical 

method. Choose a product that falls within the range and assign it as the standard sample. Take 

measurement of the standard sample 3 times a day, 5 times a week for 6 weeks, giving a total of 90 

sets of data. Calculate the control limit of X-bar and R control chart, as shown in Equations (1) and (2) 

below. Arrange the data in chronological order and plot them on the X-bar and R control charts. Use 

the control chart to assess if it is out of the control range. = + 	, = 	, = − (control chart for average	value) (1)= 		, = 	, = (control chart for total distance) (2)

Step 2: Analyze whether the measurement system bias is acceptable. From the production line, take 

a part that falls within the center range and send it to a more advanced measurement system to confirm 

the reference value. Assign an evaluator to perform routine analysis and measure the sample using 

measuring tools 15 times. The measurement results are plotted on a histogram. Histogram analysis is 

performed to determine if there appears to be any special factor or abnormality. 

Step 3: Calculate the mean, standard deviation for reproducibility and T statistic bias for 

measurement readings, as shown in Equations (3)–(5) below. If 0 falls within the bias confidence 

interval, then a bias at the significance level of α is considered acceptable, as per Equation (6) below. = ∑
 (3)

= ( ) − ( )∗  (4)

=  (5)

− ∗ , ≤ ≤ + ∗ ,  (6)
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Step 4: Analyze the linearity of the measuring system. Select 5 parts, g = 5. Due to process 

variations, the measured values for the parts cover the operating range of the measuring tools. More 

advanced measuring tools are used to determine the reference values for each part, and then an 

evaluator is assigned to perform repeated measurements for each part 12 times. To maintain statistical 

independence between measurement results, random selection is used during the process. At the end of 

the measurement, measurement bias and average bias is calculated for each part. A regression line is 

calculated, where a is the slope and b is the intercept, as shown in Equation (7) below. Calculate the α 

confidence interval, as shown in Equation (8) below. 

= + 	, = ∑ − 1 ∑ ∑∑ − 1 (∑ ) = −  (7)

+ , 1 + ( − )∑( − ) , = ∑ − ∑ − ∑− 2  (8)

Step 5: Draw a straight line for bias 0, and review the diagram to observe whether there are special 

factors. If the entire straight line for bias 0 is located within the confidence interval, the linearity for 

the measuring system is acceptable. 

Step 6: If the diagram analysis indicates that the linearity is acceptable, then assume H : = 0 and 

slope = 0 are true. If the below Equation (9) is true, then it cannot be denied. If H : = 0 and  

slope = 0 are assumed to be true, then the measurement system should have the same bias for all the 

reference values. In other words, suppose H : = 0 and bias are 0, then the linearity is acceptable.  

If Equation (10) is true, then the above assumptions are not denied. | | = | |
∑( − )

≤ ,  

(9)

| | = | |1 + ∑( − ) ≤ ,  
(10)

3.2. Set up Monte Carlo Simulation 

Using the accuracy analysis method developed in the MSA manual as a reference, we calculate bias 

and linearity of the key measurement system. Calculations are performed using the Monte Carlo 

simulation software (Crystal Ball). We generate random variables for the parameters a total of  

10,000 times. This generation is done through the use of the Monte Carlo analysis method in Crystal 

Ball, and the congruential random number method described earlier. Based on the simulated 

measurement values, we aim to obtain bias and linearity variation which are more useful. 
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Yeh and Sun [37] pointed out that the measurement uncertainty developed by the MSA is a range 

given by the values of the measurement results. Within a predetermined level of confidence,  

it describes the range that is expected to contain true measurement results. Measurement uncertainty is 

usually bidirectional. Uncertainty is a quantitative expression of the reliability of the measurement. As 

shown in Equation (11), U is an expanded uncertainty of the measured object and the measurement 

results. The combined standard error (Uc) during the measurement process multiplied by the normal 

distribution coefficient (K) represents the expected range of reliability. ISO/IEC Guide 98-3 [38] 

confirms that the distribution coefficient K = 2, where K represents 95% of the normal distribution of 

uncertainty. As per Equation (12) below, this means that the observed measurements will fall within 

the range of ±2σ from the average value, which is the 95% confidence interval. A collaborative 

assessment experiment in ISO 5725-1: 1994 [39] mentioned that, when multiple experiments are 

involved in a precision test, the probability level will be approximately 95%. 

True measurement = observed measurement (result) ± U (11)

U = KUc (12)

Using the accuracy analysis developed by MSA, and together with Monte Carlo simulation, 

accuracy analysis conditions are determined using one evaluator using the same measuring tools. For 

bias analysis, we select a sample and measure it 15 times to get 15 measured values. For linear 

analysis, 5 samples are selected and measured 12 times to obtain a total of 60 measured values. We 

first define the Monte Carlo simulation with a normal distribution ±2σ. The ranges of values 

configured for the Monte Carlo simulation are shown as samples in Table 1, and the results are shown 

in Equation (14) below and Figure 1. We then set the calculated value to be the initial value of the 

original measured value. ( ) = 1√2 ( ) /  (13)

( ) = √ × . ( . )× . for 11.1973 < X < 11.2005 (14)

Table 1. Monte Carlo simulation sample configuration. 

Monte Carlo Simulation Specification 

Sample Mean (μ) Standard Deviation (σ) 
X 

Max (μ + 2σ) Min (μ − 2σ) 

No.1 11.1999 mm 0.0013 mm 11.2025 mm 11.1973 mm 
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Figure 1. Sample No. 1 probability distribution for measured values. 

4. Case Study 

4.1. Case Information 

In our study, we used a Taiwanese manufacturer of precision linearity transmission components as 

our case study. We used experimental methods and procedures to perform accuracy analysis on 

measurement systems using key measuring tools. First, we confirmed the measurement system 

stability, and then we performed analysis on the bias and linearity. Finally, we used a Monte Carlo 

simulation to predict bias and linearity variation characteristics. Based on the simulation results, we 

propose recommendations as references for the industry in the aspects of developing measurement 

system accuracy specifications and follow-up studies. In order to obtain the real measurement system 

for the measuring system, the design we used in this study for data collection uses measurements 

during the actual process, as described below: 

(1) We used actual production equipment. 

(2) The evaluators were Quality Control (QC) staff who frequently use the device. 

(3) Measurements were made with measuring tools that are regularly used. 

(4) Data were collected according to the plan, and case studies were performed twice. 

(5) In terms of stability, we had one measuring staff member, one measurement system, and one 

sample part; measurements were performed three times a day, five times a week for six weeks. 

(6) In terms of bias, we had one measuring staff member, one measurement system, and one 

sample part; measurements were performed 15 times. 

(7) In terms of linearity, we had one measuring staff member, one measurement system, and  

five sample parts; measurements were performed 12 times on each part. 

4.2. Case 1 

Measuring instruments with the code PG-02 are dial gauges. PG-02 and OG-04 are two of the most 

used instruments to measure external diameters of ball screw parts. In Case 1, PG-02 was used and  
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OG-04 was used in Case 2. The measured value obtained accurate to 0.001 mm. The evaluator was a 

QC staff member who frequently uses this measuring device. We first performed stability analysis. 

The standard sample was a ball screw drive coded 02A. We performed measurements three times a 

day, five days a week for a total of six weeks. The measured data are shown in Tables 2 and 3.  

We used Equations (1) and (2) to calculate the control limits. The actual measurement data and the 

control limits were chronologically plotted onto the X-bar and R control charts, as shown in Figures 2 

and 3. We analyzed and reviewed whether the control chart had any special factors or abnormal 

conditions. Since no special trend was observed and the control limits were not crossed, we determined 

that the stability was acceptable. 

We then used the Monte Carlo method to simulate bias variation for the measuring tool coded PG-02. 

The simulated upper limit for the 95% confidence interval of the bias showed a normal distribution, 

with a simulated average of 0.0012. For the simulation data, the standard deviation for the degree of 

dispersion was 0.0006. The original value of 0.0014 falls within the range of ±σ. This means that for 

the degree of dispersion between the sample average and the regression line, the standard error of the 

mean (SEM) is 0.0000, indicating that the simulated data are very close to the regression line, and the 

reliability of the simulated data is high. 

Table 2. Measurement data for PG-02 stability analysis. 

Day X1 X2  X3 Day X1 X2 X3 
1 14.000 14.003  13.999 16 13.999 13.996 14.000 
2 14.000 14.005  14.001 17 14.003 14.000 14.001 
3 14.005 14.000  13.998 18 14.000 14.000 14.000 
4 14.000 14.003  13.996 19 14.000 14.005 14.000 
5 14.000 14.003  14.000 20 14.002 14.000 14.001 
6 14.000 14.002  14.001 21 14.003 14.000 14.000 
7 13.999 14.002  13.997 22 14.002 13.996 14.000 
8 13.996 13.997  14.002 23 14.000 14.003 14.000 
9 14.000 14.003  14.000 24 14.005 14.000 14.003 

10 14.001 14.000  14.002 25 13.998 14.000 14.000 
11 14.000 14.004  14.000 26 14.000 13.997 14.000 
12 14.000 13.997  14.000 27 14.000 14.003 14.001 
13 14.000 13.999  14.003 28 14.000 13.997 14.000 
14 14.000 14.002  14.000 29 14.000 14.001 13.998 
15 14.000 14.000  14.005 30 14.003 13.999 14.000 

unit: mm. 

Table 3. PG-02 measured data for PG-02 bias analysis. 

Sequence 1st 2nd 3rd 4th 5 th 

Measured Results 22.004 mm 22.002 mm 22.002 mm 21.996 mm 21.999 mm 

Sequence 6th 7th 8th 9th 10th 

Measured Results 21.999 mm 22.005 mm 22.000 mm 21.998 mm 22.000 mm 

Sequence 11th 12th 13th 14th 15th 

Measured Results 22.002 mm 22.004 mm 22.002 mm 21.998 mm 22.004 mm 
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Figure 2. X-bar control chart for PG-02 stability analysis. 

 

Figure 3. R chart for PG-02 stability analysis. 

According to bias specifications in the MSA guidelines, the minimum requirement is that the upper 

limit for the confidence interval should be ≥0. Based on the Monte Carlo simulation results, there are 

9707 entries of simulated data that are ≥0. The estimated acceptance probability is 97.07%, as shown 

in Figure 4. The simulated lower limit for the 95% confidence interval of the bias showed a normal 

distribution. The simulated average was −0.0013. For the simulation data, the standard deviation for 

the degree of dispersion was 0.0006. The original value of −0.0014 falls within the range of ±σ. This 

means that for the degree of dispersion between the sample average and the regression line, the SEM is 

0.0000, indicating that the simulated data are very close to the regression line, and the reliability of the 

simulated data is high. According to bias specifications in the MSA guidelines, the lower upper limit 

for the confidence interval should be ≤0. Based on the Monte Carlo simulation results, there were 9728 

entries of simulated data that are ≤0. The estimated acceptance probability was 97.28% as shown in 

Figure 5. Results of analysis on the Monte Carlo simulation for the 95% confidence interval for the 

bias were in accordance to the evaluation standards in the MSA for bias, and 0 fell within the 95% 

confidence interval for the bias. At the end of the simulation, there were 9434 entries (94.34%) of data 

that satisfied the bias requirement in the MSA guidelines. After simulation analysis and evaluation, the 

bias did not appear to have significant abnormalities. For a good measurement system, the bias 

obtained should be the same regardless of the size of the quantity [40]. To be extra cautious, and to 

further evaluate the PG-02 linearity variation in the measurement system, we simulated the amount of 

changes for the bias within the expected operating scope, in order to use as a reference to determine the 

ability of the measurement system. 
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Figure 4. Distribution of the upper limit of the 95% confidence interval for simulated  

PG-02 bias analysis. 

 

Figure 5. Distribution of the lower limit of the 95% confidence interval for simulated  

PG-02 bias analysis. 

Finally, we performed linearity analysis. The measured values covered the operating range for the 

measuring tool dial gauge coded PG-02. We selected five parts and performed measurements on the 

same quality property 12 times for each part. Specifications and reference values for the parts are 

shown in Table 4. We used Equation (7) to calculate the slope and the intercept of the line to obtain the 

best-fit line. The confidence interval was calculated as per Equation (8). The calculated results are 

shown in Table 5. It was observed that for bias to be 0, the line must be located within the confidence 

interval. The linearity for the PG-02 dial gauge was acceptable. Since the linearity was acceptable as 

per the graphical method, and we assumed : = 0, we then were able to calculate the results using 

Equation (9) to be | | =	0.3508 ≤ 2.0017, and so that we cannot reject the assumption. If the assumptions 

that : = 0 and slope = 0 are true, then the measurement system should have the same bias for all 

the reference values. For an acceptable linearity, the bias must be 0. Assume that : = 0 and the 

results from Equation (10) show that | | =	0.2391 ≤ 2.0017, and therefore we cannot reject the 

assumption. Based on the standards for accuracy analysis in the MSA measurement system followed 

by the industry, the linearity for the PG-02 measurement system is acceptable. 

 

mm
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Table 4. Specification for measured dimensions for linearity analysis. 

Ball Screw Structure and 

Measurement 
Part No. and Part Name 

Drawing Dimension  

Specifications 

3D Measurement 

Reference Value 

  
Measurement: external diameters of 

screw, or external diameters of screw 

nut, and length of mounting block 

01A Drive screw 5.000 mm ± 0.008 mm 5.002 mm 

02A Drive screw 14.000 mm ± 0.01 mm 14.003 mm 

X5C Screw nut 22.000 mm ± 0.012 mm 22.004 mm 

D4E Screw mounting block 27.000 mm ± 0.012 mm 26.996 mm 

B5ADrive screw 41.000 mm ± 0.012 mm 40.997 mm 

Table 5. Data for PG-02 linear analysis. 

xi Reference Value 
Upper Limit for 

Confidence Interval 

Lower Limit for 

Confidence Interval 
Regression Line 

1 5.002 mm 0.0014 mm −0.0011 mm 0.0002 mm 

2 14.003 mm 0.0009 mm −0.0008 mm 0.0001 mm 

3 22.004 mm 0.0007 mm −0.0008 mm −0.0002 mm 

4 26.996 mm 0.0007 mm −0.0009 mm −0.0001 mm 

5 40.997 mm 0.0011 mm −0.0016 mm −0.0003 mm 

4.3. Case 2 

Measuring instruments with the code OG-04 are dial gauges. The measured data were accurate to  

0.001 mm. The evaluator was a QC staff member who frequently uses this measuring device. We first 

performed stability analysis. The standard sample as a ball screw drive coded as 02A. We performed 

measurements three times a day, five days a week for a total of six weeks. The measured data are 

shown in Table 6. We used Equations (1) and (2) to calculate the control limits. The actual 

measurement data and the control limits were chronologically plotted onto the X-bar and R control 

charts as shown in Figures 6 and 7. We analyzed and reviewed whether the control chart had any 

special factors or abnormal conditions. Since no special trend was observed and the control limits were 

not crossed, we determined that the stability is acceptable. 

Table 6. Measurement data for OG-04 stability analysis. 

Day X1 X2 X3 Day X1 X2 X3 
1 13.997 14.006 13.999 16 13.999 13.996 14.005 

2 14.001 14.002 14.007 17 14.003 14.005 14.001 

3 14.005 14.004 13.996 18 14.000 14.003 14.000 

4 14.004 14.006 13.997 19 14.000 14.005 13.997 

5 14.002 14.003 14.005 20 14.005 14.002 14.001 

6 14.005 14.002 13.998 21 14.003 13.999 14.004 

7 14.001 14.004 14.002 22 14.002 13.996 14.005 

8 14.006 13.997 14.005 23 14.000 14.003 13.998 

9 14.005 14.007 13.999 24 14.005 14.005 14.003 

10 14.006 14.005 14.002 25 13.998 14.000 14.004 
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Table 6. Cont. 

Day X1 X2 X3 Day X1 X2 X3 
11 13.997 14.004 14.005 26 14.000 14.000 14.005 

12 14.003 13.997 13.998 27 14.005 13.997 14.007 

13 14.005 13.999 14.003 28 14.003 13.997 14.006 

14 14.000 14.005 14.002 29 14.002 14.005 13.998 

15 14.000 14.002 14.005 30 14.005 14.000 14.002 

unit: mm. 

We then performed bias analysis. The standard samples were ball screw nuts coded X5C. Repeated 

measurements were performed in terms of the length of the sample for a total of 15 times (Table 7). 

The measured data are shown in Figure 5. The standard reference value for this sample XT was  

22.001 mm. The measured data were plotted on a histogram as shown in Figure 8. Based on the 

graphical method, there were no special factors or abnormalities. Equations (3) and (4) were used to 

calculate the bias. It was calculated that the confidence interval for the 95% bias is [−0.0036, 0.0002]. 

Therefore, the bias is above the α level and is acceptable. − ∗ , ≤ ≤ + ∗ , = −0.0036 ≤ ≤ 0.0002 

 

Figure 6. X-bar control chart for OG-04 stability analysis. 

 

Figure 7. R chart for OG-04 stability analysis. 

Table 7. OG-04 measured data table for PG-02 bias analysis. 

Sequence 1st 2nd 3rd 4th 5 th 

Measured Results 21.998 mm 21.998 mm 22.000 mm 21.997 mm 22.006 mm 

Sequence 6th 7th 8th 9th 10th 

Measured Results 21.999 mm 21.995 mm 22.003 mm 21.999 mm 21.993 mm 

Sequence 11th 12th 13th 14th 15th 

Measured Results 22.001 mm 21.996 mm 22.002 mm 21.999 mm 22.004 mm 
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Figure 8. OG-04 bias histogram analysis. 

We used Monte Carlo to simulate bias variation for the measuring tool coded OG-04. The simulated 

upper limit for the 95% confidence interval of the bias showed a normal distribution, with a simulated 

average of −0.0001. For the simulation data, the standard deviation for the degree of dispersion was 

0.0008. The original value of 0.0002 falls within the range of ±σ. This means that for the degree of 

dispersion between the sample average and the regression line, the SEM is 0.0000, indicating that the 

simulated data are very close to the regression line, and the reliability of the simulated data is high. 

According to the bias specifications in the MSA guidelines, the minimum requirement is that the upper 

limit for confidence interval should be ≥0. Based on the Monte Carlo simulation results, there were 

4727 entries of simulated data that were ≥0. The estimated acceptance probability was 47.27% as 

shown in Figure 9. The simulated lower limit for the 95% confidence interval of the bias showed a 

normal distribution. The simulated average was −0.0033. For the simulation data, the standard 

deviation for the degree of dispersion was 0.0008. The original value of −0.0036 falls within the range 

of ±σ. This means that for the degree of dispersion between the sample average and the regression line, 

the SEM is 0.0000, indicating that the simulated data are very close to the regression line, and the 

reliability of the simulated data is high. 

 

Figure 9. Distribution of the upper limit of the 95% confidence interval for simulated  

OG-04 bias analysis. 

mm

 

mm
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According to the bias specifications in the MSA guidelines, the lower limit for the confidence 

interval should be ≤0. Based on the Monte Carlo simulation results, there were 10,000 entries of 

simulated data that were ≤0. The estimated acceptance probability was 100% as shown in Figure 10. 

Result Analysis on the Monte Carlo simulation for 95% confidence interval for the bias was in 

accordance with the evaluation standards in the MSA for bias, such that 0 must fall within the 95% 

confidence interval for the bias. At the end of the simulation, there are 4727 entries (47.27%) of data 

that satisfy the bias requirement in the MSA guidelines. After simulation analysis and evaluation on 

the measurement system OG-04, the abnormal rate for the upper limit of the 95% confidence interval 

for the bias was high, since the observed value was lower than the reference value. It was 

recommended that before making a further determination to see if a change in the procedure is needed 

(for example, use the bias to adjust every single reading method), an assessment of the simulated 

linearity analysis was required. 

 

Figure 10. Distribution of the lower limit of the 95% confidence interval for simulated  

OG-04 bias analysis. 

Finally, we performed linearity analysis. The measured values covered the operating range for the 

measuring tool dial gauge coded OG-04. We selected five parts and performed measurements on the 

same quality property 12 times for each part. Specifications and reference values for the parts are 

shown in Table 4. We used Equation (7) to calculate the slope and the intercept of the line to obtain the 

best-fit line. The confidence interval was calculated as per Equation (8). The calculated results are 

shown in Table 8. It is observed that for bias to be 0, the line must be located within the confidence 

interval. The linearity for the OG-04 dial gauge is acceptable as per Figure 11. If the graphical linearity 

is acceptable, and we assume : = 0 is true, then using Equation (9) we can calculate the results to 

be | | =	1.9045 ≤ 2.0017, and so that we cannot reject the assumption. If the assumption that  : = 0, slope = 0 is true, then the measurement system should have the same bias for all the 

reference values. For an acceptable linearity, the bias must be 0. Assume that : = 0, results from 

Equation (10) show that | | =	1.4126 ≤ 2.0017, and therefore we cannot reject the assumption.  

Based on the standards for accuracy analysis in the MSA measurement system followed by the 

industry, the linearity for the OG-04 measurement system is acceptable. 
  

 

mm
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Table 8. Data for OG-04 linear analysis. 

xi Reference Value 
Upper Limit for 

Confidence Interval 

Lower Limit for 

Confidence Interval 
Regression Line 

1 5.002 mm 0.0034 mm −0.0008 mm 0.0013 mm 

2 14.003 mm 0.0019 mm −0.0010 mm 0.0004 mm 

3 22.004 mm 0.0009 mm −0.0016 mm −0.0003 mm 

4 26.996 mm 0.0005 mm −0.0022 mm −0.0008 mm 

5 40.997 mm 0.0001 mm −0.0045 mm −0.0022 mm 

 

Figure 11. OG-04 linearity analysis. 

Through the Monte Carlo simulation, linearity analysis was performed on the resultant Ta value, and 

it appeared to be a beta distribution. The standard simulated value was 1.9045, the simulated average 

was 2.1722, and the simulated standard deviation for the degree of information dispersion was 0.9700. 

The original value 1.9045 falls within the range of ±σ. This means that for the degree of dispersion 

between the sample average and the regression line, the SEM is 0.0097, indicating that the simulated 

data are reliable. According to specifications in the MSA guidelines, if Ta is less than 2.0017, then the 

assumptions : = 0 and slope = 0 may hold. Based on the Monte Carlo simulation results, there are 

9163 entries of simulated Ta that are less than 2.0017. The estimated acceptance probability was 

44.05%, as shown in Figure 12. The Monte Carlo simulation showed that the resultant Tb appeared to 

be a beta distribution. The standard simulated value was 1.4126, the simulated average was 1.6727, 

and the simulated standard deviation for the degree of information dispersion was 0.8602. The original 

value 1.4126 falls within the range of ±σ. For the degree of dispersion between the sample average and 

the regression line, the standard error (SEM) is 0.0086. According to specifications in the MSA 

guidelines, if Tb is less than 2.0017, then the assumptions that : = 0 and bias = 0 may hold.  

Based on the Monte Carlo simulation results, there are 6580 entries of simulated Tb that are less than 

2.0017. The estimated acceptance probability was 65.08%, as shown in Figure 13. Finally, we have the 

estimated linearity results using the Monte Carlo simulation. According to linearity specifications in 

the MSA guidelines, if Ta and Tb are less than 2.0017, then the assumptions : = 0 and : = 0 

may hold. Thus, these assumptions are true. The above linearities are acceptable. At the end of the 

simulation analysis, there were 4235 entries (42.35%) of data that satisfied the linearity requirement in 
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the MSA guidelines. After simulation, it was determined that the linearity variation for the 

measurement system 0G-04 may exceed the acceptable range. The measurement system needs to be 

adjusted so that it can have 0 bias. If the bias in the measurement range cannot be adjusted to zero, 

then the measurement system can only be used when it is stable, and also only for process and product 

control. The measurement system cannot be used in analysis. 

 

Figure 12. Ta distribution for OG-04 linearity analysis. 

 

Figure 13. Tb distribution for OG-04 linearity analysis. 

4.4. Comparison of Results and Discussion 

From the case studies, it was observed that all the measurement systems had stabilities. That is, for 

the same measured object, the measurement system would have the same measurement results  

regardless whether the measurement was performed right now or in the future [40]. For measuring 

instruments coded PG-02, after performing MSA bias analysis, the resultant 95% confidence interval 

for bias was [−0.0014, 0.0014], and for measuring instruments coded OG-04, after performing MSA 

bias analysis, the resultant 95% confidence interval for bias was [−0.0036, 0.0002]. For both, 0 fell 

 

mm

 

mm
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within the 95% confidence interval. Using the conventional MSA bias analysis, no abnormalities were 

found for the bias. To perform a clearer investigation on the bias characteristic for the measurement 

systems, we used Monte Carlo simulations in this study to simulate actual case data to perform 

verification. For Case 1, the acceptance for bias was 94.34%. For Case 2, the acceptance for bias was 

only 47.27%. Linear analysis should be carried out immediately in order to obtain more accurate 

information. In the scope of this work, when a measuring tool is used to perform measurement on 

properties of different sizes, the bias can also be different. The linearity of a measuring system is also a 

statistical property that represents the bias variation within the scope of the work [41]. The 

measurement systems should have accurate measurement results within the measurable range. In other 

words, they should have linearity [40]. 

After linear analysis, the graphical chart analysis on measuring instruments coded PG-02 showed  

that the 0 bias line falls within its 95% confidence intervals for bias points, and the Ta (0.5191), Tb 

(0.3750) values were less than 2.0017. Linearity abnormalities for the measurement system could not 

be excluded. After linear analysis, the graphical chart analysis on the measuring instruments coded 

OG-04 shows that the 0 bias line falls within its 95% CI intervals for bias points, and the Ta (1.8691) 

and Tb (1.3885) values are less than 2.0017. Linearity abnormalities for the measurement system could 

not be excluded, according to the standard for accuracy analysis for MSA measurement systems. 

However, from the information, it was observed that linearity is determined by the slope. A lower 

slope means a better linearity. For Case 1, the slope was −0.0001. For Case 2, the slope was −0.0009. 

It was determined that the linearity in Case 2 was relatively poor, and careful assessment is required 

for accuracy variation. Using a Monte Carlo simulation to simulate linear analysis, the linearity acceptable 

level for Case 1 was 90.26%, and for Case 2, only 42.35% of the simulated data were acceptable. 

After performing MSA measurement system linearity analysis, both study cases show that the 

abnormalities could not be determined. However, the company in the case study is a manufacturer of 

precision linear transmission components, and is especially in need of accurate determination of variation 

in the measurement systems to ensure proper measurement systems can convey the characteristics of 

the measured items. This would effectively improve product quality and competitiveness of the 

company. After obtaining reports and recommendations from the Monte Carlo simulation data 

analysis, the case company immediately checked the measurement system coded OG-04, which had 

poor simulation results. After the assessment by the quality control department, it was found that the 

probe in the measuring instrument OG-04 had wear and tear, and that it also had improper calibration 

in terms of the high and low measurement range. This may result in poor measurement accuracy, and 

decrease the capability of producing a good measurement. After verification with the actual case, it 

was recommended that the company use the Monte Carlo simulation method when performing 

accuracy analysis of the measurement system in future. The estimated passing rate can be used as a 

reference index to classify the capabilities of measuring tools, and also configure related specifications. 

For example, measuring tools that are below the 60% passing rate should be evaluated and improved 

immediately to ensure measurement accuracy. 
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5. Conclusions 

Although the MSA and verification tests are different, we can reference the analytical methods in 

the MSA in terms of the bias and linearity to improve the calibration system. Statistical examination 

can replace conventional verification standards, which use the maximum permissible deviation 

between the readings and the standard values [17]. While assessing the uncertainty of the instrument 

calibration system, if we take the linearity within the measurement (calibration) range into account, we 

can perform a more comprehensive assessment. Using uncertainty to express the reasonable interval 

range, decentralized model, and acceptable reliabilities of the “true value”, the measurement results 

can go through certain modules that offer statistics and analysis, and become credible, safe, economical 

and feasible. During the measurement, there are many random factors that may cause measured output 

values in the process to be random variables. While the process has many random factors, if the 

operation is stable during the measurement process, then the impact of each factor is insignificant.  

The results of their combined effects often cause the measured values to exhibit a normal distribution. 

Therefore, in measurement system analysis, normal distribution plays an important role [41]. 

Thus, in this study, we used Monte Carlo simulation combined with statistical concepts and 

measurement uncertainty to establish a normal distribution and probability density functions. Based on 

the MSA accuracy analysis, we simulated an estimation model to assess the possible ranges for bias 

and linearity variation in the measurement systems. Using the company in the case study as an 

example, we verified our system, and found that this model can be effectively used by the company. It 

can correctly assess the capabilities of the measurement systems. In addition, the analysis results can 

also be effectively used to improve and maintain the measuring tools, and also to grade the measuring 

tools. Measurement systems with poor simulated accuracy should have restrictions for usage, and 

should be calibrated and maintained so that they can recover and return to the existing measurement 

standards. This avoids measurement error due to the measurement system, which can affect product 

quality and result in reputation impairment. The conclusions for our study are as follows: 

(1) Using a Monte Carlo simulation combined with MSA [15] bias and linear analysis, we can 

provide a clearer determination on the capabilities of measurement systems. Compared with 

conventional MSA methods for accuracy bias and criteria for linearity, our system is more rigorous. 

(2) It is recommended that companies in the industry reference the Monte Carlo simulation method 

together with the accuracy analysis of the MSA Reference Manual [15] to determine the bias and linearity 

of the measurement systems when performing measurement system analysis. The simulation results 

can be used in line with the current business conditions to establish practical evaluation standards. 

(3) After using the simulated Monte Carlo estimation model, results for the bias and linearity 

analysis for measuring system OG-04 were all below the 60% passing rate. After the initial assessment 

of the quality control department, it was determined that the poor accuracy may be due to the wear and 

tear of the probe, as well as the improper calibration of the high and low measurement range.  

It is suggested that for the implementation of Monte Carlo simulation accuracy analysis, if a 

measurement system cannot reach the 60% passing rate for bias or linearity, it should be considered 

that the measurement system has abnormalities in terms of accuracy variation. Immediate maintenance 

is recommended. 
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(4) Measurement System Analysis should be performed regularly. Meanwhile, in order to make 

effective use of the Measurement Systems Analysis results, relevant standards should be developed. 

By using the criteria configured in the Monte Carlo simulation, the capability of measurement systems 

should be classified. For the production management department, it can serve as a reference when 

conduct dispatching, and new product introduction. It prevents misuse of abnormal measurement tools. 

In addition, in terms of measurement systems, continuous improvement should be implemented, and 

measurement systems should be maintained to meet their requirements. This improves the calibration 

and managing system for measurement systems in companies. 

(5) The Measurement System Analysis Guidelines can be used as a single threshold standard. 

However, with the proper use of simulation and estimation models, we can effectively identify the 

accuracy of measurement systems. We offer our study to companies that are currently using MSA for 

measurement systems analysis so that, in future, they can use it as a reference when performing 

accuracy analysis and developing practical standards for measurement systems. 
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