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Abstract: For the sustainable use of groundwater, this study analyzed groundwater 

productivity-potential using a decision-tree approach in a geographic information system (GIS) 

in Boryeong and Pohang cities, Korea. The model was based on the relationship between 

groundwater-productivity data, including specific capacity (SPC), and its related 

hydrogeological factors. SPC data which is measured and calculated for groundwater 

productivity and data about related factors, including topography, lineament, geology, 

forest and soil data, were collected and input into a spatial database. A decision-tree model 

was applied and decision trees were constructed using the chi-squared automatic interaction 

detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. 

The resulting groundwater-productivity-potential (GPP) maps were validated using  

area-under-the-curve (AUC) analysis with the well data that had not been used for training 

the model. In the Boryeong city, the CHAID and QUEST algorithms had accuracies of 

83.31% and 79.47%, and in the Pohang city, the CHAID and QUEST algorithms had 

accuracies of 86.18% and 80.00%. As another validation, the GPP maps were validated by 

comparing the actual SPC data. As the result, in the Boryeong city, the CHAID and 

QUEST algorithms had accuracies of 96.55% and 94.92% and in the Pohang city, the 

CHAID and QUEST algorithms had accuracies of 87.88% and 87.50%. These results 

indicate that decision-tree models can be useful for development of groundwater resources. 
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1. Introduction 

Groundwater demand has increased because groundwater is one of the most important natural 

resources, supporting human health, economic development, and ecological diversity. Moreover, it is 

readily obtainable anywhere, provides excellent water quality, and has low development costs [1]. 

Surface water accounts for only 0.3% of the freshwater that exists on Earth and groundwater can be 

recharged each year by rainfall. However, the rapid increase in human population has increased the use 

and demand for groundwater resources for drinking, agricultural, and industrial purposes. Therefore, to 

ensure that a secure amount of water is available, systematic development and management planning 

should be established. In Korea, the occupancy rate of groundwater is 11% [2], and public water 

supplies (e.g., water supplies of towns) of groundwater are only 5% of total water use. Considering 

that the amount of groundwater used in Korea increased by more than 210% [3] between 1994 and 2008, 

development and utilization at the national level currently do not meet people’s growing needs. Hence, 

the development of reliable analytical methods and models for predicting locations that have GPP is 

urgently needed for systematic development, efficient management, and sustainable use of 

groundwater resources. 

GIS and other technologies have great potential for use in studies of groundwater hydrology, and 

thus many researches have used GIS and remote sensing techniques along with thematic layers such as 

geomorphology, drainage pattern, lineament, lithology, and soil for that purpose. Some studies have 

applied probabilistic models such as multi-criteria decision analysis and weights-of-evidence modeling 

for groundwater-potential mapping [4]. The other approaches have conducted numerical modeling, 

decision trees, fuzzy logic, and analytic hierarchical process analyses [5]. Some researchers have also 

integrated GIS, remote sensing, and geophysical surveys to derive additional thematic layers of surface 

parameters such as resistivity, aquifer thickness, or fault maps [6]. However, such studies had 

limitations because they used indirect indicators such as yield, groundwater depth, resistivity, and 

spring location, rather than hydraulic constants such as SPC and transmissivity (T). Furthermore, past 

studies have not validated the results by comparison with other datasets. 

The decision tree is a decision support method that uses a tree-like model of decisions. It is a 

hierarchical model composed of decision rules that recursively splits independent variables into 

homogeneous zones [7]. They split to favorable and non-favorable for groundwater productivity based 

on the relationship between SPC and each hydrogeological factor. The SPC is related to groundwater 

productivity and the SPC was measured and calculated. Moreover, an exhaustive search tends to select 

variables that afford more splits. Also, unlike other statistical models, a decision tree makes no 

statistical assumptions, can handle data represented on different measurement scales, and is 

computationally fast [8]. Therefore, in this study, a data-driven application of the decision tree 

methodology was provided to obtain more accurate and reliable estimates. More specifically, the main 

novelty of the study was to apply the decision tree model to make a better GPP map using the SPC 

value for the criterion variable in the Boryeong and Pohang cites, Korea. 
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The study flow, shown in Figure 1 is as follows: (1) Assembly of a spatial database. A total of  

124 SPC data points (Boryeong) and 83 SPC data (Pohang) points were used to create a spatial 

database using GIS. Topography, hydrogeology, lineament, and soil data were collected and input into 

a spatial database. (2) The SPC data of ≥ 4.55 m3/day/m (Boryeong) and ≥ 6.25 m3/day/m (Pohang) 

were randomly divided into training data (50% of well locations) and validation data (50% of well 

locations). (3) Topography, lineament, hydrogeology, and soil datasets were compiled in a spatial 

database. Then, 19 factors in Boryeong city and 15 factors in Pohang city were extracted from the 

spatial database as potential contributing factors. (4) Using the decision tree model and the well 

locations selected for training, the probability of the groundwater potential were calculated and GPP 

maps were made. (5) The GPP maps were validated using the well locations that were not used  

for training. 

 

Figure 1. Study flow for groundwater productivity potential mapping. 

2. Study Area 

The study areas, Boryeong and Pohang cities, Korea, have experienced rapid population growth and 

increased demand for groundwater reserves, and thus is appropriate for evaluating groundwater potential. 

The study area of Boryeong city lies between 36°10′15″ N and 36°31′20″ N latitude and 126°28′21″ E 

and 126°43′54″ E longitude and covers an area of 567.92 km2. The other study area, Pohang city lies 

between 35°50′07″ N and 36°16′34″ N latitude and 129°05′31″ E and 129°34′57″ E longitude and 

covers 891.44 km (Figure 2). The bedrock geology of the Boryeong city consists mainly of Cretaceous 

granitic rocks; Jurassic sediment rocks; Precambrian sediment and granitic rocks; and Quaternary 

alluvium rocks (Figure 3a) [9]. Also, the bedrock geology of the Pohang city consists mainly of 
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Cretaceous sedimentary, granitic, and volcanic rocks; Tertiary granitic, volcanic, and sedimentary 

rocks; and Quaternary basalt (Figure 3b) [10,11]. As the groundwater productivity data, the statistics 

of SPC in the study area is shown in Table 1. 

 

Figure 2. Study areas with topographic map. 

  

Figure 3. (a) Geological map of Boryeong city; (b) Geological map of Pohang city. 
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Table 1. Statistics of groundwater productivity data of study area. 

Type No. Min. Max. Avg. Median 

Boryeong city SPC (m3/day/m) 124 1.08 393.33 11.46 5.54 

Pohang city SPC (m3/day/m) 83 1.42 111.14 16.54 6.73 

3. Data 

To calculate groundwater productivity, the SPC are set as dependent variable, and various 

hydrogeological factors, which are known to influence groundwater productivity, are set as 

independent valuables. The SPC is a quantity which a water well can produce per unit of drawdown. It 

is normally obtained from a step drawdown test. SPC is expressed as: 

0
c

Q
S

h h
=

−
 (1)

where 

Sc is the specific capacity ([L2 T−1]; m³/day/m) 

Q is the pumping rate ([L3 T−1]; m³/day), and 

h−h0 is the drawdown ([L]; m) 

The SPC of a well is also a function of the pumping rate it is determined at. The SPC of a well is 

simply the pumping rate (yield) divided by the drawdown. It can be used to identify potential well, 

pump, or aquifer problems, and accordingly to develop a proper well maintenance schedule. It can also 

be used to estimate the T of the aquifer(s) tapped by the well’s perforations. T is the rate water is 

transmitted through an aquifer under a unit width and a unit hydraulic gradient. It equals the aquifer's 

hydraulic conductivity (permeability) times the aquifer thickness. The higher the T, the more prolific 

the aquifer and the less drawdown observed in the well. In the study, the T was not used. Instead of the 

T, the SPC was used because of the limited number of the T data [1,12]. 

Groundwater productivity is governed by many hydrogeological factors, such as surface and 

bedrock lithology, structure, slope steepness and morphology, stream evolution, climate, soil, 

vegetation cover, land use, and human activity, but for the study area these relationships have not been 

verified statistically and quantitatively. In this study, the 27 hydrogeological factors expected to be 

related to groundwater potential were reviewed with SPC. Finally, 19 hydrogeological factors for 

Boryeong city and 15 hydrogeological factors for Pohang city were selected according to the opinion 

of a groundwater expert and applied to the decision tree model (Table 2). The detail influences of the 

hydrogeological factors for groundwater productivity were analyzed by previous research [13–15]. 

To predict ground control problems in underground structures [16], lineament is strongly related to 

discontinuities such as joints, faults, and folds. For these reasons, lineament was used for structural 

analysis, analysis of the relationship with geology, and assessment of groundwater productivity. In this 

study, lineament was detected through interpretation of Landsat TM (Thematic Mapper) imagery and 

hillshade maps from a DEM (Digital Elevation Model) made by a structural geologist with much 

experience in such interpretations. Lineament density is useful for understanding the local distribution 

of lineaments. Lineament density analysis was considered to be the lineament length, frequency and 
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cross points, and the density of frequency and length were also analyzed using the weight of lineament 

length in the study area. 

A TIN (triangulated irregular network) was made using the elevation value, and a DEM was made 

with 30 m × 30 m resolution. One input factor, the ground elevation within 300 m, was given a mean 

value at each grid cell based on the value of neighboring cells within a 300 m radius. Using the DEM, 

the slope and SPI (stream power index) were calculated. Mean ground elevation and slope within 

watershed area were obtained after watershed delineation. River density and distance from the river 

were considered as the indicators for selection of groundwater potential sites because they indirectly 

indicate the permeability and porosity of the terrain. 

As land surface data, the soil was used as a factor related to groundwater potential. Soil texture 

invariably controls the penetration of surface water into an aquifer system. The soil texture of the study 

area was generated by a 1:25,000 scale soil map published by National Institute of Agricultural 

Science and Technology. 38 different categories of soil were extracted from the soil map: forest, 

grassland, gravel, gravelly sandy loam, fine gravelly sandy loam, sandy loam, loamy fine sand, fine 

sandy, loam, gravelly loam, silt loam, gravelly silt loam, clay silty loam, and silty clay loam. 

The spatial database was constructed with a resolution of 30 m × 30 m on the basis of Landsat TM. 

The 19 hydrogeological factors were converted to ArcGIS grid format, and the GRID set comprised 

767 rows by 1078 columns. In the study area, the total number of cells was known 502,456 and SPC in 

124 cells (88 cells (including the SPC data of < 4.55 m3/day/m) for training and 36 cells for 

validation). Also, in the Pohang city, the total number of cells was known 990,495 and SPC in 83 cells 

(61 cells (including The SPC data of < 6.25 m3/day/m) for training and 22 cells for validation). 

Groundwater productivity data (Table 1) such as T, SPC, yield, well depth, well diameter, and water 

table were collected from the national groundwater survey in the Boryeong [9] and Pohang cities [17], 

the national groundwater monitoring network construction report [18], and the rural groundwater 

survey report [19].  

Table 2. Hydrogeological factors related to groundwater productivity in the study. 

Category 
Factors 

Data Type Scale 
Boryeong City Pohang City 

Topography a 

Ground Elevation  

Ground Elevation within 300m 

Ground Slope  

Ground Slope within 300 m  

Stream Power Index  

Watershed Area 

Ground Elevation 

Ground Elevation within 300 m  

Ground Slope 

Ground Elevation Difference within 300 m  

Mean Ground Elevation within watershed Area 

Mean Ground Slope within watershed Area  

Ground Curvature  

Topographic Wetness Index  

Cumulative watershed area 

Grid 1:5000 
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Table 2. Cont. 

Category 
Factors 

Data Type 
Scale 

Boryeong City Pohang City  

River a 
River Density  

Distance from River 

River Density  

Distance from River 
Line 1:5000 

Geology b 
Geology Bedrock  

Hydrogeology 
Hydrogeology  Polygon 1:50,000 

Lineament c 

Lineament Length Density 

Lineament Frequency 

Density  

Lineament Length Density 

Weighted by its Length  

Lineament Frequency 

Density Weighted by its 

Length  

Density for Lineament 

Cross Points 

Lineament Length Density  

Lineament Length Density Weighted by its Length  

Lineament Frequency Density Weighted by its 

Length 

Line  

Soil d  Soil Soil Polygon R:30 m 

Forest e Forest Density - Polygon 1:25,000 

Groundwater 
Groundwater Depth  

Groundwater Gradient 
- Point  

a Topographical factors were extracted from digital topographic map by National Geographic Information 

Institute [20]; b The geological map produced by the Korea Institute of Geoscience & Mineral Resource [21]; 
c The lineament factors were extracted from Landsat TM image of study area; d The detailed soil map 

produced by Rural Development Administration [22]; e The forest map produced by Korea Forest Service [23]. 

4. Methods 

The general progression of GPP mapping is illustrated in Figure 1. The groundwater potential 

related factors were used as the input data. The GPP-likely locations and the GPP-unlikely locations 

were selected as training sites. In the decision tree model, the selection of the training site is important, 

and the areas deemed likely and not likely were carefully considered for training in this study. So, to 

select the training sites based on scientific and objective criteria, the SPC criterion 4.55 m3/day/m 

(Boryeong) and 6.25 m3/day/m (Pohang) were used. In the Boryeong city, for example, the average 

yield of well data is 225 m3/day, mean depth of wells is 114 m and 10 m water table from ground. The  

SPC = 4.55 m3/day/m was taken as the criterion for division purposes. The criteria, 4.55 m3/day/m, are 

equivalent to well yield 300 m3/day, with supposed drawdown of 2/3 of the total well depth. The value 

was calculated from the relationship between mean depth of wells and yield SPC = yield/{2/3(mean 

depth of wells)−(water table from ground)}. The mean SPC was 11.46 m3/day/m (median  

5.54 m3/day/m) with a maximum of 393.33 m3/day/m and a minimum of 1.08 m3/day/m. The SPC data 

that were not fewer than 4.55 m3/day/m were classified as GPP-likely training dataset, and the SPC data 

less than 4.55 m3/day/m were classified as GPP-unlikely dataset. Then, 50% of the SPC values that were 
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classified as GPP-likely training dataset were randomly selected and used for training. The remaining 

50% of the GPP-likely dataset were used for validation. 

Using decision-tree model, the relationships between GPP-likely training dataset and each factor 

were calculated quantitatively and GPP maps were created based on these relationships. The decision 

trees were constructed using the CHAID and the QUEST algorithms. Because the QUEST algorithm 

supports only nominal categorical data, related factors used for analysis of GPP were classified by the 

value of the frequency ratio. 

The decision tree is a hierarchical model composed of decision rules that recursively splits 

independent variables into homogeneous zones [24–26]. It is a decision support method that uses a 

tree-like model of decisions and their possible consequences. The decision tree combines the features 

in a hierarchical fashion such that the most important feature is located at the root of the tree.  

Each node in the tree refers to one of the features, and each leaf is assigned to one class  

(productive/non-productive area) representing the most frequent class value. Additionally, the leaf 

holds a probability vector indicating the probability of the feature's indicating a groundwater-productive 

area. New points are classified by navigating from the root of the tree to a leaf according to the 

outcome of tests along the path [27]. Figure 4 shows the general structure of a decision tree, which 

consists of three elements: node, condition, and production. Moreover, there are three types of node, 

namely decision, chance, and end nodes. In Figure 4, A is a decision node, B is chance (internal) 

nodes, and C is an end (leaf or terminal) node. Because of its advantages, the decision tree is a popular 

classification model. There are many algorithms for constructing decision tree models, such as the 

Classification and Regression Tree (CART) [28], the CHAID [29], the Iterative Dichotomiser 3 (ID3) [30], 

the QUEST [7], and the C4.5 algorithm [31].  

In this study, the CHAID and QUEST decision tree algorithms were applied to GPP mapping.  

A CHAID decision tree is constructed by repeatedly splitting subsets of the space into two or more 

child nodes (multiway split), beginning with the entire dataset [29,32]. The CHAID algorithm, which 

is applied widely in many fields, uses a recursive partitioning method and allows multiple splits of a 

node [33]. The CHAID algorithm consists of three steps: merging, splitting, and stopping. To 

determine the best split at any node, any allowable pair of categories of the predictor variables is 

merged until there is no statistically significant difference within the pair with respect to the target 

variable. The final nodes identify subgroups defined by different sets of independent variables. The 

result of these processes is a decision tree structure. The QUEST algorithm developed by Loh and Shih 

(1997) is a quick, unbiased, and efficient statistical tree. It is a tree-structured classification algorithm 

that yields a growing binary decision tree. The QUEST tree-growing process consists of selecting a 

split predictor, selecting a split point for the selected predictor, and stopping. The QUEST algorithm 

uses an unbiased or linear variable selection technique and employs imputation instead of surrogate 

splits to deal with missing values [34]. It can easily handle categorical predictor variables with many 

categories [7]. 

To apply the CHAID algorithm to develop decision trees, all the continuous factors except geology, 

hydrogeology, and soil were reclassified into 10 classes using frequency ratio values. The frequency 

ratio is the ratio of the area where SPC data existed to the total area. Factors were initially reclassified 

into 10 classes, each with a similar number of cells in total area. Thus, the range of each class was 

determined automatically based on equal area. Reclassification is a generalization technique used to 
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reassign values, such as the ratio from the frequency ratio model, in an input theme to create a new 

input theme. Using the frequency ratio values, the 10 classes were then reclassified into three classes 

for applying the CHAID and QUEST algorithms. 

SPSS software [35] was used to implement the CHAID and QUEST algorithms. At the first step of 

the decision tree analysis, the frequency ratio data of factors, which were saved as ASCII files, were 

converted and loaded into SPSS data files. The SPSS decision trees algorithm offers a pruning 

mechanism in the tree induction stage for controlling the growth of the tree. At the next step, the 

values of the output attribute denoting groundwater productivity potential were listed via a model 

analysis tool. Finally, the observed and predicted values were saved in an ASCII file. An example of a 

decision tree derived from the CHAID algorithm is presented in Figure 4. 

 

Figure 4. Architecture of the decision-tree model. A decision tree consists of the following 

three elements: node, condition, and production (p-value). Moreover, there are three types 

of node, the root (A), internal (B), and terminal nodes (C). 

5. Results 

The decision trees constructed using the two algorithms were applied to each grid cell of the study 

area. For GPP mapping, predictors as factors and the probability (p-value) in the leaf node can be 

considered as the GPP. After the tree-construction process, leaf nodes were calculated. Then, the 

probability in the leaf node was considered as the groundwater productivity potential index (GPPI). To 

obtain a GPP map, the GPPI values were reclassified into different productivity potential classes. The 

index was classified into three classes based on area for easy visual interpretation: high, medium, and 

low index ranges considering distribution area, respectively. GPP maps made using the GPPI are 

shown in Figure 5. The classification is useful for estimating GPP in each class and for visually 

delineating predicted GPP areas. 
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Figure 5. Groundwater productivity potential map created using decision-tree model. The 

index was classified into three classes based on area for easy and visual interpretation: 

high, medium, and low index ranges of the study area, respectively. (a) CHAID algorithm 

for Boryeong city; (b) QUEST algorithm for Pohang city; (c) CHAID algorithm for 

Boryeong city; and (d) QUEST algorithm for Pohang city. 

A GPP map should effectively predict GPP areas and can be validated by incorporating data from 

new GPP-likely datasets as they occur. Here, the result of the GPP analysis was validated using a test 

GPP-likely dataset (50% of the total GPP-likely dataset) that was not used for the analysis. To validate 

the GPP map, the calculated GPPI values of all cells were sorted in descending order. Then, the 

ordered cell values were divided into 100 classes at 1% cumulative intervals. The above procedure was 

also adapted for the GPP-likely dataset cells by comparing the 100 classes obtained with the 

distribution in the study area. Then, a graph was made by connecting the two classified values. For 

example, in the case of the CHAID algorithm, the 90%–100% (10%) class of the Boryeong city where 



Sustainability 2015, 7 13426 

 

 

the GPPI had a higher rank could explain 51% of the entire productivity potential. Furthermore, the 

80%–100% (20%) class of the study area where the GPPI had a higher rank could explain 68% of the 

productivity potential. To compare the results quantitatively, the areas under the curve (AUC) were  

re-calculated as the total area [36,37]. Hence, the area under a curve can be used to assess the 

prediction accuracy qualitatively.  

From the validation of the GPP maps, the decision tree (CHAID and QUEST algorithms) 

approaches produced AUC values of 83.31 and 79.47, respectively, meaning that the GPP maps had 

accuracies of 83.31% (CHAID) and 79.47% (QUEST) (Figure 6) in the case of Boryeong city. In the 

case of Pohang city, the decision tree (CHAID and QUEST algorithms) approaches produced AUC 

values of 86.18 and 80.00, respectively, meaning that the GPP maps had accuracies of 86.18% 

(CHAID) and 80.00% (QUEST) (Figure 6). 

 

Figure 6. Cumulative frequency diagram showing the groundwater-productivity-potential 

(GPP) index rank (x axis) occurring in the cumulative percent of well (SPC>4.55 m3/day/m 

(Boryeong) and 6.25 m3/day/m (Pohang)) (y axis). From the validation of the GPP maps 

using decision tree (CHAID and QUEST algorithms) approaches produced AUC values. 

The other validation is performed by comparing the GPP map with borehole SPC data. The 72 wells 

in Boryeong city and 44 wells in Pohang city were used to validate the accuracy of the predicted map. 

The actual SPC value in each wells were compared with GPP maps and the Agreement/Disagreement 

between the expected/actual SPC data are shown in Table 3. The values which are greater than  

4.55 m3/day/m in Boryeong city and are greater than 6.25 m3/day/m in Pohang city were used as 

actually high SPC value. So, the Equation (2) was used to calculate to accuracy. 



Sustainability 2015, 7 13427 

  

 

Table 3. Validation table for the prediction map in Boryeong and Pohang city. 

ID Location SPC CHA ID Remarks QUEST Remarks ID Location SPC CHA ID Remarks QUEST Remarks 

1 BR(PH) 18.65(26.38) H(H) A(A) H(H) A(A) 37 BR(PH) 46.14(16.10) M(H) - (A) M(M) - (-) 

2 BR(PH) 5.91(27.11) H(L) A(D) H(H) A(A) 38 BR(PH) 60.93(6.50) H(H) A(A) H(M) A(-) 

3 BR(PH) 10.69(16.67) H(H) A(A) M(H) - (A) 39 BR(PH) 47.95(7.08) M(M) - (-) H(M) A(-) 

4 BR(PH) 8.11(39.84) H(L) A(D) M(L) - (D) 40 BR(PH) 20.80(10.47) H(H) A(A) H(M) A(-) 

5 BR(PH) 6.34(111.14) H(H) A(A) H(H) A(A) 41 BR(PH) 9.51(26.09) M(M) - (-) H(M) A(-) 

6 BR(PH) 6.40(85.54) H(H) A(A) H(H) A(A) 42 BR(PH) 24.45(31.29) H(M) A(-) H(M) A(A) 

7 BR(PH) 8.37(80.00) H(H) A(A) H(M) A(-) 43 BR(PH) 11.72(8.81) H(H) A(A) H(H) A(A) 

8 BR(PH) 19.55(69.17) H(H) A(A) H(H) A(A) 44 BR(PH) 7.77(8.33) H(H) A(A) H(H) A 

9 BR(PH) 16.75(6.73) M(H) - (A) H(M) A(-) 45 BR 10.97 H A H A 

10 BR(PH) 11.29(6.38) H(M) A(-) H(M) A(-) 46 BR 5.68 H A H A 

11 BR(PH) 54.83(10.26) M(H) - (A) H(H) A(A) 47 BR 20.71 H A H A 

12 BR(PH) 4.83(53.66) H(H) A(A) M(H) - (A) 48 BR 7.65 H A H A 

13 BR(PH) 14.71(12.06) H(H) A(A) H(H) A(A) 49 BR 5.06 L D M - 

14 BR(PH) 13.43(9.02) H(H) A(A) H(H) A(A) 50 BR 20.85 H A M - 

15 BR(PH) 6.93(23.08) M(H) - (A) M(M) - (-) 51 BR 8.35 M - M - 

16 BR(PH) 8.13(14.96) H(H) A(A) H(H) A(A) 52 BR 14.02 H A H A 

17 BR(PH) 8.33(16.13) M(H) - (A) H(H) A(A) 53 BR 4.96 H A M - 

18 BR(PH) 9.96(25.59) H(H) A(A) H(M) A(-) 54 BR 10.84 H A H A 

19 BR(PH) 5.26(46.30) H(H) A(A) L(H) D(A) 55 BR 6.10 H A H A 

20 BR(PH) 12.10(22.99) H(H) A(A) H(H) A(A) 56 BR 10.54 M - H A 

21 BR(PH) 7.35(40.00) H(H) A(A) M(H) - (A) 57 BR 6.70 M - H A 

22 BR(PH) 4.94(12.17) H(H) A(A) H(H) A(A) 58 BR 5.54 H A H A 

23 BR(PH) 6.84(8.95) H(H) A(A) H(H) A(A) 59 BR 9.96 H A H A 

24 BR(PH) 5.88(7.20) H(H) A(A) H(H) A(A) 60 BR 5.60 H A M - 

25 BR(PH) 6.35(36.90) H(H) A(A) H(H) A(A) 61 BR 6.49 H A H A 

26 BR(PH) 5.48(23.35) H(M) A(-) H(M) A(-) 62 BR 7.18 M - H A 
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Table 3. Cont. 

ID Location SPC CHA ID Remarks QUEST Remarks ID Location SPC CHA ID Remarks QUEST Remarks 

27 BR(PH) 9.96(44.03) H(M) A(-) H(M) A(-) 63 BR 6.06 M - H A 

28 BR(PH) 6.99(31.88) H(M) A(-) H(M) A(D) 64 BR 4.98 H A H A 

29 BR(PH) 5.77(8.60) H(L) A(D) H(L) A(D) 65 BR 5.16 M - L D 

30 BR(PH) 14.73(20.34) M(L) - (D) H(L) A(-) 66 BR 8.78 H A H A 

31 BR(PH) 18.00(7.81) H(M) A(-) H(M) A(-) 67 BR 6.39 H A H A 

32 BR(PH) 9.88(8.59) H(M) A(-) H(M) A(-) 68 BR 10.28 H A H A 

33 BR(PH) 6.33(15.39) H(H) A(A) H(M) A(-) 69 BR 4.66 H A H A 

34 BR(PH) 5.49(66.80) H(M) A(-) H(M) A(-) 70 BR 16.00 L D L D 

35 BR(PH) 19.85(64.02) H(H) A(A) H(M) A(-) 71 BR 9.11 H A M - 

36 BR(PH) 10.33(24.90) H(M) A(-) M(M) - (-) 72 BR 393.33 H A H A 

BR = Boryeong, PH = Pohang, H = High, M=Medium, L = Low, A = Agree, D = Disagree. 

 



Sustainability 2015, 7 13429 

  

 

Accuracy = Number of Agreement well (High potential with high SPC value)/ 

{(Number of Agreement well + Number of Disagreement well (Low potential  

with high SPC value)} 

(2)

For example, the accuracy of the prediction in Boryeong city (CHAID and QUEST) is estimated  

as follows: 

Number of boreholes where there is agreement between the expected (High potential) and the actual 

SPC = 56/56 

Number of boreholes where there is disagreement between the expected (Low potential) and the 

actual yield = 2/3 

The accuracy of the prediction of CHAID = 56 / (56 + 2) × 100 = 96.55% 

The accuracy of the prediction of QUEST = 56 / (56 + 3) × 100 = 94.92% 

Also, the accuracy of the prediction in Pohang city (CHAID and QUEST) is estimated as 87.88% 

and 87.50%, respectively. 

6. Conclusions and Discussion 

This study used the decision tree model to predict GPP areas in the Boryeong and Pohang cites, 

where groundwater production is expected to continue into the future. Two tree-constructing 

algorithms, CHAID and QUEST, were applied to map GPP and the GPP maps were validated. 

Generally, with respect to spatial distribution, the maps produced using the decision tree (CHAID and 

QUEST algorithms) approaches showed similar patterns, but patterns in some areas were different. 

The high potential areas are lowlands and either residential or agricultural areas. These areas of high 

and very high potential should be a priority concern for new development sites during groundwater 

development planning. The validation results showed satisfactory agreement between the GPP map 

and the existing well location data. In Boryeong city, the map produced using the CHAID and QUEST 

algorithms had high accuracies of 83.31% and 79.47% by the AUC method. In Pohang city, the 

accuracies were 86.18% (CHAID) and 80.00% (QUEST). The other validation method by comparing 

the GPP map with borehole SPC data showed accuracies of 96.55% and 94.92% (CHAID and 

QUEST) in Boryeong city and 87.88% and 87.50% (CHAID and QUEST) in Pohang city. The 

prediction accuracy obtained showed that the method applied for this study produced very reliable and 

accurate results. Generally, the CHAID algorithm showed better accuracy than the QUEST algorithm. 

The decision tree model can be used efficiently for GPP analysis and may be used widely for 

prediction of various spatial events. However, for generalizing the approach, more case studies 

including validations should be performed. For this, a hydrogeological database covering many areas 

should be prepared and the decision tree model should be applied to create a GPP map. To improve 

accuracy, not only applications and validation models but also accurate (large scale) and various input 

data should be considered. 

The main advantage of classification trees is the insight that their split points are believed to 

provide. Loh and Shih (1997) demonstrated that an exhaustive search tends to result in the selection of 

variables that afford more splits. Therefore, such trees should be interpreted with caution. In terms of 

classification accuracy, the variability in split points, and tree size, there is no clear best choice among 
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most algorithms when univariate splits are used. However, the QUEST algorithm based on linear 

combination splits is usually shorter and more accurate than the same trees based on univariate splits [7]. 

Also, unlike other statistical models, a decision tree makes no statistical assumptions, can handle data 

represented on different measurement scales, and is computationally fast [8]. 

The model proposed in this paper and the resultant GPP maps can be applied to the establishment of 

development and management plans for the use of groundwater resources, such as for regional 

groundwater-development planning, decisions about promising areas for groundwater development, 

and control over the water supply system, based on a systematic, objective, and scientific decision 

model. The resulting maps also can help planners choose locations suitable for implementing further 

detailed explorations. Moreover, the use of the same analysis in other districts with similar topographic 

and geological conditions could result in time and cost savings in predicting groundwater productivity. 

If applied in other areas, the GPP mapping method developed in this study could become a widespread 

and useful analysis model for groundwater productivity. However, care should be taken in using the 

model for the development of specific sites as the scale of the analysis should be considered. 

Therefore, the model used in the study is valid only for generalized planning and assessment purposes. 
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