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Abstract: Groundwater is a form of natural capital that is valued for the goods it provides, 

including ecosystem health, water quality, and water consumption. Degradation of 

groundwater could be alleviated through social investment such as for water reuse and 

desalination to reduce the need for withdrawals from groundwater. This paper develops a 

participatory planning process—based on combining revealed preference with economic 

optimization—to choose a desired future for sustaining groundwater. Generation of potential 

groundwater futures is based on an optimal control model with investment and withdrawal 

from groundwater as control variables. In this model, groundwater stock and aquatic health 

are included as inter-temporal public goods. The social discount rate expressing time 

preference—an important parameter that drives optimization—is revealed through  

the participatory planning process. To implement the chosen future, a new method of  

inter-temporal pricing is presented to finance investment and supply costs. Furthermore, it 

is shown that the desired social outcome could be achieved by a form of privatization in 

which the pricing method, the appropriate discount rate, and the planning period are 

contractually specified. 

Keywords: groundwater; sustainability; optimal control; revealed preference; social 

investment; privatization; water pricing; public participation; planning process; backcasting 

 

1. Introduction 

The importance of groundwater for drinking water supply is well-recognized. In the U.S., about 

78% of the 55,000 Community Water Systems identified by U.S. EPA and about 30% of the U.S. 

population use groundwater as a drinking water source (U.S. EPA, 2008) [1]. In the world at large, 
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groundwater provides about 50% of drinking supplies (United Nations, 2003) [2]. It is especially 

important in rural areas where wells supply water needs (Water Science and Technology Board, 2002) [3]. 

Groundwater provides about 40% of irrigation water used in the western U.S. (Feinerman and Knapp, 

1983) [4]. And, groundwater is increasingly important for agriculture as a substitute for surface water 

when there is drought (Llamas and Martinez-Santos, 2005) [5]. Recently, it has been found to be a 

potentially important source of irrigation water in Sub-Saharan Africa (Villholth, 2013) [6], especially 

in the face of climate change.  

However, around the world, groundwater sustainability is being threatened by overdraft, salinization, 

and pollution [7]. Foster and Chilton (2003) [9] describe the major pathways for aquifer degradation 

and state that “little of the economic benefit of resource development has been reinvested in 

groundwater management” (p. 1957). 

Groundwater is stored in aquifers that are underground layers of rock containing trapped water. 

Many unconfined or leaky aquifers are replenished by infiltration of rainwater, thus are renewable in 

the terminology of resource economics, but those with “fossil water” are non-renewable. Even when 

groundwater is rechargeable, its recharge rate may be small relative to withdrawal, particularly in areas 

of low rainfall and high urbanization. Therefore, an aquifer can be damaged by over-pumping which 

may cause containing rock layers to collapse, thus reducing water storage capacity and in some areas 

causing salt water intrusion (van der Gun and Lipponen, 2010) [10]. Van der Gun and Lipponen also 

point out that defining a rate of pumping that provides a “sustainable yield” is not so simple and is 

actually controversial among hydrologists.  

A groundwater system is a form of natural capital. First, there is water storage provided by nature 

that would otherwise require fiscal capital. Also, groundwater can be of higher water quality than 

surface water because of natural filtration. Furthermore, groundwater is like a form of insurance, since 

it can be pumped in times of drought when rain and surface water are scarce, and water can be 

recharged by rainfall. Also, groundwater is now recognized as being connected to surface water 

(Kendy and Bredehoeft, 2006; Howe, 2002) [11,12]; a study by U.S. Geological Survey for 54 streams 

over a 30 year period found that an average of 52% of stream flow is contributed by groundwater  

(van der Gun and Lipponen, 2010) [10].  

Finally, through its connection to surface phenomena, groundwater is important for sustaining 

aquatic ecosystems (Wohl, 2013) [13] (pp. 51, 269). Ecosystems that depend on groundwater include 

terrestrial flora and fauna, wetlands, estuaries, and near-shore ecosystems. The recognition of the 

linkage of groundwater to ecosystems has recently been studied empirically in an economic 

optimization context by Duarte et al. (2010) [14] and Esteban and Albiac (2011) [15].  

To address groundwater problems, a variety of policies have been suggested, such as defining 

property rights, pricing, regulation of pumping, and introducing a market in groundwater rights. There 

are many articles discussing alternative policies and institutions. Notable reviews of groundwater 

management methods are presented by Orr and Colby (2004) [16] for innovative methods in Arizona, 

by Koundouri and Groom (2002) [17] for a world view, and by Blomquist (1992) [18] for an emphasis 

on local self-governance methods. A recent book reviewing Arizona water policy (Colby and Jacobs, 

2007) [19] states that “One of the most important lessons to emerge from the history related here is the 

ultimate importance of institutions and institutional arrangements in managing water resources (p. xiv).”  
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Social investment for groundwater and how to achieve it is the focus here. The term “social 

investment” was first coined by Kenneth Arrow (1965) [20] with reference to United States’ experience 

with investment in water resources. Arrow stated that “all users will receive the benefits over the 

lifetime of the investment” [20] (p. 3), and he specified social investment as yielding benefits that 

accrue to a wide class of individuals who cannot be excluded from resulting benefits [21]. Because of 

its collective nature, Arrow recognized that market pricing cannot be used to finance such investments.  

1.1. Social Investment in Groundwater Systems 

Investment could improve groundwater sustainability by making available technologies that could 

augment or substitute for withdrawal from groundwater. For example, technologies such as re-cycling 

and desalination can substitute for groundwater use. Aquifer storage of treated wastewater can directly 

recharge groundwater stock, either through percolation or deep well injection. In coastal areas, injected 

water may also be used as a buffer to prevent saltwater intrusion.  

Investment in water technologies can be expensive (Bick and Oron, 2000) [22]. For example, the 

Orange County Water District built a large scale plant (70 million gallons per day) that converts  

waste-water into near-distilled quality which is injected into the underground supply, at a construction 

cost of about $480 million with operating costs of $1.61 per 1000 gals [23]. An example of 

desalination of brackish water is the city of El Paso’s construction in 2007 of the largest non-coastal 

plant to supply 27.5 million gallons at a construction cost of about $87 million and operating costs of 

about $1.65 per 1000 gallons [24,25]. These operating costs compare favorably to a U.S. national 

average cost of potable water of $2 per 1000 gallons (this average includes both surface and 

groundwater sources; surface water sources generally have higher costs due to water treatment for 

drinking quality) [26]. Investment for agricultural groundwater use can be highly effective because of 

large worldwide agricultural groundwater use; about 60% of world groundwater withdrawal is for 

agriculture, and the rest is equally divided between domestic and industrial sectors [27]. Israel provides 

a demonstration of the benefits of investment for improved irrigation and for the use of recycled urban 

wastewater (Kislev, 2002) [28]. Per capita water for agriculture has been cut in half—compared to 

1960—by replacing 90% of irrigation by drip irrigation, at the same time that agricultural production 

per capita has risen by at least 150 per cent. Thirty percent of the water provided to agriculture is 

recycled, and 60 percent of urban wastewater is sent to agriculture. Israel’s use of recycled water—mainly 

for non-edible crops—is probably the highest in the world, and it has required large investments in 

water treatment and infrastructure (OECD, 2012) [29] (pp. 149–150).  

To complement the need for more investment to sustain groundwater, there are questions of how 

investment decisions should be made, and how water supply should be produced and managed. 

Regarding investment decisions, benefit-cost analysis (BCA) has historically been used to make 

investment decisions about water, usually carried out by a government agency because large scale 

water investments have most often been financed and constructed by governments. (See Appendix 1 

for a brief review of BCA and the discount rate.) In actuality, considering possibilities of level and 

timing of investment as well as possible levels and timing of water consumption/withdrawal, there 

would be infinite possibilities for alternative groundwater outcomes. However with BCA, only a 

limited set of alternative investments would be analyzed, so that BCA would only accidently result in 
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finding the optimum investment, and it would not include determination of an optimal time path for 

consumption/withdrawal. Here, the purpose of optimization is to reduce the effort to find the  

desired solution among many alternatives when timing of consumption/withdrawal is included among 

the alternatives.  

Government agencies and for-profit utilities (“privatization”) are two alternative organization 

entities to perform investment and water supply management. Supporters of privatization believe that 

for-profit industry may be better able to provide for the large financial needs of investment than 

government or public utilities. Privatization has been suggested as a way to achieve needed investment 

particularly for less-advantaged communities. In practice, privatization of water supply has been 

controversial because there have been delays in making needed investments, corruption, and poor 

management (Bakker, 2010 [30]; Committee on Privatization of Water Services in the United States, 

2002 [31]). However, Bakker also describes drawbacks of government water supply. A government 

agency would not necessarily minimize water production costs and may not produce the desired  

water-related outcomes. 

Voluntary or cooperative approaches to finance social investment are also possible. The cooperative 

finance of public investments such as for construction of public utilities was addressed by Loehman 

and Whinston (1971) [32] based on the Shapley Value, a cooperative game theory method of cost 

allocation. This cooperative game approach was applied by Esteban and Dinar (2012) [33] for 

groundwater management with environmental externalities for aquifers in Spain. Generally, game 

theoretic cost allocation procedures require definition of weights that determine cost shares; these 

weights can be either subjectively or axiomatically determined. Instead of a cooperative game 

approach, this paper presents the idea of a voluntary pricing method to cover investment cost. By 

“voluntary” is meant that water users agree ex ante to a pricing scheme to cover the cost of achieving 

their desired sustainability outcome. 

To respond to those who may question whether water users would voluntarily “tax” themselves to 

provide for the future, there are cases of voluntary payment for water programs, including 

groundwater. Christchurch, New Zealand provides one example of willingness to pay for groundwater 

improvement; there, increased use of a high-quality aquifer is leading to concerns about sustainability. 

A questionnaire study of Christchurch residents resulted in a mean willingness to pay of $416 per 

household per year to maintain river flows, and avoid restrictions on water use, more than adequate to 

pay for augmentation of the groundwater supply (Kerr, Sharp, and White, 2003) [34].  

One method of voluntary payment on utility bills is called Check Box for Water-for-Environment  

(see Megdal, Bate, and Schwartz, 2009 [35]). In Bend, Oregon, water consumers in the Blue Water 

Program have voluntarily agreed to automatic donations on each month’s water bill—with four 

possible donation levels of $1.60 to $6.40 per month—to support environmental flows in the 

Deschutes River. San Antonio, Texas provides an example of voluntary funding of groundwater 

protection via a bond measure funded by an increased sales tax of one-eighth percent; the money is 

used for land acquisition for greenways to protect the Edwards Aquifer from contamination (Greenwalt 

and McGrath, 2009) [36].  

Lurie et al. (2012) [37] proposed that water utilities could be potential “drivers” to manage a 

marketplace in watershed and related ecosystem services. A review of relative success of methods of 

payments for watershed services by water utilities (including drinking water, wastewater, and electric 
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utilities) is given by Bennett et al. (2014) [38]. Clearly, there is promise for methods of voluntary 

payment for water and ecosystem protection administered through water utilities. 

1.2. Contributions of This Paper 

Sustainability can be described as a level of a resource stock that could be maintained at a constant 

level, or a near-constant level allowing small perturbations, over a long period of time. The “steady 

state”—a term used for a stationary outcome in dynamic systems in physics, economics, and 

engineering—is used here to denote a possible sustainable future. But, it is important for this paper to 

note that groundwater stock and aquatic ecosystem health could be sustained at either a high or a low 

level: the point is to choose the desired steady state, i.e., whether the desired state has high or low 

ecosystem health and groundwater stock.  

The method of this paper helps to differentiate among the concepts of equity, sustainability, and 

efficiency. Equity and sustainability concepts have a long history and have often been confounded in 

economics literature [39]. Here, the steady state is a sustainable future outcome, whereas equity has to 

do with the choice of a path to the desired future. Efficiency—as usual in economics—is defined in 

terms of satisfying optimality conditions; as shown for the optimization model here, there are many 

possible efficient paths that can be differentiated on the basis of equity.  

Social investment is explored here as an instrument to make possible the achievement of the desired 

sustainable, equitable, and efficient future. To date, social investment as an instrument for sustaining 

groundwater has not yet been examined. One thesis of this paper is that, given current conditions of 

groundwater degradation and depletion, there should be increased social investment to support a higher 

level sustainability of groundwater systems and aquatic ecosystems. By “social”, is meant the collective 

determination of what the groundwater future should look, like together with collective willingness to 

finance the desired investment. A related thesis is that the desired sustainability outcome should be a 

matter of local choice relevant for local conditions, including the nature of water supply, socio-economic 

conditions such as water demand and income, and the nature of environmental/ecosystem concerns.  

The participatory unit for planning here will be called a hydro-geologic-economic (HGE) 

community [43]. In defining the appropriate geographical boundaries for investment planning, a 

complication is that societal and physical boundaries may not coincide. The nature of the underlying 

aquifer(s), the relationship of ground and surface waters, geologic formations, and economic and 

political interrelationships are all relevant aspects. Thus, the designation of the appropriate boundaries 

can itself be a complicated matter of social choice. 

A Social Investment Planning and Implementation (SIPI) process is proposed here for a HGE 

community to determine the desired sustainability outcome for groundwater, together with needed 

social investment, and how to achieve it. The design of this process integrates roles for a community 

desiring an improvement in the status of groundwater, a government water management agency, and a 

for-profit water management enterprise. Figure 1 illustrates the SIPI process, to be explained in more 

detail in this paper [44]. The design of each stage of this process is based on underlying economic 

theory. Figure 1 indicates relevant sections of this paper describing each stage. 
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Figure 1. The Social Investment Planning and Implementation (SIPI) process. 

 

Here the desired sustainability outcome for a groundwater system is modeled in terms of economic 

optimization of net benefits over time, with benefits including environmental services as well as water 

consumption. Investment and groundwater withdrawal are control variables, and groundwater stock 

and aquatic ecosystem health are state variables. However, prescriptive optimization is deemed 

inadequate in light of issues about the discount rate. The innovation here—based on a theoretical 

result—is to determine the social discount rate from the desired sustainability outcome, which is to be 

revealed through the planning process. (See Appendix 1 for alternative concepts of the discount rate 

and related ethical issues.) 

In general, an advantage of economic optimization—besides reducing the effort of finding a solution 

for the future—is to provide pricing signals that can be used to “decentralize” consumption decisions. 

Similarly here, a unique pricing method is derived from optimization; it serves to recover full costs of 

investment and water supply in addition to performing the usual water rationing function of pricing. 

Moreover, the pricing method in intended to be a voluntary—rather than a market-based [46]—approach 



Sustainability 2014, 6 5604 

 

to finance social investment. It is envisioned that water users would voluntarily agree to the pricing 

method to achieve the desired sustainability outcome.  

In addition to the investment planning and finance contributions, novel economic theory results are 

obtained here concerning optimal investment for a renewable resource. It is shown that the well-known 

Hotelling and Hartman rules do not apply to the groundwater situation when groundwater is renewable 

and has public good aspects as well as providing for water consumption. 

Another theoretical result is that the desired sustainability outcome could be accomplished through 

a contractual arrangement with a for-profit water management enterprise. This water management 

arrangement provides an alternative to government production or pure privatization. The contract must 

specify the pricing rule, the appropriate discount rate, and the planning period. The appropriate social 

discount rate—here revealed through the planning process—must be specified for this contractual 

arrangement to produce the desired sustainability outcome.  

Thus, the overarching contribution of this paper is to link economic theory, public participation, and 

institutional design for the purpose of planning and implementing social investment for sustaining 

groundwater and related aquatic ecosystems.  

1.3. Roadmap for this Paper 

The following sections of this paper provide background, theoretical results, and suggestions for 

implementation of the steps in Figure 1: 

• Section 2 discusses equity and sustainability concepts for optimal growth models and rules for 

social investment found in the literature.  

• Section 3 presents the basic economic optimal control model. 

• Section 4 presents economic theory results derived from the optimal control model.  

• Section 5 applies theory to develop the revealed preference approach for Stage 1 of the 

planning process to choose the desired groundwater future. The overall process is described in 

more detail than above. 

• Section 6 presents inter-temporal pricing for full cost recovery, to be used for Stage 2.  

• Section 7 develops the proposed organizational arrangement and the nature of the contract for 

Stage 3. 

• Section 8 comments briefly on participatory application methods. 

1.4. Embedded Ethical Assumptions 

The revealed preference approach here—to choose the discount rate and the desired path to the 

steady state—embodies three underlying ethical assumptions: (1) the appropriateness of revealed 

preference in planning; (2) the appropriateness for a current generation to make decisions about 

sustainability for future generations; (3) the requirement of choice consistency for inter-temporal choice.  

In a-temporal situations, the principle of revealed preference has been used to infer preference (i.e., 

demand) parameters from observed (market) consumption choices; an observed choice is taken to be 

revealed to be preferred to all other feasible choices (see for example Mendelsohn and Brown,  

1983 [48]). Here this principle is extended to determine the discount rate through choice among 
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alternative sustainable outcomes, with choice generated within the planning process rather than from 

market data.  

In a planning process, members of a current generation make decisions about the future. Since the 

life of a water project such as a desalination project may extend over multiple generations, not all 

relevant preference holders are present at the time of investment decision. However, a current 

generation may appropriately represent the interests of future generations, e.g., when parents make 

decisions concerning interests of children and grandchildren. For example, parents may sacrifice 

consumption in the present to save for education for their children, and similarly parents may be 

willing to invest in the healthy future of their children and grandchildren. Since children in one time 

period become parents in a future period, “iterated altruism” arises from the connectivity or overlap of 

preferences over a time span.  

Choice consistency means that the choices made by a current generation for future periods should 

be the same as those that would be made by a future generation for those same periods, if such choices 

were possible. Optimization of the discounted sum of utilities with a constant discount rate over 

generations satisfies this consistency criterion (Heal, 1973) [49], provided that preferences for all 

generations have the same representation.  

2. Sustainability, Equity, and Investment in Economic Literature  

Below, a brief review is given of economic literature concerning sustainability, equity, and 

investment. A more complete review can be found in Pezzey and Toman (2002) [40]. 

2.1. Optimal Growth Models 

Early inter-temporal optimization modeling of resource allocation and investment explicitly included 

equity concerns. Capital theorists in the 1960s such as Cass (1966) [50] and Dorfman (1969) [51] used 

optimal control to investigate desirable consumption-investment paths. That per capita consumption 

should be constant over time is a prominent economics notion of equity in this literature. From Solow 

(1974) [52], “...the max-min [equity] principle requires that consumption per head be constant through 

time (p. 30).” The “golden rule path” was identified as an investment path that would maintain 

maximum constant flow of consumption per capita. Furthermore, Solow thought that if capital assets 

could offset natural resources in producing consumption goods, then consumption sustainability could 

be consistent with depletion of a natural resource stock.  

Chichilnisky et al. (1995) [53] extended classical growth modeling to include an environmental 

aspect that is degraded by consumption; they proposed the “Green Golden Rule” to determine a growth 

path that is both equitable and sustainable in terms of the environmental good. The “green golden rule” 

gives the highest maintainable level of utility when environmental goods are valued. However,  

capital in their model was solely for the purpose of producing consumption, not for investment to 

maintain a renewable resource.  
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2.2. Other Sustainability and Equity Concepts 

Since capital assets usually generally cannot substitute for natural capital beyond some level, some 

ecological economists have suggested the steady state requirement that both natural capital and 

physical capital should be kept constant at a steady state (see Gatto, 1995 [54]), emphasizing  

non-destruction of natural systems as a standard for sustainability. Similarly, Bromley (1989) [55] 

suggested the ethical requirement of endowing future generations with undiminished stocks of natural 

resources and environmental quality to ensure inter-generational justice.  

That ecosystem and environmental outcomes associated with excessive human development are 

inherently uncertain was recognized by Howarth (1997) [56]. Because of uncertainties in management 

of resources, Howarth proposed another criterion of sustainability: the opportunity to provide “future 

generations with a set of life opportunities that is undiminished relative to the present (p. 576).”  

Some economists have defined sustainability in terms of utility or welfare: “A requirement of 

sustainablity entails that no generation should allow itself a level of utility that cannot also be shared 

by all future generations” (Withagen and Asheim (WA) 1998, [57], p. 159). The WA definition of 

equity implies that welfare for each generation should be non-decreasing; this criterion is also known 

as “weak sustainability” (Howarth, 1997) [56].  

Pezzey (1989, 1997) [58,59] supported the WA criterion, and he suggested that to ensure equity,  

a formal constraint should be added to optimization that utility be non-declining. However,  

Endress et al. (2005) [60] (p. 527) state that an “optimal growth path [can be] sustainable without the 

contrivance of a sustainability constraint,” and that adding a formal constraint may make the 

optimization problem unsolvable. 

Here, sustainability is differentiated from equity in a unique way: sustainability has to do with the 

optimal steady state in terms of physical and economic parameters, while equity has to do with the 

welfare along a path to arrive at this steady state. Revealed preference determines the path to the 

desired steady state. Thus, revealed path preference allows testing whether or not the WA definition of 

equity—non-decreasing welfare over time—would be supported by the HGE community, avoiding use 

of a mathematical sustainability constraint. At the same time, the approach allows testing whether the 

community would support or wish to avoid a resource depletion outcome. 

2.3. Hartwick’s Investment Rule  

Hartwick (1977, 1978, 1997) [61–63] introduced a reasonable investment rule for a non-renewable 

resource: the rule is that the value of investment should be the amount needed to replace the value of 

withdrawal from the resource stock. This rule was termed “zero net investment”. This rule was not 

obtained from an optimization model; instead, its purpose was to fully distribute the value of total 

production among current consumption, investment, and extraction costs. With the assumption that 

capital is used only for production, Hartwick used a special case of production function (homogeneous 

of degree one) and assumed the Hotelling rule (Hotelling, 1931) [64,65] for equilibrium in the asset 

market. He then showed that under this investment rule, per capita consumption would be constant, 

thus satisfying Solow’s (1974) [52] definition of inter-generational equity.  
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The theoretical results here obtained from the optimization model do not result in the Hartwick rule, 

and also the Hotelling rule is shown not be valid for the situation here for a renewable resource with 

public good aspects.  

3. Model of Optimal Investment for a Groundwater System  

Many resource economics papers specify an optimal control model with a very important 

parameter—the discount rate—to indicate time preference for returns to investment (see Appendix 1 

discussion). Usually such papers end with a phase diagram describing a steady state and the nature of 

paths to it depending on initial conditions. Examples of optimal control modeling for environmental 

and natural resources include Smith (1968) [66], Plourde (1970) [67] and Conrad (1999) [68] for 

resources such as fish, water, and timber; for renewable resources, these studies show the nature of optimal 

paths of resource use towards a steady state outcome. A common finding in such resource economics 

applications is that the optimal solution for resource extraction may result in stock depletion, and the 

larger the discount rate, the faster the rate of depletion (Conrad and Clark, 1987 [69]). However, Conrad 

and Clark also suggested—since society does not choose to cash out a resource such as the blue 

whale—that the consumption values for such resources do not correctly reflect their value to society. 

The approach here goes beyond the typical optimal control modeling in that the optimal control 

model is to be used as a tool within a participatory planning process to indicate how the discount rate 

and other parameters can be adjusted to reflect the desired future for local groundwater. 

For a groundwater management area—a HGE community—in which consumption and investment 

paths are being planned, the paradigm of resource economics portrays optimal investment and water 

consumption as maximizing net social welfare over a time period, with social welfare represented by 

the discount-weighted sum of utilities for water users in the HGE area. (See Appendix 2 for 

background on early groundwater optimization models without investment.) 

In traditional resource models such as Plourde (1970) [67], welfare derives only from consumption 

produced with the resource as an input. If capital for investment is modeled at all, previous resource 

economic models of optimal investment have only considered capital and resources to be substitute 

inputs for production of private consumption goods. Solow (1974) [52], Rausser (1974) [70],  

Smith (1974) [71], and Burt and Cummings (1970) [72] modeled investment in a general model, but 

operational rules for investment were not derived. The model here differs in two ways: (1) the 

groundwater resource provides for public goods such as water quality and aquatic ecosystem health as 

well as for water consumption; (2) investment can directly augment the stock of the resource.  

Here, groundwater stock enters in the expression of net social welfare as a public good [73]. The 

rationale for including groundwater stock directly in the objective function is that it provides several 

public goods. First, groundwater stock acts as insurance against drought in low rainfall years. Second, a 

higher groundwater stock—through its relationship to surface water—provides for a higher quality of 

ecosystem health. Finally, maintaining groundwater stock provides for the interests of both current and 

future generations. Altruism is allowed by including stock in the preferences of all generations.  
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3.1. Specification of Model of Optimal Investment 

Here the planning period is a set period T consistent with the life of potential investments. Rather 

than the infinite time framework commonly used in resource economics optimization models, we use a 

finite time period for planning. One reason for the finite time period is to provide consistency with a 

benefit-cost framework which uses the life of water projects as a planning period. A more important 

reason is the lack of realism of an infinite time frame. The infinite time period commonly used in 

resource economics optimization models is for ease of solution rather than realism. Considering Gould’s 

“punctuated equilibrium” theory that abrupt unanticipated changes can occur (Gould, 2007) [75], a steady 

state over an infinite time horizon—as commonly studied in resource economic models—is not realistic. 

Following Burt and Cummings (1970) [72] who used a discrete time framework, the social 

optimization problem for groundwater employs difference equations rather than differential equations. 

The difference equation to describe groundwater stock in a hydro-geologic region is a simplified 

physical model of stock balance in a leaky aquifer:  
1 ( ) ( )t t t t t tS S w f K h S αρ−− = − + + +  (1)

where the ρt term represents the direct effect on stock due to rainfall, adjusted for permeability and  

other physical effects; the pattern of rainfall over time is here considered to be known ex ante, such as 

from historical data. (Rainfall effects could be lagged without effecting the form of economic 

conditions [76–78].) Appendix 3 discusses application of the model when varying rainfall is not known 

ex ante.  

Total withdrawal wt is removed by pumping from groundwater stock each period; this supply will 

satisfy the sum of water demand volumes wi
t over all water users i. h(St) represents net inflow to the 

aquifer due to stock—apart from direct rainfall effects—including lateral flow, leakage, and potential 

subsidence effects; it can be positive or negative depending on the level of stock S. As is common in 

models of renewable resources (Conrad and Clark, 1987) [69], h(S) is assumed to be quadratic and 

concave (see Figure 2); i.e., it can exhibit both positive and negative slopes with hSS ≤ 0. From 

Equation (1), it can be seen that the maximum sustainable yield for withdrawal from stock is where the 

derivative of h(St) is zero. As Plourde (1970) [67] describes for a general natural resource, this 

maximum sustainable yield need not be the same as the economic optimum, especially here when 

capital can substitute in part for withdrawal from stock. 

Below, an assumption needed for mathematical reasons is that the derivative of h(St) be negative at 

the optimum. Then from Figure 2, optimal groundwater stock at a steady state will be greater than that 

corresponding to the maximum sustainable yield [79]. This assumption is reasonable considering that 

groundwater stock is needed both to sustain natural systems and to supply human use. 

The amount of stock substitution provided by investment in capital K is indicated by the capital 

production function f(K) [82]. As is usual for production functions, we assume fK > 0 and fKK < 0. The 

relation between groundwater stock and capital investment is modeled as continuous for simplicity: the 

greater the capital, the greater the stock augmentation or substitution effect, with diminishing returns to 

scale. For example, the volume of water obtained from shallow well desalination would depend on the 

size of capital investment; a larger facility with greater cost would provide for more desalination. 
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Figure 2. Representation of groundwater net inflow h(S). 

 
C(w, S, Q) denotes recurring water supply costs for pumping and water treatment. Pumping cost is 

related to volume of withdrawal w; more pumped means higher cost, e.g., for energy to pump, and it is 

also affected by groundwater stock, with pumping costs increasing as stock decreases (Burt, 1964) [83]. 

Water quality can also affect cost: for example, drinking water treatment cost is less with better raw 

water quality. Also, there could be remedial construction costs, for example to restore stream banks to 

improve aquatic eco-system health.  

The investment planning model for the water community is represented as [84,85,87]: 
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  (2)

In the terminology of optimal control theory, groundwater stock S, quality Q, capital K, and all other 

goods xi are state variables, while investment I and total water withdrawal w are control variables. The 

control variables determine the status of the state variables.  

For the HGE community each period, each water consumer (i) has individual preferences that 

depend on water consumption wi, stock of water S, eco-system and water quality aspects Q, and 

expenditure for all other goods xi. Preferences for heterogeneous water users in the community over 

water consumption, stock, quality, and all other goods are represented by utility functions ui. 

Groundwater stock and quality enter into preferences as public goods. Social benefit each period is 
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expressed by the sum of discounted utilities over all community water consumers representing 

preferences for water and all other goods, for a social discount rate r such that (1 + r) is positive.  

Aquatic eco-system and water quality effects of groundwater stock are represented by Q = g(S), 

where the derivative gS with respect to S is positive to indicate that increasing groundwater stock 

increases eco-system and water quality.  

The first constraint is the community financial feasibility constraint: each period the community 

must pay for total water system cost from its financial resources: total water system cost is the sum of 

operating supply cost C(wt, St, Qt) plus the cost of capital Kt borrowed at market rate of interest i. Here, 

the market rate for borrowing is not necessarily the same as the social rate of time preference. The 

market rate i is constant over time, and the finance charge each period at this interest rate is applied to 

the total capital stock each period. Prices of non-water consumption goods and water supply costs are 

given from outside the HGE community. The community will pay for water costs from local resources. 

Mt represents the total community economic resources each period (exogenous) to cover water costs 

and costs of all other goods xi
t.  

Following the assumption of “free disposal” in Kuhn-Tucker theory (Takayama, 1985 [88]), the 

stock equation is written as an inequality; the interpretation is that that the stock of groundwater can be 

no greater than the previous stock, minus total withdrawal, plus rainfall and recharge effects, plus 

effects of capital investment.  

The level of capital after depreciation and investment is also expressed as an inequality. For the 

capital constraint, the capital value of technology Kt for groundwater sustainability depreciates at a  

rate d. It denotes annual investment in infrastructure; it can offset depreciation but also add to 

augmentation or substitution of stock. Investment is required to be non-negative, i.e., there can be no 

decline in capital except through depreciation.  

The terminal time, or length of the planning period, is denoted by T. Salvage value for remaining 

capital, stock, and ecosystem quality has a terminal value denoted by V. Terminal constraints, such as 

reaching a certain level of consumption or stock by a certain time, are not included.  

3.2. Money Metric Re-Formulation 

For implementation purposes, the optimal control problem (2) is reconstituted to be in money 

metric terms by assuming that preferences are of the quasi-linear utility form: 

( , , , ) ( ) ( ) ( )i t t t t t i t i t i t
i i i iu x w S Q x B w N S E Q≡ + + +  (3)

i.e., preferences are separable in terms of private good consumption and water-related commodities 

and are expressed in monetary terms. Bi represents water consumption benefits, Ni represents  

non-consumption and insurance benefits of existence of groundwater stock, and Ei represents 

environmental quality benefits. Note that this form embodies the assumption that the same benefit 

functions apply over time, i.e., that the form of preference is the same over generations [89–91].  

To obtain the optimal control problem (4) below from the optimal control problem (2), for  

quasi-linear utility the financial constraint can be substituted for the sum of private good consumption. 

(The community income resource total is not present in the objective function since it is exogenous 
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and not relevant for optimization.) Also, total water withdrawal is replaced by the sum of water 

demands; these should be equal. The resulting reformulation is: 
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An interior solution of the optimal control problem (4) satisfies the first order necessary conditions 

for the optimal control problem (2). However, in addition to the first order necessary conditions, the 

community financial feasibility constraint for the optimal control problem (2) must also be satisfied for 

a full solution (Takayama, 1985) [88]. A later section of this paper shows how to satisfy the 

community financial feasibility constraint through appropriately specified water pricing. The next 

section provides the first order necessary conditions—together with their implications—for investment 

and water consumption.  

4. Economic Theory Results: Necessary Conditions for Optimal Investment 

Necessary conditions for optimality are given below. These necessary conditions are used later in 

the paper to develop investment and pricing rules. Among theoretical results, it is shown that the 

Hotelling and Hartwick rules do not apply here, because groundwater is considered here to be a 

renewable resource and has public good as well as consumption aspects. In addition, different 

assumptions are made about the role of capital in substituting for resource stock. 

Necessary optimality conditions [94] are described as follows, denoting accounting prices for stock 

and quality (shadow prices for the corresponding constraints) by μ and τ. In conditions given below, 

Bw
it denotes marginal benefit of water consumption at time t, EQ

it denotes the marginal benefit of 

quality, and NS
it denotes marginal benefit of increased stock at time period t for water user i. Marginal 

costs with respect to total groundwater withdrawal, stock and quality are similarly notated as Cw, CS, 

CQ. Necessary conditions for optimal water consumption, groundwater stock, investment, and 

ecosystem quality for each time period t are expressed as follows: 

(i) (1 )it t t t
w wB C rμ− = +  

(ii) (1 ) ( )t t t
Ki r f Kμ= +  

(iii) 1( )( ) ( ) (1 ) ( )(1 )it t t it t t t t t t t
S S S Q Q S

i i

N C g S E C h S r rμ μ μ +− + − + + = − +   

(iv) (1 )T T T T T
S S QV g V rμ+ = +  

(v) (1 ) ( )T T T
K KV r f Kμ= +  

For convenience, define the “spot value” of withdrawal from stock—the current value of raw  
water—to be the “forward value” of the accounting price for stock: (1 )t t trλ μ≡ + . From: 
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1

1( )(1 )
1

t
t t t tr

r

λμ μ λ
+

+− + = −
+

  (5)

the following result expresses optimal water consumption, groundwater stock, and investment in terms 

of the spot value.  

Result 1: Each period, optimal groundwater withdrawal, capital investment, and stock must satisfy a 

set of necessary conditions in terms of spot price: 

(a) For each water user i, the marginal net benefit of water consumption is equal to the spot value: 
  ( )it it t t

w w wNB B C λ≡ − =   (6)

(b) The optimal investment path must be related to the spot value as follows: 

( )t t
Ki f Kλ=   (7)

(c) The net marginal benefit of increasing stock should satisfy the following relationship to  

spot value: 

1

( )  
1

t
t it t it t t t t t

S S S Q S S Q S
i i

NB N g E C g C h
r

λλ λ
+

≡ + − + = − −
+    (8)

Conditions (1a) and (1b) are similar to a-temporal efficiency conditions. From (1a), the spot price is 

equal to the net marginal net value of water consumption. Note as usual that water users can have 

difference preferences, but for each, their marginal valuation is set equal to the spot price plus the 

marginal supply cost. From (1b), the marginal value product of investment in stock augmentation is set 

equal to the interest rate for borrowing.  

Condition (1c) is an inter-temporal public good condition: the total marginal benefit of increasing 

stock—summing individual water user benefits over all beneficiaries—should be equal to the marginal 

social cost of an increase in stock. Again, preferences of individual water users can differ, and as such, 

they are summed to express public good benefits. Here, the marginal social cost consists of four parts: 

marginal production cost (pumping and quality effects) as related to stock level, plus the value of foregone 

consumption, minus the present value of consumption for the next period, minus the value of stock-related 

physical effects. The net marginal benefit of increasing stock (NBS
t) should be non-negative on the 

optimal path; if not, a decrease in stock would increase total net benefits, negating optimality. 

Therefore, important for results below: the right hand side of Eqution (8) should be non-negative.  

Re-writing Equation (8) in terms of the difference in spot values gives Equation (9) to replace 

Hotelling’s Rule here. Equation (9) differs from Hotelling’s Rule because of the public good effect of 

stock and the physical stock effect, not present in Hotellings’s non-renewable resource case.  

Corollary 1: The equation of motion for optimal spot value is:  
1 ( )

/ (1 )

t t tt t
S S

t t

NB h
r

r

λλ λ
λ λ

+ +− = −
+

 (9)

Corollary 2 generalizes the so-called Ramsey condition (Dasgupta and Heal, 1974 [95]) about the 

consumption rate of change as related to the rate of price change on the optimal path. Here, the relation 

of optimal consumption to investment is also given, for w = Σwi. 
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Corollary 2: Along the optimal path: the rate of change in consumption should be opposite in sign 

to the change in spot price and change in net investment; change in net investment should have the 

same sign as the change in spot value (to simplify notation, using “dots” to denote time derivatives): 

1/ 1/
t

w K

w K

λε η
λ

− = =
 

  (10)

where ε is the elasticity of demand and η is the output price elasticity for capital.  

This result is obtained by differentiating Equations (6) and (7) in terms of the spot price change. 

Reasonably, this result says that when spot price is increasing, optimal consumption should be 

decreasing. Also, it would not be optimal for consumption to be increasing when capital investment is 

increasing, because of cost. 

Example: For fK(K) = k1 K
α where α < 0, then fKK(K) = k1 α Kα−1. For the marginal benefit (inverse 

demand) function for each water user of the form NBi
w(wi) = k2w

i β , then NBi ww(wi) = k2β wi β−1 for  

−1 < β < 0. Applying the above corollary, 

/
w K

w K
α β= −


 

Corollary 3: The optimal investment each period can be determined recursively from that period’s 

raw water spot value, the marginal product of capital, and past capital investment [96]:  
1 1( / ) (1 )t t t

KI f i d Kλ− −= − −   (11)

Inserting the expression for change in capital and implicitly solving Equation (7) give this expression.  

Example: For f(K) = k1/(α+1) Kα+1 and fK(K) = k1K
α , with α < 0, from Equation (8): 

1/ ( )t ti k K αλ = . Substituting for capital stock to solve recursively for optimal investment:  

1/ 1
1( / ( )) (1 )t t tI i k d Kαλ −= − −  

5. Relating the Steady State to the Social Discount Rate and Design of the SIPI Process  

Here, a theory foundation is given for the SIPI process integrating optimization and public 

participation as illustrated in Figure 1. Equation (17) below is the key to relate the discount rate to the 

optimal steady state: by choosing a desired steady state, the implied social discount rate is revealed by 

the water community.  

The phase diagrams below indicate that there is a panoply of possible optimal paths leading to a 

chosen steady state, each path corresponding to a specific set of initial conditions (starting point of the 

path) while satisfying first order conditions (efficiency). It is explained why there is a degree of freedom 

to allow choice of the initial condition. Choosing among these potential paths reveals a community’s 

notion of equity. Furthermore, a potential depletion outcome can be avoided, either by re-selecting the 

discount rate or by redefining initial water consumption. Adjustment procedures are explained below 

with illustrating diagrams. 

Thus, revealed preference enters the SIPI process in three ways: first, to reveal the discount rate; 

second, to choose the path to the steady state; and finally, to impose any constraints that might be 

necessary to avoid depletion. 
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5.1. Determination of Optimal Steady State 

Sustainability here is represented as being a “steady state,” which is a stationary outcome to be 

attained by the end of the planning period. A steady state solution may not be possible for given initial 

and physical conditions and discount rate. If one exists, the optimal steady state satisfies zero change 

for dynamic conditions as well as the necessary conditions for optimality. Here, the optimal steady 

state is denoted by “*” for state variables (S*, Q*, K*), control variables (I*, w*), and spot value λ*. 

The steady state solution for groundwater investment and total withdrawal satisfies the following 

simultaneous system of first order conditions:  

(1) From Equation (6), the steady state spot price sets marginal net benefit for the steady state 

water consumption to the spot price, for each water user’s water consumption: 
* *( )i

w iNB wλ =   (12)

(2) From Equation (9), the steady state optimal stock S* is related to spot price λ* as follows:  

* * *( )
1S S

r
NB h

r
λ= −

+   
(13)

From Equation (13), *( )
1 S

r
h

r
−

+
 must be positive, because both NBS

* and λ* are non-negative 

(important for the phase diagram below). With the assumption that hS
* is non-positive, r can be 

zero, or even negative.  

(3) K* is determined in terms of λ* and the market interest rate i; from Equation (8), it satisfies 
* *( )Ki f Kλ=   (14)

(4) Total consumption is equal to total withdrawal from groundwater: * *
i

i

w w= . 

(5) From Equation (1), the steady state stock satisfies: 
* * *0 ( ) ( )w f K h S αρ= − + + +  (15)

(The time superscript is omitted for rainfall, because there could be no steady state with varying 

rainfall. See Appendix 3 for a suggestion regarding how to deal with uncertain rainfall.) 

Result 2: If it exists, the optimal steady state for stock, total withdrawal, consumption, capital, and 

spot price is determined by the simultaneous system (12)–(15). 

The following comparative statics result shows the effect of the discount rate on the steady state, for 

example a decrease in r means an increase in S* and an increase in λ*. To simplify, rather than 

individual demands, aggregate demand is used; w* denotes total pumping withdrawal—equal to total 

consumption—and NBw and NBww indicate derivatives of the inverse aggregate water demand function, 

found by summing the individual demands.  

Result 3: Steady state stock, withdrawal, capital, and spot price are affected by the discount rate  

as follows:  
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for hS <_ 0, where 2 2( )( ) ( ) 0SS SS ww K KK ww S KKD NB h NB f f NB h fλ λ λ= − + + − ≤ . 

This comparative statics relationship is key to describe adjustment of the discount rate during the 

planning process. For example, if a potential steady state stock is less than desirable, then the discount 

rate should be decreased. Or, if a potential steady state total consumption is less than desired, then the 

discount rate should be increased.  

The reverse relationship is given in Equation (17) below, implying that selection of the desired 

steady state can be used to infer the corresponding discount rate. This result is obtained by rewriting 

Equation (13) and substituting Equation (12). Note that r* could be positive or negative.  

Result 4. Suppose the water community desires a steady state stock level S* and a steady state total 

consumption w* (which corresponds to the steady state spot price λ*). Then the corresponding discount 

rate r* is determined: 

* * *
*

* * * *( )
S S

w S S

NB h
r

NB NB h

λ
λ

+=
− +

 (17)

Figure 3a [97] gives the phase diagram for S and λ in terms of the two loci ΔS = 0 and Δλ = 0, for 

the assumption that hS is negative at a solution (from Equation (19), hS cannot be zero). The locus of S 

and λ satisfying Δλ = 0 has a negative slope, obtained by solving for dS/dλ from Equation (13):  

[ / (1 ) - ] 

( )
S

SS SS

r r hdS

d NB hλ λ
+=
+

 (18)

because *( )
1 S

r
h

r
−

+
 is positive from (13), and the denominator is negative from second  

order conditions. A positively sloped line describes the locus ΔS = 0; this is obtained, for negative hS, by 

solving for dS/dλ from Equation (15) and substituting for dK/dλ and dw/dλ from the first order conditions 

(12) and (14): 
21 K

ww KK

S

f
NB fdS

d h

λ
λ

+
=  (19)

The opposite slopes in Equations (18) and (19) ensure there is a solution for the steady state S* and λ* 

at the intersection of these two loci, as shown in Figure 3a. 
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Figure 3. (a) Phase diagram; (b) Effect of changing the discount rate. 

(a) 

 
(b) 

In addition to illustrating the steady state, Figure 3a indicates the direction of movement of stock 

and spot price in each region depending on initial conditions. Convergence to the steady state occurs 

for initial conditions in Regions C or B. For initial conditions in Region D, there is movement toward 

depletion of stock, while Region A has movement toward maximum stock and declining  

water consumption.  

Figure 3b illustrates how the steady state is affected by the discount rate. From the comparative 

static results above, the locus Δλ = 0 must shift to the right as r decreases, and the locus ΔS = 0 must 

also shift to the right; thus Region C shifts upward and outward. 

5.2. Welfare along Paths to the Steady State 

Initial points in different regions of Figure 3a produce optimal paths with different welfare effects. 

Welfare along a path in the phase diagram is determined by its combination of water consumption, 
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stock, and quality at each point in time. To examine welfare for an optimal path to the steady state, 

consider the expression for un-discounted welfare Wt at a point in time along an optimal path: 

( , , ) [ ( ) ( ) ( )] ( , , ) -
tt t i t i t i t t t t

i i i
i

W w S Q B w N S E Q C w S Q iK= + + −    (20)

Taking the derivative with respect to t, change in welfare along an optimal path is: 

( ) ( ) ( )i i ii
w w S S Q Q S

i i i

dwdW dS dS dK
B C N C E C g i

dt dt dt dt dt
= − + − + − −     (21)

An optimal path must of course satisfy the necessary conditions (6)–(8) at each point in time. 

Substituting from Equations (6)–(8) and solving for time derivatives for wi and K in terms of λ: 

2( )
       [ ]

tt
t ti

S
i

tt
tK

Sit t
i ww KK

dwdW dS dK
NB i

dt dt dt dt

fd dS
NB

dt NB f dt

λ

λ λ

= + +

= + +




  (22)

The bracketed coefficient of λ “dot” is negative under the assumed second order conditions. The net 

benefit of stock should be non-negative because of optimality. Therefore, a sufficient condition for 

welfare improvement along an optimal path—to satisfy WA and Pezzy’s ethical criterion described in 

Section 2—is decreasing spot price and increasing stock. A necessary condition for welfare 

improvement is that either the spot price must be decreasing (implying increasing water consumption) 

as in Region D, or the stock must be increasing (Region A).  

Accordingly, starting points in Region C in Figure 3a result in increasing welfare over time, while 

decreasing welfare over time occurs for increasing spot price and decreasing stock, found in Region B. 

To be consistent with altruism, Region B should be avoided on decreasing welfare grounds.  

Considering alternative possible paths with either increasing or decreasing welfare over time, revealed 

preference by the current generation for a time path with non-decreasing welfare over generations 

would indicate a preference for altruism. 

5.3. Choosing a Path to the Steady State 

Here, adjustments in discount rate and/or spot price are suggested when considered outcomes  

are deemed undesirable. The following discussion refers to aggregate consumption rather than 

individual consumption. From Equation (6), there is a spot price corresponding to any level of 

aggregate consumption.  

Two “degrees of freedom” can be utilized to locate a preferred path when one potential path is not 

desirable. First, the initial point can be changed to provide a path in a different region. Although initial 

groundwater stock is a physical parameter determined by hydro-geologic conditions, initial water 

consumption (water consumption at the start of the planning period) does not have to be taken as 

given, i.e., a different starting point for initial consumption can be chosen to produce a preferable 

situation. For example, suppose the “actual” initial conditions for a water community are a low stock 

and high water consumption (corresponding to a low spot price), corresponding to Region DL. The 

water community may provide for a better future by setting the initial spot price such that the initial 
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consumption is less than the existing situation. So, the initial spot price can be chosen such that the 

optimal path will lie in Region C with increasing welfare over time. Or, given past consumption 

corresponding to an initial point in Region B, the initial spot price can be set such that the starting 

consumption is set to be in Region DH.  

Second, if no desirable path can be found for a given discount rate, the discount rate can be changed 

to obtain a different steady state, with a potentially more desirable path to it. For example, if a starting 

point is in Region AL with ambiguous welfare change and without convergence to a steady state, the 

discount rate could be decreased to put the starting point in a new Region C, providing a path with 

increasing welfare toward a new steady state. Similarly, for an initial point in Region DL the discount 

rate could be increased to put the path in a new Region C.  

Alternatively for starting points in Region D, if stock depletion is not desired, a boundary condition 

can be set as a limit to avoid depletion. A minimum stock level (Smin) could be designated based on 

ecological concerns or on avoidance of aquifer collapse. Another boundary condition could be based 

on a physical maximum stock level (Smax) based on the hydro-geological situation; there would be no 

need for further capital investment beyond this limit. Furthermore, minimum and maximum water 

consumption levels (wmin and wmax) could be specified: minimum water consumption is the least that 

could be tolerated for human health reasons; for a maximum, there is limit to the volume from the size 

of the physical water distribution system. See Figure 4a for a phase diagram with limits.  

With boundary conditions, any trajectory would end at a boundary once it is reached. Since a 

boundary-terminated path would no longer satisfy first order conditions for an interior solution, there 

would be a social cost of imposing a boundary condition [98]. Still, this “non-optimality” cost could be 

more agreeable to the water community than depletion. See Figure 4b,c to illustrate turnpikes with 

such boundaries for high and low initial stock levels. 

Figure 4. (a) Phase diagram regions with boundaries for S and λ; (b) Shapes of potential 

turnpikes for regions in Figure 3a with S0 greater than S*; (c) Shapes of potential turnpikes 

for regions in Figure 3a with S0 less than S*. 

 
(a) 
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Figure 4. Cont. 

(b) 
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Figure 4. Cont. 

 

(c) 
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5.4. Application to Stages 1and 2 of the Participatory Planning Process 

The above results provide the foundation for structuring the SIPI process. The description below 

corresponds to Stage 1 and Stage 2 for the SIPI process. The foundation for Stage 3 is described in 

Sections 6 and 7 below.  

Summarizing the phase diagram discussion above, steps in the planning process are as follows: 

(1) Identify a target steady state, thus implying a corresponding discount rate. 

(2) For the given discount rate, identify potential paths to the target steady state and their associated 

welfare effects. Check acceptability of potential paths. 

(3) If no desirable path can be identified, change the initial spot price/water consumption and/or the 

discount rate, and repeat Step 2. 

(4) Once the desired future—the steady state and path to it—are identified, determine the 

associated water bills for water users (see pricing details below). Check with water users to see if 

these water bills are acceptable to the current generation, who also represent future generations.  

(5) If water bills corresponding to the desired steady state and path are not acceptable, re-specify 

the target steady state and repeat the process. 

Because satisfying necessary optimality conditions does not ensure that water user budget constraints 

will be satisfied, explicitly checking water bill acceptability in step (4) is needed. Section 6 describes 

how to determine the water user bills to cover operating and investment costs for water supply.  

To carry out these steps, the proposed blueprint for planning in a HGE community implies the 

following participatory roles: 

• citizens to reveal preferences to choose the desired future satisfying relevant physical and 

economic constraints; 

• physical scientists, engineers, and mathematicians to provide scientific and technical 

information and computational methods for modeling;  

• social scientists to work with preference elicitation and measurement of economic 

relationships, such as benefits, costs, and pricing.  

• a government water agency to manage the planning process; if relevant, also to have oversight 

over a contractual arrangement with a water management enterprise. 

To successfully accomplish the SIPI process, also needed will be information tools to translate 

physical and social sciences into layman’s terms.  

6. Pricing for Full Cost Recovery and Optimality 

One common interpretation of economic optimal control modeling is that the optimal steady state 

would be determined and implemented by a social planner. A more “decentralized” planning approach 

is for the planner to use optimization results to set appropriate prices. A common procedure is to set 

price equal to the marginal social cost of consumption (the spot price plus marginal supply cost) to 

correspond to optimality (here, condition (6)); see for example Roumasset and Wada (2010) [99] for a 

groundwater application.  
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This pricing approach is inadequate here. There are two reasons. First, full solution of the social 

optimality problem (2) requires covering full costs of investment and water supply, whereas covering 

costs is not a part of the monetized optimization problem. If price were set equal to marginal social 

cost of consumption, this would not necessarily cover investment and other costs, especially when 

costs are non-linear and there are fixed costs [100]. Second, in addition to the necessary marginal cost 

condition (6), the public good necessary condition for stock and ecosystem health in Equation (8) must 

also be satisfied.  

This section describes a pricing method to cover full cost of water supply each period, including the 

amortized investment cost, from payments by water users throughout all time periods of the investment 

life. And, it satisfies both the consumption and public good necessary conditions. Thus, the pricing 

method provides demand management [103], because water consumers each time period make 

consumption choices that correspond to the social optimum. 

The proposed method for inter-temporal cost recovery—“Inter-temporal Variable Unit Pricing—

extends the “Variable Unit Pricing” method for covering full water supply costs in an a-temporal 

setting that was described and applied in Loehman (2004, 2008) [101,102]. Similar to the a-temporal 

situation, the inter-temporal method constructs a multi-part water charge function such that the sum of 

charges over water users each period covers supply and investment costs for that period. Here the 

public good condition for stock and ecosystem health is also used to specify the charge function.  

Consider the following nonlinear charge function specifying the total water charge for a water 

consumer i with consumption wi
t at time t: 

( , ) ( ) ( )it t t t t t t t t
i i i i i oR w S a b w w c S S= + + −   (23)

where So is the initial stock and St is a stock higher than the initial stock. That is, there is a volumetric 

charge per unit of water consumption (at + bi
t wi

t) as well as a charge ci
t per unit improvement in 

groundwater stock [105]. The volumetric charge is further sub-divided into the per unit base charge at 

and the per unit demand charge bi
t wi

t. It is not necessary to include ecosystem quality Q in the charge 

since quality is directly related to stock.  

Given this charge function, each period each water consumer would choose water consumption to 

maximize net benefit subject to the consumer budget constraint [106]:  

 

Max   ( ) ( ) ( ) 
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                      ( )

t i t i t i t
i i

t it t t t
i i i

t t

x B w N S E Q

x R w S M

Q g S

+ + +

+ ≤

≤

  (24)

Optimization results in the consumer setting marginal benefit equal to the marginal charge, for both 

consumption and stock.  

The parameters at, bi
t, and ci

t are specified to satisfy first order conditions (6) and (8) and cost 

recovery. To determine the parameters for this charge function:  

(1) To correspond to Equation (6), where Ct is the operating cost evaluated at the optimum values 

for total withdrawal, capital, and stock, water users should set marginal benefit of consumption equal 

to marginal consumption cost, with the marginal opportunity cost represented by the  

spot price:  
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2i i t t t t t
w w i i w wB R a b w C MCλ= = + = + ≡   (25)

Since the right hand side of Equation (25) is the same for each water consumer, a reference consumer 

m can be chosen. From Eqution (25),  
t t t t

i i m mb w b w=   (26)

so that the “demand charge” and volumetric charge per unit water consumption are the same for all 

water consumers.  

(2) Each period, the sum of charges must cover the total cost, which is the sum of three components: 

the operating cost Ct, plus the investment cost iKt amortized at the market rate of interest i, plus any 

water management fee Ft. Summing water charges over all consumers to equal total cost: 

[ ] ( )
tt t t t t t t t t

i i i i o
i i

a b w w c S S C iK F+ + − = + +    (27)

Substituting Equation (26) in Equation (27):  

[ ] [ ]                   

                         ( )

t t t t t t t t
i i i m m i

i i

t t t t t
o i

i

a b w w a b w w

C iK F S S c

+ = +

= + + − −

 


  (28)

Thus, the volumetric charge per unit for the representative consumer must satisfy: 

( )
[ ]

t t t t t
o i

t t t i
m m

i
i

C iK F S S c
a b w AC

w

+ + − −
+ = ≡




  (29)

Combining Equations (25), (26), and (29) above gives two simultaneous equations each period in 

the two unknown parameters at and bm
t wm

t 

2t t t t
m m wa b w MC+ =   (30)

t t t t
m ma b w AC+ =   (31)

Average demand can be used to specify wm.
t Then, base and demand charge parameters each  

period can be obtained by solving Equations (30) and (31) simultaneously, given ACt and MCw
t 

(average and marginal cost evaluated at the optimal solution for that period for capital, stock, quality, 

and total withdrawal).  

(3) From the first order necessary condition (8) for optimal stock as a public good, the sum of stock 

marginal benefits over water users should be equal to the marginal social stock cost. To satisfy this, the 

sum of water consumer marginal charges for stock ci
t should satisfy: 

1

( ) ( )
1

t
t t t t t t

i S S Q
i

c C g C h S
r

λλ λ
+

= + + − −
+   (32)

Recall from Equation (8) that the right hand side of Equation (32) must be non-negative. 
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Result 5 below summarizes these results: 

Result 5: Inter-temporal Variable Unit Pricing covers costs of investment and supply each  

period and provides appropriate inter-temporal water use incentives if pricing parameters at, bi
t ,  

and ci
t satisfy: 

1

2

( ) ( )
1

t t t t
i i w

t t t
w

t
t t t t t t

i S S Q
i

b w MC AC

a AC MC

c C g C h S
r

λλ λ
+

= −

= −

= + + − −
+

  
(33)

for spot value and costs each period evaluated along the optimal path for capital, stock, quality and 

total withdrawal.  

The above result does not fully specify the allocations ci 
t since only their sum is specified. The 

allocation of the total stock charge among water users can be made in many ways as long as the 

individual charges are set independently of water consumption levels, so that first order conditions are 

not affected. Equal shares or shares proportional to income are two potential distribution methods that 

would not affect first order conditions.  

If investment and other costs were to be subsidized from government grants, parameter 

determination is modified by subtracting subsidies from the full costs to be covered, and again pricing 

parameters to cover the remaining costs could then be determined as indicated above. 

7. Organization for Optimality 

Here, to support Stage 3 of the SIPI process, we show that a for-profit water enterprise—with the 

appropriate contractual arrangement—could provide a solution of the inter-temporal groundwater 

optimality problem. The reasoning is similar to the First Theorem of welfare economics (Takayama, 

1985 [88]) for the a-temporal private consumption, stating that price in a market (a decentralized 

solution) can produce the social optimum. Decentralized decision-making by consumers and producers 

is generally preferred by economists to centralized planning because of reduced information and 

enforcement costs (Hurwicz, 1973 [107]). Here this reasoning is extended to an inter-temporal setting 

with non-linear pricing [108]. 

The proposed economic organization for HGE water management consists of: water users; a public 

water planning agency; and a profit-maximizing water enterprise. This structure is “decentralized” in 

the sense of “incentivized” consumption and production decisions. The planning agency will specify 

the nonlinear pricing rule Ri(wi
t, St)—the charge function described above—for each water user’s total 

bill, with revenues to be received by the water enterprise. A government agency to specify the form of 

the pricing rule is not too different from a government agency setting a rate of return (ROR) on 

investment for for-profit water supply, with the purpose of limiting monopoly returns.  

The water management enterprise will receive revenue according to the pricing rule and pay for all 

water system costs from the proceeds. This contractual arrangement should also include a management 

fee F for the enterprise managing investment and water production. The fixed fee for management is 

necessary because the pricing rule gives zero profit; without such a fee, there would be no incentive for 
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the enterprise to manage water. This fee should be independent of the volume of water withdrawal for 

optimization reasons.  

The management fee would increase supply costs and should be added to supply cost for the social 

optimizations (2) and (4). Note that it is usual in economics to consider cost of management as part of 

the economic cost of production. The management fee would of course be subject to mutual 

agreement, and there should be competitive bidding among potential water managing companies to 

minimize this fee [110].  

Mathematical description of this water management organization is as follows: 

(1) The public agency sets the charge functions Ri(wi
t, St) for water consumers each period. 

Parameters for the charge functions are specified as above to satisfy cost recovery including the 

finance charge for investment and the management fee: 

( ; ) ( ; , )i t t t t t t
i i

i

R w S C w S Q iK F= + +    (34)

By construction, this pricing rule results in community financial feasibility:  

[ ( , )] [ ( , , ) ]t t i t t t t t t
i i i i i

i i i

M x R w S x C w S Q iK F= + = + + +      (35)

(2) Given the charge functions, water consumers determine their water demands from Equation (24). 

(3) Receiving revenue from the specified charge functions and management fee F, the water 

enterprise chooses investment and withdrawal to maximize present value of net profit for 

discount rate σ subject to supply constraints:  
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 (36)

Note that the water enterprise has the stock condition (1) included in its optimization problem (36).  

First order conditions for profit maximization for the water enterprise are: 
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where ˆ tλ  denotes the spot prices for the optimal control problem (36). The first condition above is the 

familiar profit condition that marginal revenue must equal marginal cost, here including the spot price.  
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The joint solution of this set of “decentralized” decisions (if it exists) gives an equilibrium for this 

organization in the sense that no party could be better off by any party changing its decision from the 

equilibrium outcome. We seek an equilibrium of this system that corresponds to the social optimum. 

The above pricing rule and this organization of decisions are specified to achieve this correspondence. 

The optimal control problem (2) is satisfied by an equilibrium of the system because: (i) the 

combination of first order conditions for the water users and the water supplier satisfies the first order 

conditions for social optimality, including the public good condition, provided that the discount rate 

used by the supplier is the same as the social rate; (ii) financial feasibility is satisfied by the form of the 

pricing rule.  

Result 6: A profit-maximizing water enterprise—given a contract specifying a fixed management 

fee, the method of inter-temporal variable unit pricing, the appropriate social discount rate, and the 

planning period—can satisfy the social optimality problem (2). 

These contract requirements are not trivial. A for-profit water provider would tend to base decisions 

on a desired market rate of return rather than the social rate of discount, and the provider may have a 

shorter time horizon T for return on investment than the social planning horizon. Without the 

correspondence of the discount rate and planning horizon to social preferences, the desired sustainability 

outcome will not be achieved by a for-profit water management enterprise.  

8. Implementation Considerations: The Backcasting and Planning Approaches 

The proposed SIPI process—the HGE community identifying the desired steady state and then 

choosing the path to achieve it—is consistent with the idea of backcasting described below. Because to 

date there are more than 7000 citations to backcasting work on the internet, applying the SIPI process 

within a backcasting context may provide for successful implementation. Experience with backcasting 

and other planning methods can add to the development of the SIPI approach.  

For backcasting, a desired target outcome is first identified, followed by consideration of how to 

determine a feasible path to this desired outcome. If no feasible path is found for a targeted future, then 

the target is re-cast, and deliberation continues. For the purpose of futures planning, backcasting was 

developed as an alternative to forecasting, which is a planning method based on trends extrapolated 

from past actions and technologies; it is unlikely to be pertinent for developing a new future with new 

behaviors and technologies.  

The idea of backcasting was developed initially for use by professional water planners (Gleick, 

1998 [111]). Recognizing the inherent interests of multiple stakeholders in futures planning, Robinson 

(2003) [112] proposed participatory backcasting: rather than a plan or set of plans being determined by 

experts and then brought forward for public approval, participatory backcasting has back-and-forth 

interchanges among stakeholders and planners regarding possibilities and tradeoffs in determining how 

to achieve the desired future. Applications of participatory backcasting involving citizens, scientists, 

and planners has been tested for water concerns in Canada by Robinson (2003) [112], Brooks, Brandes, 

and Gurman (2011) [113], and Brooks and Brandes (2011) [114]. Robinson et al. (2011) [115], Quist 

(2007) [116], and Vergragt and Quist (2011) [117] review applications for contexts other than water.  

Decision makers need to have some understanding of the likely outcomes of their choices in order to 

make good decisions. However, choosing a desirable future for a groundwater system presents 
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difficulties because of the complexities and uncertainties of physical, ecological, and social systems 

and their interactions.  

Another difficulty is reaching a common agreement in a HGE community if there are widely 

differing individual preferences and values. As described by Brooks and Brandes (2011) [114] in a 

backcasting context, “The best way to achieve a sustainable future for fresh water is to develop 

decision-making processes, institutions, and technologies that emphasize both efficiency and 

conservation. These two terms are commonly treated as synonyms, but, respectively they reflect 

anthropogenic and ecological bases for making decisions (p. 315).” It is likely that stakeholder groups 

(e.g., conservationists, agriculturalists, industrialists, health practioners, etc.) may have differing values 

about efficiency, conservation, and other pertinent characteristics of alternative plans. Little attention 

in the backcasting literature has been given regarding how–when there are stakeholders with differing 

interests or values–agreement about the desired sustainable future and the path to it would come about. 

However, focusing on a desired future−before seeking acceptable means for change−may improve the 

likelihood of agreement among groups with different values.  

Because of such difficulties, backcasting cannot be a “stand-alone” methodology. For example, 

Swart, Raskin and Robinson (SRR) (2004) [118] have suggested combining backcasting with scenario 

analysis for problems of sustainability. “...scenarios may be thought of as coherent and plausible 

stores, told in words and numbers, about the possible co-evolutionary pathways of combined human 

and environmental systems.... The characterization of the nature of human and environmental response 

under contrasting future conditions is key in scenario formulation (p. 139).” SRR also recognized the 

importance of involving “a sufficiently large and diverse group of participants” including experts from 

different disciplines and stakeholders with different interests (p. 144).  

Multi-criteria decision-making methodologies should be combined with backcasting to address 

finding agreement for stakeholders with different interests. Relevant group decision procedures that 

should be explored include: (1) deliberative processes for environmental applications; for example, see 

Depoe et al. (2004) [119] and Forester (2001) [120]; (2) Delphi techniques to help find agreement 

(Zimmermann, Darkow, and Gracht, 2012 [121]); (3) Analytic Hierarchy Process to rank alternatives 

for multi-criteria water planning in a group context (Bosch, Pease, et al. 2012 [122]). 

9. Conclusions 

Hermans et al. 2008 [123] (p. 51) stated that: “Collaborative public participation is increasingly the 

norm in environmental decision-making and management in the United States. The process by which 

multiple stakeholders are involved, more than any other aspect of the project of decision activity, can 

dictate the success of the endeavor.” Unfortunately, planning literature is frequently devoid of 

economic reasoning and likewise, economic literature frequently avoids issues of implementation.  

Here, planning procedures and economic reasoning are combined in the proposed SIPI process with 

pricing, contract rules, and organization designed to achieve an identified desired sustainability future 

for groundwater in a HGE community. The SIPI process described here provides a step-by-step 

structure for public participation based on economic theory. During the process, the HGE community 

identifies the desired steady state for groundwater stock, aquatic ecosystem health, and water 

consumption, and this in turn determines the social discount rate required for implementation of  



Sustainability 2014, 6 5628 

 

water pricing and contractual water management arrangements. The desired path toward this steady 

state—for investment, groundwater stock, and water consumption over time—is also a matter of water 

community choice, and the chosen path choice reveals the nature of community altruism. Depletion—a 

possible outcome under optimal control modeling—can be avoided by the HGE community by  

re-specifying the discount rate and/or initial water consumption, and if necessary, applying a 

sustainability constraint. 

Then, the combination of decentralized decisions by water consumers and a for-profit water managing 

enterprise can achieve the desired sustainability outcome for the contractual arrangement described 

here. Although water management can be privatized through the contractual arrangement, there is still 

a major role for a government water agency to oversee the planning process and water management.  

The described SIPI process seems complex, and there may be high transactions costs to implement 

such a system. However for groundwater, “business as usual” has resulted in an inadequate investment 

and non-sustainable consumption levels, and privatization has been “no panacea”. It should be 

recognized that there are also transactions costs for an unsustainable situation when ameliorative 

actions must be taken ex post. It is an empirical question how such transactions costs might compare to 

the welfare gains from achieving sustainability. 

More work is undoubtedly required to make operational the concepts presented here and to “flesh 

out” planning procedures. Clearly, measurement of economic and physical relationships and heuristics 

will be needed. Given the world-wide situation of threats to groundwater sustainability, there should be 

ample opportunities for application along the lines suggested in this paper. 

If successful, the methods suggested in this paper may be applied to other dynamic resource 

problems with the possibility of renewal/restoration through social investment. For non-renewable 

resources such as “fossil” water, there is no steady state. However, social investment in alternative 

technologies can still prolong the use of the resource and help to mitigate negative environmental 

impacts. Without a steady state, the social discount rate may be less directly discoverable, but the idea 

is still relevant for public participation to choose the path to the future through social investment and 

appropriate pricing.  

Appendix 1: Discount Rate and Benefit-Cost Analysis 

The money-metric optimization specification (4) is reminiscent of benefit-cost analysis in its use of 

the sum of discounted net benefits for the objective function. Benefit-cost analysis (BCA) has been 

useful for making water investment decisions (see Maas, 1966 [124]; Prest and Turvey, 1965 [125]), 

and at the same time there has been much controversy about its limitations (De Alessi, 1969 [126]; 

Wildavsky, 1966 [127]). In traditional BCA, discounted net social benefit is the metric used to make 

yes-no decisions among a limited set of pre-specified alternative proposals.  

The selection of a discount rate has always been an issue for benefit-cost analysis. For example for 

the Cross Florida Barge Canal proposed by the U.S. Army Corps of Engineers in the 1970s, 

controversies concerning the discount rate helped to overturn this potential development: Roberts 

(1976) [128] showed that if a high enough rate were used, negative net benefits would support 

rejection of the project.  
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Some economists have suggested that the discount rate be set at the market rate of interest to reflect 

market opportunity cost. Using a lower rate could result in making an investment decision that is less 

productive than market opportunities (Toth, 2000 [129]; Howarth and Norgaard, 2004 [130]).  

In contrast, for water investments, the rate is congressionally prescribed at a lower than market rate to 

reflect that society would prefer longer-lived projects, which by nature would not be provided in a 

market setting.  

Controversies about the discount rate issue can in part be explained as confounding several different 

concepts, namely: rate of time preference, investment productivity, opportunity cost, and rate of return 

on capital (borrowing cost); see Toth (2000) [129] for a comparison and discussion of these different 

concepts. The idea of a social rate of discount was presented by Marglin (1963) [131]. He suggested that 

there should be a difference in the way we view savings versus consumption decisions for collective 

goods in comparison to individual consumption decisions. He also explicitly recognized that investment 

for such goods would provide benefits for future generations as well as the current generation. 

For any positive rate, discounting implies weights on the distant future that are effectively zero for 

catastrophic events such as climate change. Consequently, equity over generations has been a concern 

for BCA. A zero discount rate (Dasgupta, 1982 [132])—or equivalently equal weights on the net 

benefits of each generation—has been suggested to express equity concerns. Negative discount rates 

have even been suggested to reflect a preference for increasing welfare over time. Recent psychology 

experiments regarding observed preferences for future consumption/income over present consumption/ 

income support a negative discount rate (Lowenstein and Prelec, 1992 [133]; Frederick and 

Loewenstein, 2002 [134]). Moreover, the discount rate may also vary over time, as with hyperbolic rates 

(Heal, 2000 [135]). 

Appendix 2: Optimal Control Models for Groundwater Based on Height of the Water Table 

Most papers applying optimal control for groundwater concerns have focused on agricultural 

pumping externalities, with a “single-cell or “bath-tub” unconfined aquifer model based on the height 

of the water table. When there is increased pumping by any person in the basin, the associated 

externality is that pumping costs increase for everyone as the water table falls. Gisser and Sanchez 

(1980) [136] used this type of model and empirical relationships from New Mexico for agricultural 

returns from groundwater extraction and the externality effect of extraction on pumping cost; they 

obtained the conclusion that regulated management of an aquifer brings negligible returns compared to 

“free market” decisions.  

To revisit this conclusion, Burness and Brill (2001) [137] focus a similar model but add the relation 

between investment in irrigation capital and water conservation. Investment in irrigation increases 

efficiency of water use, thus ameliorating the pumping cost externality. In the optimal control model, 

net revenue is maximized over a fixed time period, and they compared this objective empirically for a 

planning solution versus a competitive (myopic independent agricultural producer) situation; data from 

a county in New Mexico was used. Over-pumping is shown to result from under-investment in 

irrigation. By the end of the planning period (200 years), the outcome under both regimes is nearly the 

same in terms of water use. However, net revenue from the planning solution surpasses the competitive 

solution after about fifteen years, and is clearly superior after forty years. 
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The conclusion that there would be only small gains from groundwater regulation was questioned 

by Esteban and Albiac (2011) [15] because the above agricultural models excluded effects on aquatic 

ecosystems that are dependent on aquifers. They estimated an empirical agricultural model for Spain, 

with ecosystem values included, and used it to compare three regimes: free market (non-cooperative) 

with myopic pumping, full cooperation (or joint management), and partial cooperation. Partial 

cooperation accounts only for the extraction externality, whereas full cooperation includes both 

environmental and pumping externalities. Free market decisions result in massive depletion, whereas 

full cooperation results in initial extraction reduction followed by rapid recovery of the water table and 

about 50% higher social welfare compared to the free market outcome. The partial cooperation 

solution is nearly as good as the full solution in terms of welfare and water stock at the end of the 

period. How cooperation would be organized was not addressed. 

Roumasset and Wada (2010) [99] addressed groundwater management for the urban setting of 

Oahu, Hawaii; they studied optimal pumping when there is a backstop technology (desalinization)  

that can substitute for pumping; they assumed that desalinization has a linear cost. From  

optimality conditions, they defined a pricing rule for the purpose of demand management. A main 

point of their work is to show the inappropriateness of “maximum sustainable yield” as a rule for 

groundwater management. 

Appendix 3: Adjustment Procedure for Uncertain Rainfall  

The optimization problems (2) and (4) were specified in terms of ex ante known rainfall patterns. 

However, especially with climate change rainfall patterns are not known a priori. This appendix 

indicates how the investment planning process can still be applied in terms of social preferences, even 

in the face of varying and uncertain rainfall. 

Burt (1967) [138] suggested one approach to deal with rainfall risk: maximize expected net benefits 
using expected rainfall ( ρ ) to give a “stochastic equilibrium which is always approached but rarely 

experienced (p. 46).” Following Burt’s suggestion, an expected steady state and corresponding paths 

could be determined from optimization in terms of expected rainfall; i.e., the planning process for 

making investment and pricing decisions can be based on the expected conditions or a guess about 

anticipated conditions.  
For a constant reference expected rainfall ρ , the “reference” optimization with this expected 

rainfall provides a reference steady state Sr
* and reference investment Kr

*; the reference steady state 

total withdrawal wr
* will satisfy: 

* * *( ) ( )r r rw f K h S αρ= + +   (A1)

where reference water user consumption paths will satisfy t t
r riw w= .  

Define consumption shares at the steady state: 
*

*
ri

i
r

w

w
γ = . Then, ex post consumption could be 

determined by actual rainfall conditions, as follows. After actual rainfall ρt is observed, consumption 

wi
t can be allocated according to these same shares:  

( )t t t
i ri iw w γ α ρ ρ= + −  (A2)
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That is, ex post water consumption would exceed the reference withdrawal when actual rainfall 

exceeds average rainfall, and conversely. Taking expected values, the total ex post consumption each 

period will equal the reference total withdrawal wr
t. These ex post allocations will also satisfy the 

steady state stock condition for the reference steady state stock, capital, and total withdrawal: 
* * * * * *( ) ( ) - ( - ) ( ) ( ) 0t t t

i r r r r rS w h S f K w h S f Kαρ α ρ ρ αρ= − + + + = − + + + =  (A3)

Thus, this adjustment procedure has the good property that ex post, there is a steady state that is 

consistent with the ex ante optimal plan.  

Of course, for pricing purposes spot prices can be re-specified to match ex post allocations. 

However, a problem is that the first order necessary conditions for optimization—specified in terms of 

reference spot prices—will not hold for ex post water consumption so specified. Still, the acceptability 

of this ex post allocation method can be tested as part of the SIPI process. 
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